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Figure 3.8: The conditional populations in Eq. (3.134) for the example state (3.126)

and gt = 1.
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Figure 3.9: Same as Fig. 3.8 but for gt = 4.

3.7 Lindblad dynamics for the quantum harmonic
oscillator

We already briefly touched upon the idea of a Lindblad master equation in
Sec. 2.2, particularly in Eq. (2.22). The Lindblad master equation is a modi-
fication of von Neumann’s equation to model open quantum systems. That is,
the contact of the system with an external bath. Next chapter will be dedicated
solely to open quantum systems. But here, I want to take another quick look at
this problem, focusing on continuous variables. What I propose is to just show
you what is the most widely used Lindblad equation in this case. Then we can
just play with it a bit and get a feeling of what it means. The derivation of
this master equation, together with a deeper discussion of what it means, will
be done in the next chapter.

We return to the pumped cavity model described in Fig. 3.2. We assume the
optical cavity contains only a single mode of radiation a, of frequency !c, which
is pumped externally by a laser at a frequency !p. The Hamiltonian describing
this system is given by Eq. (3.22):

H = !ca
†
a+ ✏a

†
e
�i!pt + ✏

⇤
ae

i!pt. (3.135)

In addition to this, we now include also the loss of photons through the semi-
transparent mirror. This is modeled by the following master equation

d⇢

dt
= �i[H, ⇢] +D(⇢), (3.136)

where D(⇢) is called the Lindblad dissipator and is given by

D(⇢) = �


a⇢a

†
�

1

2
{a

†
a, ⇢}

�
. (3.137)
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Here � > 0 is a constant which quantifies the loss rate of the cavity. Recall
that the pump term ✏ in Eq. (3.135) was related to the laser power P by |✏|

2 =
�P/~!p, which therefore depends on �. This is related to the fact that the
mechanism allowing for the photons to get in is the same that allows them
to get out, which is the semi-transparent mirror. I should also mention that
sometimes Eq. (3.137) is written instead with another constant, � = 2. There
is a sort of unspoken rule that if Eq. (3.137) has a 2 in front, the constant should
be named . If there is no factor of 2, it should be named �. If you ever want
to be mean to a referee, try changing that order.

For qubits the dimension of the Hilbert space is finite so we can describe the
master equation by simply solving for the density matrix. Here things are not so
easy. Finding a general solution for any density matrix is a more di�cult task.
Instead, we need to learn alternative ways of dealing with (and understanding)
this type of equation.

Before we do anything else, it is important to understand the meaning of the
structure of the dissipator, in particular the meaning of a term such as a⇢a

†.
Suppose at t = 0 we prepare the system with certainty in a number state so
⇢(0) = |nihn|. Then

D(|nihn|) = �n

⇢
|n� 1ihn� 1|� |nihn|

�
.

The first term, which comes from a⇢a
†, represents a state with one photon

less. This is precisely the idea of a loss process. But this process must also
preserve probability, which is why we also have another term to compensate.
The structure of the dissipator (3.137) represents a very finely tuned equation,
where the system looses photons, but does so in such a way that the density
matrix remains positive and normalized at all times. We also see from this result
that

D(|0ih0|) = 0. (3.138)

Thus, if you start with zero photons, nothing happens with the dissipator term
. We say that the the vacuum is a fixed point of the dissipator (it is not
necessarily a fixed point of the unitary evolution).

The case of zero pump, ✏ = 0

Let us consider the case ✏ = 0, so that the Hamiltonian (3.135) becomes
simply H = !ca

†
a. This means the photons can never be injected, but only

lost. As a consequence, if our intuition is correct, the system should eventually
relax to the vacuum. That is, we should expect that

lim
t!1

⇢(t) = |0ih0|. (3.139)

We are going to try to verify this in several ways. The easiest way is to simply
verify that if ⇢⇤ = |0ih0| then

�i!c[a
†
a, ⇢

⇤] +D(⇢⇤) = 0,
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so the vacuum is indeed a steady-state of the equation. If it is unique (it is) and
if the system will always converge to it (it will), that is another question.

Next let us look at the populations in the Fock basis

pn = hn|⇢|ni. (3.140)

They represent the probability of finding the system in the Fock state |ni. We
can find an equation for pn(t) by sandwiching Eq. (3.136) in hn| . . . |ni. The
unitary part turns out to give zero since |ni is an eigenstate of H = !ca

†
a. As

for hn|D(⇢)|ni, I will leave for you to check that we get

dpn
dt

= �


(n+ 1)pn+1 � npn

�
. (3.141)

This is called a Pauli master equation and is nothing but a rate equation,
specifying how the population pn(t) changes with time. Positive terms increase
pn and negative terms decrease it. So the first term in Eq. (3.141) describes the
increase in pn due to populations coming from pn+1. This represents the decays
from higher levels. Similarly, the second term in Eq. (3.141) is negative and so
describes how pn decreases due to populations at pn that are falling down to
pn�1.

The steady-state of Eq. (3.141) is obtained by setting dpn/ dt = 0, which
gives

pn+1 =
n

n+ 1
pn, (3.142)

In particular, if n = 0 we get p1 = 0. Then plugging this in n = 1 gives p2 = 0
and so on. Thus, the steady-state correspond to all pn = 0. The only exception
is p0 which, by normalization, must then be p0 = 1.

Evolution of observables

Another useful thing to study is the evolution of observables, such as hai,
ha

†
ai, etc. Starting from the master equation (3.136), the expectation value of

any observables is

dhOi

dt
= tr

⇢
O

d⇢

dt

�
= �i tr

⇢
O[H, ⇢]

�
+ tr

⇢
OD(⇢)

�
.

Rearranging the first term we may write this as

dO

dt
= ih[H,O]i+ tr

⇢
OD(⇢)

�
. (3.143)

The first term is simply Heisenberg’s equation (3.48) for the unitary part. What
is new is the second term. It is convenient to write this as the trace of ⇢ times
“something”, so that we can write this as an expectation value. We can do this
using the cyclic property of the trace:

tr

⇢
O


a⇢a

†
�

1

2
a
†
a⇢�

1

2
⇢a

†
a

��
= ha

†
Oa�

1

2
a
†
aO �

1

2
Oa

†
ai. (3.144)
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Using this result for O = a and O = a
†
a gives, playing with the algebra a bit,

tr

⇢
aD(⇢)

�
= �

�

2
hai, tr

⇢
a
†
aD(⇢)

�
= ��ha

†
ai. (3.145)

Using these results in Eq. (3.143) then gives

dhai

dt
= �(i! + �/2)hai, (3.146)

dha†ai

dt
= ��ha

†
ai. (3.147)

Thus, both the first and the second moments will relax exponentially with a
rate �, except that hai will also oscillate:

hait = e
�(i!+�/2)t

hai0, (3.148)

ha
†
ait = e

��t
ha

†
ai0 (3.149)

As t ! 1 the average number of photons ha†ai tends to zero, no matter which
state you begin at. Looking at a handful of observables is a powerful way to
have an idea about what the density matrix is doing.

Evolution in the presence of a pump

Let us now go back to the full master Eq. (3.136). We can move to the
interaction picture exactly as was done in Eq. (3.31), defining

⇢̃t = S(t)⇢S†(t), S(t) = e
i!pta

†
a
.

This transforms the Hamiltonian (3.135) into the detuned time-independent
Hamiltonian (3.33):

H̃ = �a
†
a+ ✏a

† + ✏
⇤
a, (3.150)

where � = !c�!p is the detuning. Moreover, I will leave for you as an exercise
to check that this does not change in any way the dissipative term. Thus, ⇢̃ will
evolve according to

d⇢̃

dt
= �i[H̃, ⇢̃] +D(⇢̃). (3.151)

To get a feeling of what is going on, let us use Eq. (3.143) to compute the
evolution of hai. Everything is identical, except for the new pump term that
appears. As a result we get

dhai

dt
= �(i�+ �/2)hai � i✏. (3.152)
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As before, hai will evolve as a damped oscillation. However, now it will not tend
to zero in the long-time limit, but instead will tend to

haiss = �
i✏

i�+ �/2
. (3.153)

I think this summarizes well the idea of a pumped cavity : the steady-state is a
competition of how much we pump (unitary term) and how much we drain (the
dissipator). Interestingly, the detuning � also a↵ects this competition, so for a
given ✏ and �, we get more photons in the cavity if we are at resonance, � = 0.

We can also try to ask the more di�cult question of what is the density
matrix ⇢

⇤ in the steady-state. It turns out it is a coherent state set exactly at
the value of hai:

⇢̃
⇤ = |↵ih↵|, ↵ = �

i✏

i�+ �/2
. (3.154)

One way to check this is to take the coherent state as an ansatz and then try
to find what is the value of ↵ which solves Eq. (3.151). The average number of
photons will then be

ha
†
ai = |↵|

2 =
✏
2

�2 + �2/4
. (3.155)

The purpose of this section was to show you a practical use of master equa-
tions and open quantum systems. This “cavity loss” dissipator is present in
literally every quantum optics setup which involves a cavity. In fact, I know of
several papers which sometimes even forget to tell that this dissipator is there,
but it always is. We will now turn to a more detailed study of open quantum
systems.
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