always imagine that A is mixed because it was entangled with some other system
B. All we need is to make that formal. One thing we note from the start is that
this operation is certainly not unique since the system B can have any size.
Thus, there is an infinite number of pure states which purify p4. The simplest
approach is then to consider B to be a copy of A. We then define the pure state

) = \/Pala) @ |a) (2.109)

Tracing over B we get

trr [) (4] = p (2.110)

Thus, |¢) is a purified version of p, which lives in a doubled Hilbert space. Notice
how the probabilities p, appear naturally here as the Schmidt coefficients.

2.9 Entropy and mutual information

The concept of entropy plays a central role in classical and quantum informa-
tion theory. In its simplest interpretation, entropy is a measure of the disorder
(or mixedness) of a density matrix, a bit like the purity tr(p?). But with en-
tropy this disorder acquires a more informational sense. We will therefore start
to associate entropy with questions like “how much information is stored in my
system”. Also like the purity, entropy can be used to quantify the degree of
correlation between systems. And that makes sense because correlation is a
measure of information: when two systems are correlated we can ask questions
such as “how much information about A is stored in B”. Unlike the purity, how-
ever, entropy will also serve to quantify correlations of mixed states, which is
done using the concept of mutual information. We will also introduce another
concept called relative entropy which plays the role of a “distance” between
two density matrices. It turns out that the relative entropy is not only useful
in itself, but it is also useful as a tool to prove certain mathematical identities.

In thermodynamics we like to associate entropy with a unique physical quan-
tity. In quantum information theory that is not exactly the case. There is one
entropy, called the von Neumann entropy, which does have a prominent role.
However, there are also other entropy measures which are also of relevance. An
important family of such functions are the so-called Rényi entropies, which
contain the von Neumann entropy as a particular case. We will also discuss
them a bit.

The von Neumann entropy

Given a density matrix p, the von Neumann entropy is defined as

S(p) = —tr(plnp) = — Zpk In pg. (2.111)
k
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Working with the logarithm of an operator can be awkward. That is why in the
last equality I expressed S(p) in terms of the eigenvalues pj, of p. In information
theory the last expression in (2.111) is also called the Shannon entropy (they
usually use the log in base 2, but the idea is the same).

The entropy is seen to be a sum of functions of the form —pln(p), where
p € [0,1]. The behavior of this function is shown in Fig. 2.3. It tends to zero
both when p — 0 and p — 1, and has a maximum at p = 1/e. Hence, any state
which has p, = 0 or pr = 1 will not contribute to the entropy (even though
In(0) alone diverges, 01n(0) is well behaved). States that are too deterministic
therefore contribute little to the entropy. Entropy likes randomness.

Since each —pIn(p) is always non-negative, the same must be true for S(p):

S(p) > 0. (2.112)

Moreover, if the system is in a pure state, p = [¢)(¢|, then it will have one
eigenvalue p; = 1 and all others zero. Consequently, in a pure state the entropy
will be zero:

The entropy of a pure state is zero. (2.113)

In information theory the quantity —In(py) is sometimes called the surprise.
When an “event” is rare (p ~ 0) this quantity is big (“surprise!”) and when
an event is common (pg ~ 1) this quantity is small (“meh”). The entropy is
then interpreted as the average surprise of the system, which I think is a little
bit funny.

0.5

=]
W

-p In(p)
S o o
[\e]

i1/e
0. ‘ L ‘ ‘

8.0 02 04 06 08 1.0
p

Figure 2.3: The function —pIn(p), corresponding to each term in the von Neumann
entropy (2.111).

As we have just seen, the entropy is bounded from below by 0. But if the
Hilbert space dimension d is finite, then the entropy will also be bounded from
above. I will leave this proof for you as an exercise. What you need to do is
maximize Eq. (2.111) with respect to the py, but using Lagrange multipliers to
impose the constraint ), pr = 1. Or, if you are not in the mood for Lagrange

54



multipliers, wait until Eq. (2.122) where I will introduce a much easier method
to demonstrate the same thing. In any case, the result is

I
max(S) = In(d). Occurs when p = 7 (2.114)

The entropy therefore varies between 0 for pure states and In(d) for maximally
disordered states. Hence, it clearly serves as a measure of how mixed a state is.

Another very important property of the entropy (2.111) is that it is invariant
under unitary transformations:

SWUpUT) = S(p). (2.115)

This is a consequence of the infiltration property of the unitaries U f(A)UT =
F(UAUY) [Eq. (1.71)], together with the cyclic property of the trace. Since the
time evolution of closed systems are implemented by unitary transformations,
this means that the entropy is a constant of motion. We have seen that the
same is true for the purity: unitary evolutions do not change the mixedness of
a state. Or, in the Bloch sphere picture, unitary evolutions keep the state on
the same spherical shell. For open quantum systems this will no longer be the
case.

As a quick example, let us write down the formula for the entropy of a qubit.
Recall the discussion in Sec. 2.2: the density matrix of a qubit may always be
written as in Eq. (2.29). The eigenvalues of p are therefore (1 + s)/2 where

s = (/52 + s2 + sZ represents the radius of the state in Bloch’s sphere. Hence,

applying Eq. (2.111) we get

S:—(l—;_s)ln(l;s)—(158)111(1;8). (2.116)

For a pure state we have s = 1 which then gives S = 0. On the other hand,
for a maximally disordered state we have s = 0 which gives the maximum value
S = In 2, the log of the dimension of the Hilbert space. The shape of S is shown
in Fig. 2.4.

The quantum relative entropy

Another very important quantity in quantum information theory is the quan-
tum relative entropy or Kullback-Leibler divergence. Given two density matrices
p and o, it is defined as

S(pllo) =tr(plnp — plno). (2.117)

This quantity is important for a series of reasons. But one in particular is that
it satisfies the Klein inequality:

S(plle) =0, S(pllo) =0iff p=o. (2.118)
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Figure 2.4: The von Neumann entropy for a qubit, Eq. (2.116), as a function of the
Bloch-sphere radius s.

The proof of this inequality is really boring and I'm not gonna do it here. You
can find it in Nielsen and Chuang or even in Wikipedia.

Eq. (2.118) gives us the idea that we could use the relative entropy as a
measure of the distance between two density matrices. But that is not entirely
precise since the relative entropy does not satisfy the triangle inequality

d(z,z) < d(z,y) + +d(y, 2). (2.119)

This is something a true measure of distance must always satisfy. If you are
wondering what quantities are actual distances, the trace distance is one of
them?

T(po) = o — ol ::tr[ (v —o) (o )] (2.120)

But there are others as well.

As T mentioned above, the relative entropy is very useful in proving some
mathematical relations. For instance consider the result in Eq. (2.114). We can
prove it quite easily by noting that

S(pllt/d) = tr(pln p) — tr(pIn(1/d))
= —S(p) + In(d). (2.121)
Because of (2.118) we see that
S(p) < 1In(d), (2.122)
and S(p) = In(d) iff p = 1/d, which is precisely Eq. (2.114). Oh, and by the

way, if you felt a bit insecure with the manipulation of 1/d in Eq. (2.121), that’s
ok. The point is that here “1” stands for the identity matrix, but the identity

3The fact that p — o is Hermitian can be used to simplify this a bit. I just wanted to write
it in a more general way, which also holds for non-Hermitian operators.
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matrix satisfies the exact same properties as the number one, so we can just use
the usual algebra of logarithms in this case.

Unlike the entropy, which is always well behaved, the relative entropy may
be infinite. The problem is in the last term of (2.117) because we may get a
In(0) which does not have a 0 in front to save the day. To take an example,
suppose p is the general state (2.18) and suppose that o = diag(f,1 — f) for
some f € [0,1]. Then

tr(plno) = (0|plno|0) + (1|plno|l)

=pnf+(1—p)n(l—f).

We can now see that if we happen to have f = 0, then the only situation
where the first term will not explode is when p = 0 as well. This idea can be
made mathematically precise as follows. Given a density matrix p, we define
the support of p as the vector space spanned by eigenvectors which have non-
zero eigenvalues. Moreover, we call the kernel as the complementary vector
space; that is, the vector space spanned by eigenvectors having eigenvalue zero.
Then we can say that S(p||o) will be infinite whenever the kernel of o has an
intersection with the support of p. If that is not the case, then S(p||o) is finite.

Sub-additivity and mutual information

Consider now a bipartite system prepared in a certain state p4p. We have
seen that if the two systems are not correlated then we can write pap = pa®pp.
Otherwise, that is not possible. Now we look at the entropy (2.111). When we
have two operators separated by a tensor product ®, the log of the product
becomes the sum of the logs:

In(pa®@pp) = (Inps) @1 +14 @ (Inpg). (2.123)

This can be viewed more clearly by looking at the eigenvalues of p4 ® pg, which
are just of the form pﬁpf. Sometimes I'm lazy and I just write this relation as

In(papp) =Inps +1Inpp. (2.124)

It is then implicit that p4 and pp live on separate spaces and therefore commute.
From this it now follows that

S(pa®pp) = —tr(pappInpa) — tr(pappInpp)
= —tra(palnpa)trp(pp) — tre(psInps) tra(pa)
= —tr(palnps) —tr(pplnpp).

I know this calculation is a bit messy, but please try to convince yourself that
it’s ok. For instance, you can do everything with ® and use Eq. (2.65). In any
case, what we conclude is that

S(pa® pp) = S(pa) + S(pB)- (2.125)
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Thus, the entropy is an additive quantity: if two systems are uncorrelated, the
total entropy is simply the sum of the parts.

This is no longer true if pap is a correlated state. In fact, the entropy of
pap is related to the entropy of the reduced density matrices py = trp pap and
pB = tra pap by the subadditivity condition

S(pap) < S(pa) + S(pB). (2.126)

where the equality holds only for a product state pap = pa ® pp. Another way
to write this is as S(pap) < S(pa ® pp). This has a clear interpretation: by
taking the partial trace we loose information so that the entropy afterwards is
larger.

The proof of Eq. (2.126) can be done easily using the relative entropy. We
just need to convince ourselves that

S(panllpa ® ps) = S(pa) + S(ps) — S(pas)- (2.127)

Then, because of (2.118), this quantity will always be non-negative. So let’s do
it: let’s see that (2.127) is indeed correct.

S(paBllpa ® pp) = = tr(papInpap) —tr(papInpaps)
= —S(pap) —tr(papInpa) —tr(paplnpp). (2.128)

Now comes the key point: given any operator O we can always take the trace
in steps:

tr(0) = tra(trp(0)).

Then, to deal with tr(papInpa) we can first take the trace in B. This will only
affect pap and it will turn it into p4:

tr(paplnpa) =trapalnpa.

This is always true, even when p4p is not a product. Plugging this in (2.128),
we immediately see that (2.127) will hold.

Looking back now at Egs. (2.126) and (2.127) we see that we have just
found a quantity which is always non-negative and is zero exactly when the
two systems are uncorrelated (pap = pa ® pg). Thus, we may use this as
a quantifier of the total degree of correlations. We call this quantity the
mutual information:

I(pap) = S(pasllpa ® pp) = S(pa) + S(ps) — S(pap) > 0. (2.129)

This is one the central concepts in all of quantum information. It represents
the amount of information stored in AB which is not stored in A and B, when

58



14¢
1.2¢
2 1.0F
I 0.8F
10.6—
0.4f
0.2fF

0.
8.0 0.2 04 0.6 0.8 1.0
a

p(l-p)

Figure 2.5: Eq. (2.131) plotted in terms of convenient quantities.

taken separately. One thing I should warn, though, is that the mutual infor-
mation quantifies the total degree of correlations, in the sense that it does not
distinguish between classical and quantum contributions. A big question in the
field is how to separate the mutual information in a quantum and a classical
part. We will get back to that later.

Let me try to give an example of the mutual information. This is always
a little bit tricky because even for two qubits, the formulas can get quite ugly
(although asking Mathematica to write them down is really easy). So for the
purpose of example, let us consider a state of the form:

»? 0 0 0
0 p(l-p) & 0
0 o p(1—p) 0
0 0 0 (1-p)?

This has the structure of Eq. (2.79), but with p4 and pp being equal and
diagonal: py = pp = diag(p,1 — p). The constant « here is also not arbitrary,
but is bounded by |a| < p(1 — p), which is a condition so that the eigenvalues
of pap are always non-negative. The mutual information is then

Z(pas) = p(1 —p)In {%} taln {%} '

This function is plotted in Fig. 2.5. As expected, the larger the correlation
«, the larger is the mutual information. The maximum value occurs when
|a] = p(1 — p) and has the value Z = 2p(1 — p) In(2).

Next suppose that pap = [1) (1| is actually a pure state. Then S(pap) = 0.
Moreover, we have seen in Sec. 2.8 that the reduced density matrices of A and
B can both be written in diagonal form in terms of the Schmidt coefficients,
Egs. (2.100) and (2.101). Thus, it follows that in this case

(2.131)

S(pa) = S(pB) when pap is pure. (2.132)
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Hence, the mutual information becomes

Z(pap) = 2S(pa) =25(pB) when pap is pure. (2.133)

We therefore conclude that for pure states the maximum amount of information
stored in non-local correlations is twice the information of each of the parts.

For the case of pure states, we saw that we could quantify the degree of
entanglement by means of the purity of ps or pg. Another way to quantify
entanglement is by means of the entropy S(p4) and S(pp). For this reason,
this is sometimes referred to as the entanglement entropy. Eq. (2.133) then
shows us that for pure states the mutual information is twice the entanglement
entropy. On the other hand, if the state is not pure, than entanglement will be
mixed with classical correlations. An important question is then what part of
7 is due to entanglement and what part is classical. We will get back to this
later in the course.

In addition to the subadditivity inequality (2.126), the von Neumann entropy
also satisfies the strong subadditivitiy inequality:

S(papc) +S(pp) < S(par) + S(psc)- (2.134)

If B is a Hilbert space of dimension 1 this reduces to Eq. (2.126). The intuition
behind this formula is as follows (Preskill): We can think as AB and BC as two
overlapping systems, so that S(papc) is the entropy of their union and S(pp)
is the entropy of their intersection. Then Eq. (2.134) says this cannot exceed
the sum of the entropies of the parts. Eq. (2.134) can also be stated in another
way as

S(pa) +S(pp) < S(pac) + S(prc)- (2.135)

The strong subadditivity inequality turns out to be an essential property in
quantum information tasks, such as communication protocols. The proof of
Eq. (2.134), however, turns out to be quite difficult and we will not be shown
here. You can find it, for instance, in Nielsen and Chuang, chapter 11.

Convexity of the entropy
Consider now a bipartite state of the form
pap =Y pipi ® i) {il, (2.136)
i

where p; are valid density matrices and p; are arbitrary probabilities. This type
of state is what we call a quantum-classical state. It is like a mixture of classical
probabilities from the point of view of B, but with (possibly) quantum density
matrices from the point of view of A. That can be seen more clearly by looking

60



at the reduced density matrices:

pA =1trppap = ZPiPn (2.137)

3

pB=trapap =y pili)il. (2.138)

K2

Each p; may have quantum stuff inside them and what we are doing in p4 is
making classical mixtures of these guys.
The entropy of pp is now the classical Shannon entropy of the probability
distribution p;:
S(pp) = H(p;) = — Zpi Inp;. (2.139)
i

The use of the letter H is not completely necessary. I just put it there to
emphasize that we are talking about the entropy of a set of numbers {p;} and
not a density matrix. Next let us compute the entropy of p4p. Denote by F; ;
the j-th eigenvalue of each p;. Then the eigenvalues of p4p will be p; P; ;. Thus

S(pap) ==Y _piPi;In(p:iP;;) (2.140)
i
== Zpipi,j Inp; — Zpipi,j InP; ; (2.141)
1,3 i,j

In the first term we now use > . P; ; = 1, which is the normalization condition
for each p;. What is left is then S(pp) = S(p;). In the second term, on the other
hand, we note that for each 4, the sum over j is just S(p;) = —>_, P In P ;.
Thus we finally get

S(pan) = H(pi) +3_piS(pi) (2.142)

We therefore see that in this case the total entropy has two clear contributions.
The first is the disorder introduced by the probability distribution p; and the
second is the local disorder contained in each p;.

Using now the subadditivity formula (2.126) together with the fact that
S(pp) = H(p;), we also see that

S<Zi:pipi) > Zi:pis(pi)a (2.143)

where I used the form of p4 in Eq. (2.137). The entropy is therefore a concave
function of its arguments. The logic behind this formula is that >, p;p; contains
not only ignorance about the p; but also about the p;. So its total entropy must
be higher than the sum of the parts.

Eq. (2.143) provides a lower bound to the entropy of mixtures. It turns out
that it is also possible to find an upper bound, so that instead of (2.143) we can
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write the more general result

H(pi) + ZpiS(pi) > S(me) > ZpiS(pi). (2.144)

The proof is given in chapter 11 of Nielsen and Chuang. The cool thing about
this new bound is that it allows for an interpretation of entropy in terms of the
ambiguity of mixtures. Remember that we discussed how the same density
matrix p could be constructed from an infinite number of combinations of pure
states

p= Z%W%)W/z\ (2.145)

In this formula there can be an arbitrary number of terms and the |¢;) do
not need to be orthogonal or anything. All we require is that the ¢; behave like
probabilities. Hence, due to this flexibility, there is an infinite number of choices
for {q;, |1;)} which give the same p. But note how this falls precisely into the
category of Eq. (2.144), with p; = |1;)(¢;| and p; — ¢;. Since S(p;) = 0 for a
pure state, we then find that

S(p) < H(q;)- (2.146)

That is, the von Neumann entropy is the entropy that minimizes the classical
distribution of the probabilities H(g;). In terms of the eigenvalues py of p, we
have S(p) = — >, pr Inpi so that the equality in Eq. (2.146) is obtained when
the mixture is precisely that of the eigenvalues/eigenvectors of p.

Rényi entropy

A generalization of the von Neumann entropy that is also popular in quantum
information are the so-called Rényi entropies, defined as

1
Sa(p) = 1 Intr p®. (2.147)

—

where « is a tunable parameter in the range [0, 00). This therefore corresponds
to a continuous family of entropies. I particularly like @ = 2, which is simply
minus the logarithm of the purity:

So(p) = —Intr p2. (2.148)

Another special case is &« = 1, where we recover the von Neumann entropy. Note
how this is tricky because of the denominator in Eq. (2.147). The safest way
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Figure 2.6: The Rényi entropies for a 2-state system, computed using Eq. (2.152)
for different values of a.

to do this is to expand z in a Taylor series in a around oo = 1. We have the
following result from introductory calculus:

iza = 2% In(x).

do
Thus, expanding x® around o = 1 we get:
2%~z + 2t In(z) (o — 1).

Now we substitute this into Eq. (2.147) to get

R

Sulp) w{trp+ (@ - Duping) |

11—«

—

:11 m{LHa—DUWMM}

Since we want the limit o — 1, we may expand the logarithm above using the
formula In(1 + ) ~ z. The terms a — 1 will then cancel out, leaving us with

lim1 Sa(p) = —tr(plnp), (2.149)
oa—>

which is the von Neumann entropy. The Rényi entropy therefore forms a family
of entropies which contains the von Neumann entropy as a particular case. Other
particular cases of importance are a« = 0, which is called the max entropy, and
a = oo which is called the min entropy. Using the definition (2.147) we see that

So(p) = In(d), (2.150)

Seo(p) = flnm]?xpk. (2.151)
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As an example, consider a qubit with eigenvalues p and 1 —p. Then tr(p®) =
p® + (1 — p)® so that Eq. (2.147) becomes

Sulp) = 1ia1n {pa-&-(l—p)a}. (2.152)

This result is plotted in Fig. 2.6 for several values of a. As can be seen, except
for @« — 0, which is kind of silly, the behavior of all curves is qualitatively
similar.

Integral representations of In(p)

When dealing with more advanced calculations, sometimes dealing with In(p)
in terms of eigenvalues can be hard. An alternative is to write the logarithm of
operators as an integral representation. I know two of them. If you know more,
tell me and I can add them here. A simple one is

In(p) = (p — 1)/%. (2.153)

Here whenever p appears in the denominator, what is meant is the matrix
inverse. Another formula is*

p+x)

T 1 1

= d - . 2.1
/ m<1+m p+m> (2.155)
0

This last formula in particular can now be used as the starting point for a series
expansion, based on the matrix identity

i) = (0= [ Tr7 (2.154)
0

1 1 1 1

A+B 4 aPaym (2.156)

For instance, after one iteration of Eq. (2.155) we get

ln(p)-]odx( L _l,p 71 ) (2.157)

14z 2 22 22p+a

2.10 Generalized measurements and POV Ms

So far our discussion of measurements has been rather shallow. What I have
done so far is simply postulate the idea of a projective measurement, without

4See M. Suzuki, Prog. Theo. Phys, 100, 475 (1998)

64



