
where s = (sx, sy, sz) is a vector. The physical interpretation of s becomes
evident from the following relation:

si = h�ii = tr(�i⇢). (2.30)

The relation between these parameters and the parametrization in Eq. (2.18) is

h�xi = q + q
⇤
,

h�yi = i(q � q
⇤),

h�zi = p+ � p�.

Next we look at the purity of a qubit density matrix. From Eq. (2.29) one
also readily finds that

tr(⇢2) =
1

2
(1 + s2). (2.31)

Thus, due to Eq. (2.13), it also follows that

s2 = s
2
x
+ s

2
y
+ s

2
z
 1. (2.32)

When s2 = 1 we are in a pure state. In this case the vector s lays on the
surface of the Bloch sphere. For mixed states s2 < 1 and the vector is inside the
Bloch sphere. Thus, we see that the purity can be directly associated with the
radius in Bloch’s sphere. The smaller the radius, the more mixed is the state.
In particular, the maximally disordered state occurs when s = 0 and reads

⇢ =
1

2

✓
1 0
0 1

◆
. (2.33)

In this case the state lies in the center of the sphere. A graphical representation
of pure and mixed states in the Bloch sphere is shown in Fig. 2.1.

Figure 2.1: Examples of pure and mixed states in the z axis. Left: a pure state. Cen-
ter: an arbitrary mixed state. Right: the maximally mixed state (2.33).

2.3 Composite systems and the almighty kron

So far we have considered only a single quantum system described by a basis
|ii. Now we turn to the question of how to describe mathematically a system
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composed of two or more sub-systems. Suppose we have two sub-systems, which
we call A and B. They can be, for instance, two qubits: one on earth and the
other on mars. We use a basis |iiA to describe the sub-system A and a basis
|jiB to describe sub-system B. In general, each sub-system can have di↵erent
dimensions, dA 6= dB .

If we now wish to describe the composite system A+B, we could use as a
basis set, states labeled as |i, jiAB , where i is the quantum number of A and
j is the quantum number of B. That makes sense: suppose A and B are spins
which can be up or down. Then a state such as | ", #iAB means the first is up
and the second is down, and so on. But how do we operate with these states?
That is, how do we construct operators which act on these states to produce
new states?

The intuition is that A and B represent separate universes: things related
to A have nothing to do with things related to B. After all, they can be on
di↵erent planets. Thus, for instance, we know that for one qubit the operator
�x flips the bit: �x|0i = |1i. Now suppose two qubits are in a state |0, 0i. Then
we expect that there should be an operator �A

x
which flips the first qubit and

an operator �B

x
that flips only the second. That is,

�
A

x
|0, 0i = |1, 0i, �

B

x
|0, 0i = |0, 1i (2.34)

The mathematical structure to do this is called the tensor product or
Kronecker product. It is, in essence, a way to glue together two vector
spaces to form a larger space. The tensor product between two states |iiA and
|jiB is written as

|i, jiAB = |iiA ⌦ |jiB . (2.35)

The symbol ⌦ separates the two universes. Sometimes this is read as “i tens j”
or “i kron j”. I like the “kron” since it reminds me of a Transformers villain.
Sometimes the notation |iiA|jiB is also used for convenience, just to avoid using
the symbol ⌦ over and over again. Let me summarize the many notations we
use:

|i, jiAB = |iiA ⌦ |jiB = |iiA|jiB (2.36)

When is clear from the context, we also sometimes omit the su�x AB and write
only |i, ji.

Eq. (2.36) is still not very useful since we haven’t specified how to operate
on a tensor product of states. That is, we haven’t yet specified what is the
tensor structure of operators. In order to do that, we must have a rule for how
objects behave when there is an ⌦ around. There is only one rule that you need
to remember: stu↵ to the left of ⌦ only interact with stu↵ to the left and stu↵
to the right only interact with stu↵ to the right. We write this as

(A⌦B)(C ⌦D) = (AC)⌦ (BD), (2.37)
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In this rule A, B, C and D can be arbitrary objects. For instance, this rule
applies if they are all matrices. Or, they apply if you want to multiply a vector
by a matrix. In that case we get instead

(A⌦B)(| i ⌦ |�i) = (A| i)⌦ (B|�i), (2.38)

From this we now define operators which act only on A or act only on B as

OA ⌦ 1B = an operator that acts only on space A (2.39)

1A ⌦OB = an operator that acts only on space B (2.40)

where 1A means the identity operator on system A and similarly for 1B .
For instance, going back to the example in Eq. (2.34), we can define the

Pauli matrices for qubits A and B as

�
A

x
= �x ⌦ 12, �

B

x
= 12 ⌦ �x, (2.41)

Combining the definition (2.36) with the rule (2.37) we can now repeat the
computation in example (2.34) using the ⌦ notation:

�
A

x
|i, jiA,B = (�x ⌦ 12)(|iiA ⌦ |jiB) = (�x|iiA)⌦ |jiB .

We can also consider other operators, such as

�
A

x
�
B

x
= �x ⌦ �x.

which is an operator that simultaneously flips both spins:

�
A

x
�
B

x
|0, 0iAB = |1, 1iAB (2.42)

You can also use the ⌦ notation to combine weird objects. The only rule
is that the combination makes sense in each space separated by the ⌦. For
instance, the object h0|⌦ |0i is allowed, although it is a bit strange. But if you
want to operate with it on something, that operation must make sense. For
instance

(h0|⌦ |0i)(�x ⌦ �x)

makes no sense because even though h0|�x makes sense, the operation |0i�x
does not. On the other hand, a weird operation which does make sense is

(h0|⌦ |0i)(|0i ⌦ h0|) = (h0|0i)⌦ |0ih0| = |0ih0|

In particular, in the last equality I used the fact that h0|0i = 1 is a number and
the tensor product of a number with something else, is just the multiplication
of the something else by the number.

I am also obliged to say that everything I said extends naturally to systems
composed of more than two parts. For instance, if we have a system of 4 qubits,
then we can define �1

x
= �x⌦1⌦1⌦1 or �3

x
= 1⌦1⌦�x⌦1, and so on. We will

for now focus only on bipartite systems. But you have plenty of opportunities
to play with multipartite systems in the future.
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Matrix representation of the Kronecker product

If A and B are two matrices, then in order to satisfy Eq. (2.37), the compo-
nents of the Kronecker product must be given by

A⌦B =

0

BBB@

a1,1B . . . a1,NB

...
. . .

...

aM,1B . . . aM,NB

1

CCCA
. (2.43)

This is one of those things that you sort of just have to convince yourself that
is true. At each entry ai,j you introduce the full matrix B (and then get rid of
the parenthesis lying around). For instance

�x ⌦ �x =

0

BBB@

0

✓
0 1
1 0

◆
1

✓
0 1
1 0

◆

1

✓
0 1
1 0

◆
0

✓
0 1
1 0

◆

1

CCCA
=

0

BB@

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

1

CCA . (2.44)

This provides an automated way to construct tensor product matrices. Such
functionality is implemented in any computer library (Mathematica, Matlab,
etc.), which is a very convenient tool to use.

We can also do the same for vectors. For instance

|0, 0i = |0i ⌦ |0i =

0

BBB@

1

✓
1
0

◆

0

✓
1
0

◆

1

CCCA
=

0

BB@

1
0
0
0

1

CCA (2.45)

You can proceed similarly to find the others basis elements. You will then find

|0, 0i =

0

BB@

1
0
0
0

1

CCA , |0, 1i =

0

BB@

0
1
0
0

1

CCA , |1, 0i =

0

BB@

0
0
1
0

1

CCA , |1, 1i =

0

BB@

0
0
0
1

1

CCA (2.46)

Thus, from the rule (2.43) we therefore see that the correct order of the basis
elements is |0, 0i, |0, 1i, |1, 0i and |1, 1i. This is known as lexicographic order.
As an exercise, try to use the rule (2.43) to compute h0|⌦ |0i.

The operation highlighted by Eq. (2.43) is implemented in any numerical
library. In MATLAB they call it kron() whereas in Mathematica they call it
KroneckerProduct[]. These functions are really useful. You should really try
to play with them a bit.

2.4 Entanglement

If qubit A is on Earth and quibit B is on Mars, it makes sense to attribute
to them local states. For instance, we could have

| iA = ↵|0iA + �|1iA, |�iB = �|0iB + �|1iB .
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Then, the global state of AB will be

| iA ⌦ |�iB =


↵|0iA + �|1iA

�
⌦


�|0iB + �|1iB

�

= ↵�|0, 0iAB + ↵�|0, 1iAB + ��|1, 0iAB + ��|1, 1iAB .

This state looks just like a linear combination of the global basis |i, jiAB . How-
ever, it is not an arbitrary linear combination because it contains a very special
choice of parameters which are such that you can perfectly factor the state into
something related to A times something related to B. This is what we call a
product state. However, quantum theory also allows us to have more general
linear combinations which are not necessarily factorable into a product. Such a
general linear combination has the form

| iAB =
X

i,j

Ci,j |i, jiAB , (2.47)

where Ci,j are a set of coe�cients. If it happens that we can write Ci,j = figj ,
then the state (2.47) can be factored into a product and is therefore a product
state. Otherwise, it is called an entangled state.

An important set of entangled states are the so called Bell states:

|�1i =
1
p
2


|0, 0i+ |1, 1i

�
, (2.48)

|�2i =
1
p
2


|0, 0i � |1, 1i

�
, (2.49)

|�3i =
1
p
2


|0, 1i+ |1, 0i

�
, (2.50)

|�4i =
1
p
2


|0, 1i � |1, 0i

�
. (2.51)

These states cannot be factored into a product of local states (please try to
convince yourself). In fact, they are what is known as maximally entangled
states: we don’t have the tools yet to quantify the degree of entanglement, so
we are not ready yet to properly define the term “maximally”. We will get to
that later.

In order to better understand the meaning of entanglement, let us discuss
what happens when a composite system is in an entangled state and we measure
one of the parts. We have seen in Sec. 1.7 of the previous chapter that in order
to measure in a basis we define a projection operator Pi = |iihi| such that, if
the system is in a state | i =

P
i
 i|ii, then the outcome |ii is obtained with

probability
pi = h |Pi| i = | i|

2 (2.52)
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Moreover, if |ii was found, then the state of the system after the measurement
is of course |ii. We can write that in a slightly di↵erent way as follows:

| i !
Pi| i
p
pi

(2.53)

Since Pi| i =  i|ii, this is of course the same as the state |ii, up to a global
phase which is not important.

We now use this to define what is the operation of making a projective mea-
surement on one of the two sub-systems. The operation performing a projective
measurement on B will also be a projection operator, but will have the form

P
B

i
= 1⌦ |iihi|, (2.54)

You can check that this is a valid projection operator (PB

i
P

B

j
= P

B

i
�i,j). Thus,

with this definition, the rules (2.52) and (2.53) continue to be valid, provided
we use this modified projection operator.

As an example, suppose that AB are prepared in the Bell state (2.48). And
suppose Bob measures B in the computational basis {|0i, |1i}. Then we get
outcomes 0 or 1 with probabilities

p0 = h�1|P
A

0 |�1i =
1

2
= p1 (2.55)

Moreover, if B happened to be found in state |0iB , then the global state after
the measurement will be

|�1i !
P

A

0 |�1
p
p0

= |0, 0i (2.56)

whereas if the output |1iB was found, then the state has collapsed to

|�1i !
P

A

1 |�1
p
p1

= |1, 1i (2.57)

Before the measurement system A could have been found in either 0 or 1. But
after the measurement, A will be found with certainty in state 0 or with certainty
in state 1. We have changed A even though B could have been 100 light years
away. This “spooky action at a distance” is the source of a century of debates
and research. Of course, the key question is whether Alice, the person that has
system A in her lab, can know whether this happened or not. We will see in
a second that she cannot, unless Bob sent her a classical communication (like
an e-mail) telling her what he found. Thus, information cannot be transmitted
faster than the speed of light. There was definitely a change in the state of A
and this change was non-local: it took place during a very short time (the time
it took to make the measurement) even if A and B are arbitrarily far apart. But
no information was transmitted. We will get back to this discussion over and
over again, during this chapter and the next ones.
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2.5 Mixed states and entanglement

I want you now to recall our construction of a density matrix in Sec. 2.1.
What we did there was mix quantum states with classical uncertainty, which was
done by considering a machine which is not very good at producing quantum
states. As a result, we found that a density matrix could be written as

⇢ =
X

i

qi| iih i| (2.58)

where the | ii are arbitrary states and the qi are arbitrary probabilities. This
construction may have left you with the impression that the density matrix is
only necessary when we want to mix quantum and classical stu↵. That is, that
a density matrix is not really a quantum thing. Now I want to show you that
this is not the case. I will show you that there is an intimate relation between
mixed states and entanglement. And this relation is one the key steps relating
quantum mechanics and information theory.

Essentially, the connection is made by the notion of reduced state or
reduced density matrix. When a composite system is in a product state
| iA ⌦ |�iB , then we can attribute the ket | iA as representing the state of A
and |�iB as the state of B. But if the composite system is in an entangled state,
like (2.47), then that is no longer possible. As we will show, if AB are entangled,
the reduced state of A and B are mixed states, described by density matrices.

Suppose we have a bipartite system and, for simplicity, assume that the two
parts are identical. Let |ii denote a basis for any such part and assume that the
composite system is in a state of the form

| i =
X

i

ci|ii ⌦ |ii (2.59)

for certain coe�cients ci.1 If c1 = 1 and all other ci = 0 then | i = |ii ⌦ |ii

becomes a product state. When more than one ci is non-zero, then the state
can never be written as a product. Whenever a state of a bipartite system
cannot be written as a product state, we say it is entangled.

Now let A be an operator which acts only on system A. Then, its expectation
value in the state (2.59) will be

hAi = h |(A⌦ 1)| i (2.60)

1This is called the Schmidt form of a bipartite state. We will talk more about this in
Sec. 2.8.
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Carrying out the calculation we get:

hAi =
X

i,j

c
⇤
i
cjhi, i|(A⌦ 1)|j, ji

=
X

i,j

c
⇤
i
cjhi|A|jihi|ji

=
X

i

|ci|
2
hi|A|ii

If we now define the density matrix of system A as

⇢A =
X

i

|ci|
2
|iihi| (2.61)

then the expectation value of A becomes

hAi = tr(A⇢A) (2.62)

This result is quite remarkable. Note how Eq. (2.61) has exactly the same form
as Eq. (2.58), with the classical probabilities qi replaced by |ci|

2. But there are
no classical probabilities at play here: we started with a pure state. Moreover,
we also see that in general the state of A will be a mixed state. The only
exception is when the original state was a product state. Then one ci = 1 and
all other cj = 0, so that ⇢A = |iihi|. Thus, we conclude that whenever the
global AB state is entangled, the reduced state of a given part will be a mixed
state. Eq. (2.61) is what we call a reduced density matrix, a concept which
is fundamental in the theory of Quantum Information and which we will use
throughout this course. In the above calculation I introduced it in a not so
formal way. But don’t worry, in the next section we will go back to it and see
how to define it more generally.

But before we do so, I just want to give one example, which will also connect
with our discussion of entanglement in Sec. 2.4, in particular Eq. (2.57). Suppose
again that AB is in the Bell state (2.48). This state has the form of Eq. (2.59)
with ci = 1/

p
2. Thus, it is easy to apply Eq. (2.61), which gives

⇢A =
1

2

✓
1 0
0 1

◆
(2.63)

We therefore see that the reduced state of A is actually the maximally mixed
state (2.16). This is a feature of all Bell states and it is the reason we call them
maximally entangled states: we will learn soon that the degree of entanglement
can be quantified by how mixed the reduced state is.

Now let us ask what is the state of A after we measure B. As we have seen
in Eq. (2.57), the composite state after the measurement can be either |0, 0i or
|1, 1i, both occurring with probability 1/2. Thus, if Alice does not know the
outcomes of the measurements that B performed, then best possible guess to
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the state of A will be a classical probabilistic combination

⇢A =
1

2
|0ih0|+

1

2
|1ih1| =

1

2

✓
1 0
0 1

◆
(2.64)

which is exactly the same state as (2.63). Hence, from the point of view of Alice,
it is impossible to know if the state of A is mixed because of entanglement or if it
is mixed because Bob performed some measurements. All Alice can know is that
the density matrix of A has the form of a maximally mixed state. This is called
the ambiguity of mixtures. Even though the global AB state is a↵ected by
the measurement, from the point of view of Alice, she has no way of knowing.
The only way that A would know is if she receives a classical communication
from B. That is, if Bob sends an e-mail to Alice saying “Hey Alice, are you
going to the party tonight? Oh, by the way, I measured my qubit and found it
in 0.”

2.6 The partial trace

The calculation that led us to Eq. (2.61) is what we call a partial trace. The
trace, which we studied in Sec. 1.11, is an operation that receives an operator
and spits out a number. The partial trace is an operation which receives a
tensor product of operators and spits another operator, but living in a smaller
Hilbert space. Why this is the correct procedure to be used in defining a reduced
density matrix will be explained shortly.

Consider again a composite system AB. Let |ai and |bi be basis sets for A
and B. Then a possible basis for AB is the tensor basis |a, bi. What I want to
do is investigate the trace operation within the full AB space. To do that, let us
consider a general operator of the form O = A⌦B. After we learn how to deal
with this, then we can generalize for an arbitrary operator, since any operator
on AB can always be written as

O =
X

↵

A↵ ⌦B↵ (2.65)

for some index ↵ and some set of operators A↵ and B↵.
Let us then compute the trace of O = A⌦B in the |a, bi basis:

tr(O) =
X

a,b

ha, b|O|a, bi

=
X

a,b

(ha|⌦ hb|)(A⌦B)(|ai ⌦ |bi)

=
X

a,b

ha|A|ai ⌦ hb|B|bi

=
X

a

ha|A|ai

X

b

hb|B|bi

41


