
maximally entangled states: we will learn soon that the degree of entanglement
can be quantified by how mixed the reduced state is.

Now let us ask what is the state of A after we measure B. As we have seen
in Eq. (2.57), the composite state after the measurement can be either |0, 0i or
|1, 1i, both occurring with probability 1/2. Thus, if Alice does not know the
outcomes of the measurements that B performed, then best possible guess to
the state of A will be a classical probabilistic combination

⇢A =
1

2
|0ih0|+

1

2
|1ih1| =

1

2

✓
1 0
0 1

◆
(2.64)

which is exactly the same state as (2.63). Hence, from the point of view of Alice,
it is impossible to know if the state of A is mixed because of entanglement or if it
is mixed because Bob performed some measurements. All Alice can know is that
the density matrix of A has the form of a maximally mixed state. This is called
the ambiguity of mixtures. Even though the global AB state is a↵ected by
the measurement, from the point of view of Alice, she has no way of knowing.
The only way that A would know is if she receives a classical communication
from B. That is, if Bob sends an e-mail to Alice saying “Hey Alice, are you
going to the party tonight? Oh, by the way, I measured my qubit and found it
in 0.”

2.6 The partial trace

The calculation that led us to Eq. (2.61) is what we call a partial trace. The
trace, which we studied in Sec. 1.11, is an operation that receives an operator
and spits out a number. The partial trace is an operation which receives a
tensor product of operators and spits another operator, but living in a smaller
Hilbert space. Why this is the correct procedure to be used in defining a reduced
density matrix will be explained shortly.

Consider again a composite system AB. Let |ai and |bi be basis sets for A
and B. Then a possible basis for AB is the tensor basis |a, bi. What I want to
do is investigate the trace operation within the full AB space. To do that, let us
consider a general operator of the form O = A⌦B. After we learn how to deal
with this, then we can generalize for an arbitrary operator, since any operator
on AB can always be written as

O =
X

↵

A↵ ⌦B↵ (2.65)

for some index ↵ and some set of operators A↵ and B↵.
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Let us then compute the trace of O = A⌦B in the |a, bi basis:

tr(O) =
X

a,b

ha, b|O|a, bi

=
X

a,b

(ha|⌦ hb|)(A⌦B)(|ai ⌦ |bi)

=
X

a,b

ha|A|ai ⌦ hb|B|bi

=
X

a

ha|A|ai

X

b

hb|B|bi

I got rid of the ⌦ in the last line because the kron of two numbers is a number.
The two terms in this formula are simply the trace of the operators A and B in
their respective Hilbert spaces. Whence, we conclude that

tr(A⌦B) = tr(A) tr(B) (2.66)

Now we can imagine an operation where we only trace over a part of the
system. This is what we call the partial trace. It is defined as

trA(A⌦B) = tr(A)B, trB(A⌦B) = A tr(B) (2.67)

When you “trace over A”, you eliminate the variables pertaining to A and what
you get left is an operator acting only on HB . This is something we often forget,
so please pay attention: the result of a partial trace is still an operator. More
generally, for an arbitrary operator O as defined in Eq. (2.65), we have

trA O =
X

↵

tr(A↵)B↵ trB O =
X

↵

A↵ tr(B↵) (2.68)

As an example, suppose we have two qubits, with Pauli operators �A

x
and

�
B

x
. Then we would have, for instance,

trA(�
A

x
�
B

x
) = tr(�x)�

B

x

Note how in the right-hand side I wrote �x instead of �A

x
. The partial trace

acts only on the single-spin subspace, so it does not matter which notation
I use. Of course, this example I just gave is a bit silly because tr(�x) = 0.
But still, you get the idea. As another example, consider the partial trace of
�A · �B = �

A

x
�
B

x
+ �

A

y
�
B

y
+ �

A

z
�
B

z
. To compute it we need to use the linearity

of the trace:

trA(�A · �B) = tr(�x)�
x

B
+ tr(�y)�

y

B
+ tr(�z)�

z

B
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Again, all terms are zero in the end, so sorry again for the silly example. In
principle every operator may be written in the form (2.65) so linearity solves all
problems. However, that does not mean that writing down such an expansion
is easy. For instance, suppose you want to compute the partial trace of e�A·�B .
This turns out to be a quite clumsy calculation. For two qubits the matrices
will be 4⇥ 4, so albeit clumsy, this is something a computer can readily do. For
N qubits things become more di�cult.

We can also write down the partial trace in terms of components. For in-
stance, the partial trace over B reads:

trB O =
X

b

hb|O|bi (2.69)

This notation may be a bit confusing at first. Actually, when we write |bi here,
what we really mean is 1⌦ |bi. So the full formula would be

trB O =
X

b

(1⌦ hb|)O(1⌦ |bi) (2.70)

We can check that this works using O = A⌦B. We then get

trB O =
X

b

(1⌦ hb|)(A⌦B)(1⌦ |bi)

=
X

b

(1A1)⌦ (hb|B|bi)

= A

X

b

hb|B|bi

= A tr(B)

Eq. (2.69) with 1 ⌦ |bi is a convenient way to implement the partial trace in a
computer.

Finally we could also write down a general formula for the partial trace in
terms of the components of O in a basis. To do that, note that we may always
insert two identities to decompose O as

O =
X

a,b,a0,b0

|a, biha, b|O|a
0
, b

0
iha

0
, b

0
| (2.71)

To perform the partial trace over B, for instance, we sum over the diagonal
entries of the B part (b0 = b) :

trB O =
X

a,b,a0

|aiha, b|O|a
0
, biha

0
| (2.72)
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The result is an operator acting on A, which we can see from the fact that this
is a sum of outer products of the form |aiha

0
|:

trB O =
X

a,a0

X

b

ha, b|O|a
0
, bi

�
|aiha

0
| (2.73)

An example that is often encountered is the partial trace of some outer
product, such as |a, biha0, b0|. To take the partial trace, remember that this can
be written as

|a, biha
0
, b

0
| = |aiha

0
|⌦ |bihb

0
|

The partial trace over B, for instance, will simply go right through the first part
and act only on the second part; i.e.,

trB |a, biha
0
, b

0
| = |aiha

0
| tr

⇢
|bihb

0
|

�

= |aiha
0
|

⇢
hb

0
|bi

�

Thus, we conclude that

trA |a, biha
0
, b

0
| = �a,a0 |bihb

0
|, trB |a, biha

0
, b

0
| = |aiha

0
|�b,b0 (2.74)

2.7 Reduced density matrices

We are now ready to introduce the idea of a reduced density matrix in a
more formal way. Given a bipartite system ⇢AB we define the reduced density
matrix of A and B as

⇢A = trB ⇢AB , ⇢B = trA ⇢AB (2.75)

Thus, with the tools described in the previous section, it is now a matter of
practice to play around and find reduced density matrices. It is also important
to note that the partial trace works for both pure and mixed states. If we are
dealing with pure states, then we simply write the density matrix as | ih | and
continue as usual.

To warm up consider again the Bell state example that led us from the
bipartite state (2.48) to the reduced state (2.63). Then

⇢AB = |�1ih�1| =
1

2

⇢
|0, 0ih0, 0|+ |0, 0ih1, 1|+ |1, 1ih0, 0|+ |1, 1ih1, 1|

�
(2.76)
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To take the partial trace we use Eq. (2.74). We then get

⇢A =
1

2

⇢
|0ih0|+ |1ih1|

�
=

1

2

✓
1 0
0 1

◆
(2.77)

with an identical result for ⇢B .
Let us look at some further examples. For instance, if we have a state which

is of the form ⇢AB = ⇢A⌦⇢B , then Eq. (2.67) directly gives us trB ⇢AB = ⇢A and
trA ⇢AB = ⇢B , as of course expected. So any density matrix which is a product
of the form ⇢AB = ⇢A ⌦ ⇢B represents uncorrelated systems, irrespective of
whether the state is pure or not. However, it is very important to note that in
general we cannot recover the full density matrix ⇢AB from the reduced density
matrices ⇢A and ⇢B . The operation of taking the partial trace is irreversible
and in general looses information. To put that more precisely, given a general
⇢AB and its reduced density matrices (2.75), we have

⇢A ⌦ ⇢B 6= ⇢AB (2.78)

This is only true when ⇢AB was already originally uncorrelated. Thus, in gen-
eral, we see that information is lost whenever AB are correlated.

To given an example, suppose we have two qubits in a state of the form

⇢AB = ⇢
0
A
⌦ ⇢

0
B
+ � (2.79)

where

� = ↵

⇢
|0, 1ih1, 0|+ |1, 0ih0, 1|

�
=

0

BB@

0 0 0 0
0 0 ↵ 0
0 ↵ 0 0
0 0 0 0

1

CCA (2.80)

with ↵ being a parameter.2 What I like about (2.79) is that the partial trace of
� is always zero: trA(�) = trB(�) = 0. Thus, the reduced density matrices are
⇢A = ⇢

0
A

and ⇢B = ⇢
0
B
. This means that from the perspective of A and B, it

is as if � doesn’t even exist. But from a global perspective, you have a certain
degree of correlations.

The partial trace is the quantum analog of marginalizing a probability dis-
tribution. To see that in first hand, consider a bipartite state of the form

⇢AB =
X

i,j

pi,j |i, jihi, j| (2.81)

which will be a valid quantum state provided pi,j 2 [0, 1] and
P

i,j
pi,j = 1.

This state is as close as one gets from a classical probability distribution. To
compute the partial trace over B we use Eq. (2.74), which gives

⇢A = trB ⇢AB =
X

i,j

pi,j |iihi| =
X

i

pi|iihi|

2
The allowed values of ↵ depend on ⇢0A and ⇢0B in order for te purity to be within the

bounds
1
4  P  1.
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In the last equality I carried out the sum over j and defined

pi =
X

j

pi,j (2.82)

This is exactly the marginalization procedure in classical probability theory. We
simply sum over all probabilities of B to obtain a reduced probability distribu-
tion only for A.

Finally, let us talk about why this partial trace operation works. Or, putting
it more precisely, why does the rule (2.67) works. What we really require of the
partial trace operation is that

trAB


(A⌦ 1)⇢AB

�
= trA


A⇢A

�
(2.83)

That is, taking expectation values of A operators over the full Hilbert space or
over the reduced Hilbert space give the same result. This is clearly true for the
partial trace as we defined. What is a bit more subtle, is to show that the partial
trace is the unique operation satisfying this criteria. This is demonstrated in
Sec. 2.4.3 of Nielsen and Chuang.

2.8 Singular value and Schmidt decompositions

Consider a bipartite system AB with basis |a, bi. The most general pure
state in this system can be written as

| i =
X

a,b

 ab|a, bi, (2.84)

where  ab are coe�cients. This state will in general be entangled. To see that
in first hand, let us look at the reduced density matrices of A and B. I will leave
for you as an exercise to show that

⇢A = trB | ih | =
X

a,a0

X

b

 
⇤
ab
 a0b

�
|aiha

0
|, (2.85)

⇢B = trA | ih | =
X

b,b0

X

a

 
⇤
ab
 ab0

�
|bihb

0
|. (2.86)

Of course, these are kind of ugly because ⇢A and ⇢B are not diagonal. But
what I want to stress is that in general these states will be mixed. The only
case in which these states will be pure is when the  a,b factor as a product of
coe�cients  a,b = fagb. Then one can already see from (2.84) that | i will also
factor as a product.

Suppose we now have a N-partite system with basis elements |s1, . . . , sN i.
Then the most general state pure state of this system will be

| i =
X

s1,...,sN

 s1...sN |s1, . . . , sN i. (2.87)
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The coe�cients  s1...sN contain all the information about this system. It says,
for instance, that 3 is entangled to 25 but 1 is not entangled with 12. Or that
1, 2, 3 taken as a block, is completely independent of 4, 5, . . . , N . Everything is
encoded in  s1,...,sN . Understanding how to extract the physics from this messy
 is one of the most important questions of modern research.

If we think about it for a second, we also see that  s1,...,sN can be viewed as a
tensor. It is a rank-N tensor where each index has dimension d (the dimension
of the local Hilbert space). Thus, there are in total dN possible entries in this
tensor. The physics of the state is then encoded inside this very very messy
tensor structure. And that is a big problem because for d = 2 and N = 300,
2300 represents more particles than there are in the universe. Thus, if we want
to characterize the entanglement properties of only 300 qubits, we are already in
huge trouble because this is not a computational limitation that will be solved
with the next generation of processors. It is a fundamental constraint.

The di�culties underlying the complex entanglement structure of states such
as (2.87) has given rise to a new field of research known as tensor networks.
The idea is two-fold. First, to create tools (such as diagrams and numerical
libraries) which are e�cient at dealing with complex tensors and give us intuition
on what to do. Second, and most importantly, to understand what types of
tensor structures appear most often. You see, the many-body Hilbert space is
enormous, but that does not mean that all of it is equally important. It may
very well be that in most typical scenarios, only a small part of the full Hilbert
space is occupied. Figuring out what parts of the many-body Hilbert space
are relevant is a million dollar question. Substantial progress has been done
recently for certain classes of quantum systems, such as one-dimensional chains
with short-range interactions. But the problem is nonetheless still in its infancy.

Singular Value Decomposition

In this section we will introduce some tools for dealing with the entangle-
ment properties of quantum states. We start with a linear algebra tool that
also has applications in many other fields of research, called the singular value
decomposition (SVD). Twenty years ago no one would teach the SVD for
undergraduates. In twenty years from now, I guarantee you, SVD will be stan-
dard textbook material. The SVD theorem is as follows. Let A be an arbitrary
rectangular M ⇥N matrix. Then it is always possible to decompose A as

A = USV
†
, (2.88)

where

• U is M ⇥ min(M,N) and has orthogonal columns U
†
U = 1. If M  N

then U will be square and unitary, UU
† = 1.

• V is N ⇥ min(M,N) and has orthogonal columns V
†
V = 1. If M � N

then V will be square and unitary, V V
† = 1.
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Figure 2.2: The size of the matrices appearing in Eq. (2.88). Left: A is short and

fat (M  N). Right: A is thin and tall (M � N).

• S is min(M,N) ⇥ min(M,N) and diagonal, with entries S↵↵ = �↵ � 0,
which are called the singular values of the matrix A. It is convention
to always order the singular values in decreasing order, �1 � �2 � . . . �

�r > 0. The number of non-zero singular values, called r, is known as the
Schmidt rank of the matrix.

When the matrix is square, M = N , then both U and V become unitary. The
sizes of A, U , S and V are shown in Fig. 2.2. For future reference, I will also
write down Eq. (2.88) in terms of the components of A:

Aij =
rX

↵=1

Ui↵�↵V
⇤
j↵

(2.89)

where the sum extends only up the Schmidt rank r (after that the �↵ are zero
so we don’t need to include them).

The SVD is not in general related to eigenvalues of A. In fact, it is de-
fined even for rectangular matrices. Instead, the SVD is actually related to the
eigenvalues of A†

A and AA
†. Starting from Eq. (2.88) and using the fact that

U
†
U = 1 we see that

A
†
A = V

†
S
2
V (2.90)

By construction, the matrix A
†
A is Hermitian and positive semi-definite. Hence,

we see that V forms its eigenvectors and �2
↵
its eigenvalues. Similarly, using the

fact that V V
† = 1 we get

AA
† = US

2
U

† (2.91)

Thus, �2
↵
are also the eigenvalues of AA†. It is interesting to note that when A

is rectangular, A†
A and AA

† will have di↵erent dimensions. The point is that
the largest of the two will have the same eigenvalues as the smaller one, plus a
bunch of zero eigenvalues. The only type of matrix for which the singular values
are identically equal to the eigenvalues are positive semi-definite matrices, like
density matrices ⇢.

One of the most important applications of the SVD is in making low rank
approximations of matrices. To do that, suppose A is N ⇥ N . Then it will
have N

2 entries which, if N is large, will mean a bunch of entries. But now let
u and v be vectors of size N and consider the outer product uv†, which is also
an N ⇥ N matrix with entries (uv†)ij = uiv

⇤
j
. We then see that even though

48



this is N⇥N , the entries of this matrix are not independent, but are completely
specified by the 2N numbers ui and vi. A matrix of this form is called a rank-1
matrix (just like the rank-1 projectors we studied before).

Going back now to Eq. (2.89), let u↵ denote a column vector with entries
Ui↵ and, similarly, let v↵ denote a column vector with entries Vj↵. Then it is
easy to verify that the matrix A in Eq. (2.89) can be written as

A =
rX

↵=1

�↵u↵v
†
↵
. (2.92)

We have therefore decomposed the matrix A into a sum of rank-1 matrices,
weighted by the singular values �↵. Since the singular values are always non-
negative and appear in decreasing order, we can now think about retaining only
the largest singular values. That is, instead of summing over the full Schmidt
rank r, we sum only up to a smaller number of singular values r0 < r to get an
approximate representation of A:

A
0 =

r
0X

↵=1

�↵u↵v
†
↵
.

This is called a rank-r0 approximation for the matrix A. If we consider just the
largest singular value (a rank-1 approximation) then we replacedN

2 elements by
2N , which can be an enormous improvement if N is large. It turns out that this
approximation is controllable in the sense that the matrix A

0 is the best rank-r0

approximation of A given the Frobenius norm, defined as ||A|| =
P

ij
|Aij |

2.
That is, A0 is the rank-r0 matrix which minimizes ||A�A

0
||.

Schmidt decomposition

I have introduced above the SVD as a general matrix decomposition, which
is useful to know since it appears often in many fields of research. Now I want
to apply the SVD to extract properties of quantum states. Consider again a
bipartite system described by the pure state

| i =
X

a,b

 ab|a, bi. (2.93)

With a moment of though we see that  ab can also be interpreted as a matrix
of coe�cients. In fact, this matrix will in general be rectangular when the
dimensions dA and dB are di↵erent. We may then apply the SVD to the matrix
with entries  ab. Using Eq. (2.89) we see that this decomposition will have the
form

 ab =
X

↵

�↵Ua↵V
⇤
b↵
. (2.94)

The matrix  ab is special in that the state | i must be normalized. This means
that

P
ab

| ab|
2 = 1 which in turn implies that

rX

↵=1

�
2
↵
= 1. (2.95)
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In general the singular values are simply non-negative. But for states  ab they
are also normalized in this way.

Inserting Eq. (2.94) back into (2.93) now gives

| i =
X

a,b,↵

�↵Ua↵V
⇤
b↵
|a, bi =

X

↵

�↵

X

a

Ua↵|ai

�
⌦

X

b

V
⇤
b↵
|bi

�
. (2.96)

We now define new sets of states for systems A and B, as

|↵Ai =
X

a

Ua↵|ai, (2.97)

|↵Bi =
X

b

V
⇤
b↵
|bi. (2.98)

Note how these states are labeled by the same index ↵, even though they may be
completely di↵erent (recall that we can even have dA 6= dB). Notwithstanding,
we notice that these states are orthonormal because of the properties of the
SVD matrices U and V .

Thus, we can now write our entangled state | i as

| i =
X

↵

�↵|↵Ai ⌦ |↵Bi. (2.99)

This is way better than (2.93) because now we only have a single sum. It is
a bit like we diagonalized something (but what we did was find the singular
values of  ab). Note also that this is exactly the type of state that we used in
Eq. (2.59) when we first introduced the connection between mixed states and
entanglement. The step in going from a general entangled state (2.93) to a
state of the form (2.99) is called the Schmidt decomposition of the state.
The square of the singular values, �↵ := �

2
↵
, are also called Schmidt coe�cients.

As we will see, all the information about entanglement is contained in these
guys.

We have seen that a general state such as (2.93) will be a product state when
 ab = fagb is a product of coe�cients. But that can in practice be a hard thing
to check. If we look at the Schmidt form (2.99), however, it is now trivial to
know when the state will be a product or not: it will only be a product if �1 = 1
and all other �↵ = 0. That is, they will be in a product state when the Schmidt
rank is r = 1. We can even go further and use the singular values/Schmidt
coe�cients to quantify the the degree of entanglement. To do that, we compute
the reduced density matrices of A and B, starting from the state (2.99). Since
the states |↵Ai and |↵Bi are orthonormal, it is straightforward to find that

⇢A =
X

↵

�
2
↵
|↵Aih↵A|, (2.100)

⇢B =
X

↵

�
2
↵
|↵Bih↵B |. (2.101)
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Once we have these reduced density matrices, we can now compute their purity:

tr(⇢2
A
) = tr(⇢2

B
) =

X

↵

�
4
↵
=

X

↵

�
2
↵
. (2.102)

Quite remarkably, we see that the purity of A and B are equal (which is true
even if one has dA = 2 and the other has dB = 1000). Thus, we conclude that the
purity of the reduced states can be directly used as a quantifier of entanglement.
The more entangled are two systems, the more mixed are their reduced density
matrices.

To summarize, I want to emphasize that all entanglement properties can be
obtained from the singular values of  ab. If one such singular value is �1 = 1
then the others must be zero so the two parties are in a product state. Other-
wise, their degree of entanglement is quantified by the sum in Eq. (2.102). In
particular, we now finally have the tools to define what a maximally entangled
state is: a maximally entangled state is a state in which all singular values are
equal. Due to the normalization (2.95), this then implies

�↵ =
1
p
r
. (2.103)

As an example, consider a state of the form

| i = cos(✓/2)|0, 1i+ sin(✓/2)|1, 0i. (2.104)

We already know that if ✓ = 0,⇡ the state will be a product and if ✓ = ⇡/2
the state will be a Bell state (2.50). In this case the matrix  ab has coe�cients
 01 = cos(✓/2) and  10 = sin(✓/2). The singular values can be found either by
asking semiconductors to do it for you or by computing the eigenvalues of  †

 .
In either case, they are

�1 = cos(✓/2), �2 = sin(✓/2). (2.105)

Thus we see that when ✓ = 0,⇡ we have one of the singular values equal to 1,
which is the case of a product state. Conversely, we see that the singular values
will be all equal when ✓ = ⇡/2. Thus, the Bell state (2.50) is the maximally
entangled state.

So far we have only considered the entanglement between bipartite systems
which are in pure states. A natural question therefore is how to quantify the
degree of entanglement between parties that are in mixed states. That is, when
not only are ⇢A and ⇢B mixed, but when ⇢AB itself is already mixed. This ques-
tion is actually much harder and is still an open topic of research. The reason
is that it is not easy to distinguish between quantum correlations and classical
correlations. To see what I mean, have a look back at the state (2.81). This is
a classical probability distribution. However, the sub-systems A and B are not
statistically independent because pi,j cannot be factored as a product of two
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probability distributions. This is therefore an instance of classical correlations.
For more general states, it is not easy to separate it from true quantum features.
In fact, in this case there is even more than one type of quantum correlation
(for instance, a famous one is the so called quantum discord). We will get back
to this topic later in the course.

Multipartite entanglement

The quantification of entanglement in a multipartite system A, B, C, . . .
is a di�cult task and still an open research problem. One thing that can be
done, though, is to look at the entanglement of all bipartitions. To see how that
works, consider again a general N-partite state

| i =
X

s1,...,sN

 s1...sN |s1, . . . , sN i. (2.106)

The key now is to try to map this into the problem we just discussed, which
can be done using the idea of collective indices. For instance, suppose we want
to make a bipartition such as 1, . . . , k and k + 1, . . . , N . Then we define two
collective indeces

a = {s1, . . . , sk}, b = {sk+1, . . . , sN} (2.107)

so that the state (2.106) is now mapped back into state (2.93). We can then
use the usual Schmidt procedure we just described.

This idea of collective indices is really important and really abstract at first.
The point to remember is that this is only a relabelling of stu↵. For instance,
suppose we have two qubits with states si = {0, 1}. Then we can define a
collective index by means of a correspondence table. For instance we can say
(0, 0) is a = 1 ,(0, 1) is a = 2 and so on. We usually write this symbolically as
follows:

 s1...sN =  (s1...sk),(sk+1...sN ). (2.108)

This means we have grouped the big tensor into two blocks and now it behaves
as matrix with only two collective indices. This type of operation is really
annoying to do by hand, but computationally it is not hard since it is simply a
matter of relabelling.

State purification

We finish this section with the concept of purifying a state. Consider a
physical system A described by a general mixed state ⇢A with diagonal form

⇢ =
X

a

pa|aiha|

By purification we mean writing this mixed state as a pure state in a larger
Hilbert space. Of course, this can obviously always be done because we can
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always imagine that A is mixed because it was entangled with some other system
B. All we need is to make that formal. One thing we note from the start is that
this operation is certainly not unique since the system B can have any size.
Thus, there is an infinite number of pure states which purify ⇢A. The simplest
approach is then to consider B to be a copy of A. We then define the pure state

| i =
X

a

p
pa|ai ⌦ |ai (2.109)

Tracing over B we get
trR | ih | = ⇢ (2.110)

Thus, | i is a purified version of ⇢, which lives in a doubled Hilbert space. Notice
how the probabilities pa appear naturally here as the Schmidt coe�cients.

2.9 Entropy and mutual information

The concept of entropy plays a central role in classical and quantum informa-
tion theory. In its simplest interpretation, entropy is a measure of the disorder
(or mixedness) of a density matrix, a bit like the purity tr(⇢2). But with en-
tropy this disorder acquires a more informational sense. We will therefore start
to associate entropy with questions like “how much information is stored in my
system”. Also like the purity, entropy can be used to quantify the degree of
correlation between systems. And that makes sense because correlation is a
measure of information: when two systems are correlated we can ask questions
such as “how much information about A is stored in B”. Unlike the purity, how-
ever, entropy will also serve to quantify correlations of mixed states, which is
done using the concept ofmutual information. We will also introduce another
concept called relative entropy which plays the role of a “distance” between
two density matrices. It turns out that the relative entropy is not only useful
in itself, but it is also useful as a tool to prove certain mathematical identities.

In thermodynamics we like to associate entropy with a unique physical quan-
tity. In quantum information theory that is not exactly the case. There is one
entropy, called the von Neumann entropy, which does have a prominent role.
However, there are also other entropy measures which are also of relevance. An
important family of such functions are the so-called Rényi entropies, which
contain the von Neumann entropy as a particular case. We will also discuss
them a bit.

The von Neumann entropy

Given a density matrix ⇢, the von Neumann entropy is defined as

S(⇢) = � tr(⇢ ln ⇢) = �

X

k

pk ln pk. (2.111)
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