
As an example, consider a qubit with eigenvalues p and 1�p. Then tr(⇢↵) =
p
↵ + (1� p)↵ so that Eq. (2.147) becomes

S↵(⇢) =
1

1� ↵
ln

⇢
p
↵ + (1� p)↵

�
. (2.152)

This result is plotted in Fig. 2.6 for several values of ↵. As can be seen, except
for ↵ ! 0, which is kind of silly, the behavior of all curves is qualitatively
similar.

Integral representations of ln(⇢)

When dealing with more advanced calculations, sometimes dealing with ln(⇢)
in terms of eigenvalues can be hard. An alternative is to write the logarithm of
operators as an integral representation. I know two of them. If you know more,
tell me and I can add them here. A simple one is

ln(⇢) = (⇢� 1)

1Z

0

dx

1 + x(⇢� 1)
. (2.153)

Here whenever ⇢ appears in the denominator, what is meant is the matrix
inverse. Another formula is4

ln(⇢) = (⇢� 1)

1Z

0

dx

(1 + x)(⇢+ x)
(2.154)

=

1Z

0

dx

✓
1

1 + x
�

1

⇢+ x

◆
. (2.155)

This last formula in particular can now be used as the starting point for a series
expansion, based on the matrix identity

1

A+B
=

1

A
�

1

A
B

1

A+B
. (2.156)

For instance, after one iteration of Eq. (2.155) we get

ln(⇢) =

1Z

0

dx

✓
1

1 + x
�

1

x
+

⇢

x2
�
⇢
2

x2

1

⇢+ x

◆
. (2.157)

2.10 Generalized measurements and POVMs

So far our discussion of measurements has been rather shallow. What I have
done so far is simply postulate the idea of a projective measurement, without

4
See M. Suzuki, Prog. Theo. Phys, 100, 475 (1998)
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discussing the physics behind it. I know that this may be a bit frustrating, but
measurements in quantum mechanics are indeed a hard subject and experience
shows that it is better to postulate things first, without much discussion, and
then later on study models which help justify these postulates.

Starting from next chapter, we will begin to work out several models of
measurements, so I promise things will get better. What I would like to do now
is discuss measurements from a mathematical point of view and try to answer
the question “what is the most general structure a measurement may have?”
We will further divide this in two questions. First, what is a measurement?
Well, it is an assignment from states to probabilities. That is, given an arbitrary
state ⇢, we should ask what is the most general way of assigning probabilities
to it? This will introduce us to the idea of POVMs (Positive Operator-Valued
Measures). The next question is, what should be the state of the system after
the measurement? That will lead us to the idea of Kraus operators.

Ok. So let’s start. We have a system prepared in a state ⇢. Then we use
as our starting point the postulate that a measurement is a probabilistic event
for which di↵erent outcomes can be obtained with di↵erent probabilities. Let
us label the outcomes as i = 1, 2, 3, . . .. At this point the number of possible
outcomes has no relation in principle to the dimension of the Hilbert space or
anything of that sort. All we want to do is find an operation which, given ⇢, spits
out a set of probabilities {pi}. Well, from density matrices, information is always
obtained by taking the expectation value of an operator, so this association must
have the form

pi = tr(Ei⇢), (2.158)

where Ei are certain operators, the properties of which are determined once
we impose that the pi should behave like probabilities. First, the pi must be
non-negative for any ⇢, which can only occur if the operators Ei are positive
semi-definite. Second,

P
i
pi = 1 so that

P
i
Ei = 1. We therefore conclude that

if the rule to associate probabilities with quantum states has the structure of
Eq. (2.158), the set of operators {Ei} must satisfy

Ei � 0,
X

i

Ei = 1. (2.159)

A set of operators satisfying this is called a POVM: Positive-Operator Valued
Measure, a name which comes from probability theory. The set of POVMs also
contain projective measurements as a special case: the projection operators Pi

are positive semi-definite and add up to the identity.
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POVMs for a qubit

Here is an example of a POVM we can construct by hand for a qubit:

E1 = �|0ih0|

(2.160)

E2 = (1� �)|0ih0|+ |1ih1|.

These guys form a POVM provided � 2 [0, 1]: they are positive semi-definite and
add up to the identity. However, this is in general not a projective measurement,
unless � = 1. The logic here is that outcome E1 represents the system being
found in |0i, but outcome E2 means it can be in either |0i or |1i with di↵erent
probabilities. For a general qubit density matrix like (2.18), we get

p1 = tr(E1⇢) = �p, (2.161)

p2 = tr(E2⇢) = 1� �p. (2.162)

So even if p = 1 (the system is for sure in |0i), then we can still obtain the
outcome E2 with a certain probability. From such a silly example, you are
probably wondering “can this kind of thing be implemented in the lab?” The
answer is yes and the way to do it will turn out to be much simpler than you
can imagine. So hang in there!

What is cool about POVMs is that we can choose measurement schemes with
more than two outcomes, even though our qubit space is two-dimensional. For
instance, here is an example of a POVM with 3 outcomes (taken from Nielsen
and Chuang):

E1 = q|0ih0| (2.163)

E2 = q|+ih+| (2.164)

E3 = 1� E1 � E2. (2.165)

To illustrate what you can do with this, suppose you are walking down the street
and someone gives you a state, telling you that for sure this state is either |1i
or |�i, but he/she doesn’t know which one. Then if you measure the system
and happen to find outcome E1, you know for certain that the state you were
given could not be |1i, since h0|1i = 0. Hence, it must have been |�i. A similar
reasoning holds if you happen to measure E2, since |+i and |�i are orthogonal.
But if you happen to measure E3, then you don’t really know anything. So
this is a POVM where the observer never makes a mistake about what it is
measuring, but that comes at the cost that sometimes he/she simply doesn’t
learn anything.

Generalized measurements

We now come to the much harder question of what is the state of the system
after the measurement. Unlike projective measurements, for which the state
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always collapses, for general measurements many other things can happen. So
we should instead ask what is the most general mathematical structure that a
state can have after a measurement. To do that, I will postulate something,
which we will only prove on later chapters, but which I will try to give a rea-
sonable justification below. You can take this next postulate as the ultimate
measurement postulate: that is, it is a structure worth remembering because
every measurement can be cast in this form. The postulate is as follows.

Measurement postulate: any quantum measurement is fully specified by a
set of operators {Mi}, called Kraus operators, satisfying

X

i

M
†
i
Mi = 1. (2.166)

The probability of obtaining measurement outcome i is

pi = tr(Mi⇢M
†
i
), (2.167)

and, if the outcome of the measurement is i, then the state after the measure-
ment will be

⇢!
Mi⇢M

†
i

pi
. (2.168)

Ok. Now breath! Let us analyze this in detail. First, for projective mea-
surements Mi = Pi. Since P

†
i
= Pi and P

2
i
= Pi we then get P †

i
Pi = Pi so that

Eqs. (2.166)-(2.168) reduce to
X

i

Pi = 1, pi = tr(Pi⇢), ⇢!
Pi⇢Pi

pi
, (2.169)

which are the usual projective measurement/collapse scenario. It also does not
matter if the state is mixed or pure. In particular, for the latter ⇢ = | ih | so
the state after the measurement becomes (up to a constant) Pi| i. That is, we
have projected onto the subspace where we found the system in.

Next, let us analyze the connection with POVMs. Define

Ei = M
†
i
Mi. (2.170)

Then Eqs. (2.166) and (2.167) become precisely Eqs. (2.158) and (2.159). You
may therefore be wondering why define POVMs separately from these general-
ized measurements. The reason is actually simple: di↵erent sets of measurement
operators {Mi} can give rise to the same POVM {Ei}. Hence, if one is only in-
terested in obtaining the probabilities of outcomes, then it doesn’t matter which
set {Mi} is used, all that matters is the POVM {Ei}. However, states having
the same POVM can lead to completely di↵erent post-measurement states.
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Examples for a qubit

Consider the following measurement operators

M1 =

✓p
� 0
0 0

◆
, M2 =

✓p
1� � 0
0 1

◆
. (2.171)

These operators satisfy (2.166). Moreover, E1 = M
†
1M1 and E2 = M

†
2M2 give

exactly the same POVM as in Eq. (2.160). Suppose now that the system is
initially in the pure state |+i = 1p

2
(1, 1). Then the outcome probabilities and

the states after the measurements will be

p1 =
�

2
|+i ! |0i

(2.172)

p2 = 1�
�

2
|+i !

p
1� �|0i+ |1i
p
2� �

Thus, unless � = 1, the state after the measurement will not be a perfect
collapse.

Next consider the measurement operators defined by

M
0
1 =

✓
0 0
p
� 0

◆
, M

0
2 = M2 =

✓p
1� � 0
0 1

◆
. (2.173)

Compared to Eq. (2.171), we have only changed M1. But note that M 0†
1 M

0
1 =

M
†
1M1. Hence this gives the same POVM (2.160) as the set {Mi}. However,

the final state after the measurement is completely di↵erent: if outcome 1 is
obtained, then instead of (2.172), the state will now collapse to

|+i ! |1i. (2.174)

To give a physical interpretation of what is going on here, consider an atom and
suppose that |0i = |ei is the excited state and |1i = |gi is the ground-state. The
system is then initially in the state |+i, which is a superposition of the two. But
if you measure and find the atom in the excited state, then that means it must
have emitted a photon and therefore decayed to the ground-state. The quantity
� in Eq. (2.173) therefore represents the probability of emitting a photon during
the time-span of the observation. If it emits, then the state is |1i = |gi because
it must have decayed to the ground-state. If it doesn’t emit, then it continues
in a superposition, but this superposition is now updated to ⇠

p
1� �|0i+ |1i.

This is really interesting because it highlights the fact that if nothing happens,
we still update our information about the atom. In particular, if � is very large,
for instance � = 0.99, then the state after the measurement will be very close
to |1i. This means that if the atom did not emit, there is a huge chance that it
was actually in the ground-state |1i to begin with.
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Origin of generalized measurements

Now I want to show you one mechanism through which generalized mea-
surements appear very naturally: a generalized measurement is implemented by
making a projective measurement on an ancilla that is entangled with the system.
That is, instead of measuring A, we first entangle it with an auxiliary system
B (which we call ancilla) and then measure B using projective measurements.
Then, from the point of view of A, this will be translated into a generalized
measurement.

To illustrate the idea, suppose we have a system in a state | iA and an
ancilla prepared in a state |0iB . Then, to entangle the two, we first evolve them
with a joint unitary UAB . The joint state of AB, which was initially product,
will then evolve to a generally entangled state

|�i = UAB


| iA ⌦ |0iB

�
. (2.175)

We now perform a projective measurement on B, characterized by a set of
projection operators P

B

i
= 1A ⌦ |iiBhi|. Then outcome i is obtained with

probability
pi = h�|P

B

i
|�i, (2.176)

and the state after the measurement, if this outcome was obtained, collapses to
P

B

i
|�i.
Now let’s see how all this looks from the perspective of A. The next cal-

culations are a bit abstract, so I recommend some care. Have a first read all
the way to the end and then come back and try to understand it in more de-
tail. The point is that here the ⌦ can be a curse. It is better to get rid of it
and write, for instance, PB

i
= |iiBhi| where the fact that this is an operator

acting only on Hilbert space B is implicit in the subscript. Similarly we write
| iA ⌦ |0iB = | iA|0iB . With this we then get, for instance,

pi = A
h |

B
h0|U †

AB
|iiBhi|UAB | iA|0iB . (2.177)

This quantity is a scalar, so we are contracting over everything. But what we
could do is leave the contraction h |(. . .)| i for last. Then the (. . .) will be an
operator acting only on the Hilbert space of A. If we define the operators

Mi = B
hi|UAB |0iB =

✓
1⌦ hi|

◆
UAB

✓
1⌦ |0i

◆
. (2.178)

acting only Hilbert space A, then we get

pi = A
h |M

†
i
Mi| iA, (2.179)

which is precisely Eq. (2.167) for the probabilities of a generalized measure-
ment. Moreover, we can also check that the {Mi} satisfy the normalization
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condition (2.166):

X

i

M
†
i
Mi =

X

i

B
h0|U †

AB
|iiBhi|UAB |0iB

=
B
h0|U †

AB
UAB |0iB

=
B
h0|0iB

= 1A,

so they indeed form a set of measurement operators.
We now ask what is the reduced density matrix ⇢i

A
of system A, given that

the outcome of the measurement on B was i. Well, this is simply obtained by
taking the partial trace over B of the new state P

B

i
|�i:

⇢
i

A
= trB

⇢
P

B

i
|�ih�|P

B

i

�

=
B
hi|�ih�|iiB

=
B
hi|UAB | iA|0iB A

h |
B
h0|U†

AB
|iiB

Using Eq. (2.178) this may then be written as

⇢
i

A
= Mi

✓
| ih |

◆
M

†
i
, (2.180)

which is exactly the post-measurement state (2.168). Thus, as we set out to
prove, if we do a projective measurement on a ancila B which is entangled with
A, from the point of view of A we are doing a generalized measurement.

The above calculations are rather abstract, I know. It is a good exercise to do
them using ⌦ to compare. That can be done decomposition UAB =

P
↵
A↵⌦B↵.

Eq. (2.177), for instance, then becomes:

pi =
X

↵,�

✓
h |⌦ h0|

◆✓
A

†
↵
⌦B

†
↵

◆✓
1⌦ |0ih0|

◆✓
A� ⌦B�

◆✓
| i ⌦ |0i

◆
.

I will leave for you as an exercise to check that this indeed gives (2.179). Also,
try to check that the same idea leads to Eq. (2.180).
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