
We can also do the opposite. That is, we can define a quantum operation which
adds a state to the system. For instance, suppose we have a system S and we want to
add an environment ancilla E in a state |e0i. Then we can define the Kraus operators

M0 = 1S ⌦ |e0iE . (4.36)

The corresponding quantum operation will then be

M0⇢M†0 = ⇢ ⌦ |e0ihe0|. (4.37)

Moreover,
M†0 M0 = 1S .

Of course, if we want to add an ancilla in a more general state, all we need to do is
construct a larger set of Kraus operators. With these ideas we can actually cover all
types of quantum operations. That is, any map can always be described by quantum
operations mapping the same Hilbert space, combined with partial traces and adding
ancillas.

4.3 Lindblad master equations
We have seen that a quantum operation is the most general map taking density

matrices to density matrices. But sometimes maps are not so useful and it is better to
have a di↵erential equation for ⇢(t). That is, something like

d⇢
dt
= L(⇢), (4.38)

where L(⇢) is some linear superoperator (a superoperator is just an operator acting on
an operator). It is also customary to call L(⇢) the Liouvillian because of the analogy
between Eq. (4.38) and the Liouville equation appearing in classical mechanics. An
equation of the form (4.38) is also historically known as a master equation, a name
which was first introduced in a completely di↵erent problem,4 but is supposed to mean
an equation from which all other properties can be derived from.

We may then ask the following question: “Given an initial genuine density matrix
⇢(0), what is the general structure a LiouvillianL must have in order to ensure that the
solution ⇢(t) of Eq. (4.38) will also be a genuine density matrix at all times t?” Putting
it di↵erently, suppose we happen to solve Eq. (4.38). Then the solution will be given
by some linear map of the form

⇢(t) = Vt(⇢(0)). (4.39)

where Vt is some superoperator. What we then really want is for Vt to be a quantum
operation at all times t. If that is the case we say the master equation is CPTP (because
the map it generates is CPTP).

4A. Nordsieck, W. E. Lamb and G. T. Uhlenbeck, Physica, 7, 344 (1940).
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Eq. (4.38) has the form of a linear equation

dx
dt
= Ax. (4.40)

Equations of this form always have the property of being divisible. That is, the solution
from t = 0 to t = t2 can always be split into a solution from t = 0 to t = t1 and then
a solution from t = t1 to t = t2. Consequently, this implies that Vt must satisfy the
semigroup property:5

Vt2Vt1 = Vt2+t1 . (4.41)

Semigroup is therefore implied by the structure of Eq. (4.38). We can then ask, when
can a semigroup map be CPTP? Quite remarkably, just by imposing these two prop-
erties one can determine a very specific structure for the Liouvillian ⇢. This is the
content of Lindblad’s theorem:6 The generator of any quantum operation satisfying
the semigroup property must have the form:

L(⇢) = �i[H, ⇢] +
X

k

�k


Lk⇢L†k �

1
2
{L†k Lk, ⇢}

�
, (4.42)

where H is a Hermitian operator, Lk are arbitrary operators and �k � 0. Master
equations having this structure are then called Linbdlad equations or, more generally,
Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equations. If you have any equation
satisfying this structure, then the corresponding evolution is guaranteed to be CPTP
(i.e., physical). Conversely, any CPTP and divisible map is guaranteed to have to this
form. Of course, this does not say anything about how to derive such an equation. That
is a hard question, which we will start to tackle in the next section. But this result gives
us an idea of what kind of structure we should look for and that is already remarkably
useful.

Now here is our battle plan for this section: first, we will discuss some examples.
Then we will prove Lindblad’s theorem. Finally I will show you some tricks of the
trade for dealing with these equations, specially from a numerical point of view.

Amplitude damping at finite temperature
We have already discussed the amplitude damping master equation in Sec. 4.1. But

in that case the equation described a zero temperature e↵ect. For instance, as illustrated
in Eq. (4.6), the steady-state of the equation was the pure state |0ih0|. The generalization
to finite temperatures is captured by a dissipator of the form

D(⇢) = �(1 � f )

��⇢�+ �

1
2
{�+��, ⇢}

�
+ � f


�+⇢�� �

1
2
{���+, ⇢}

�
, (4.43)

5It is a semigroup because this looks like the composition property of a group, but the inverse is not
necessarily a member of the group.

6G. Lindblad, Comm. Math. Phys, 48, 119 (1976).
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where � > 0 and f 2 [0, 1]. After a while we get tired of writing these equations
explicitly, so it is more convenient to break them in blocks. Define

D[L] = L⇢L† � 1
2
{L†L, ⇢}. (4.44)

Then we can rewrite Eq. (4.43) as

D(⇢) = �(1 � f )D[��] + � f D[�+]. (4.45)

To know what a dissipator such as this is doing, we look at the fixed points. That
is, the density matrix satisfying D(⇢⇤) = 0. Of course, we also need to include the
Hamiltonian part, which we will do so below. But for now let’s just forget about H for
a second. In this case you can check that the steady-state ofD is

⇢⇤ =

 
f 0
0 1 � f

!
. (4.46)

Thus, the constant f appearing in (4.45) represent the populations in the computational
basis. If f = 1 the system will relax all the way to the north pole |0i. If f = 0 it will
relax to the south pole |1i. For intermediate f , it will relax somewhere in the middle of
the z axis, having h�zi⇤ = 2 f � 1.

After looking at the steady-sate, the next nice thing is to look at the relaxation
towards the steady-state. In this case, if we let p = h0|⇢|0i be the population in the north
pole and q = h0|⇢|1i, then the evolution under Eq. (4.45) will lead to the equations

dp
dt
= �( f � p), (4.47)

dq
dt
= ��

2
q. (4.48)

The solutions are simply

p(t) = p(0)e��t + f (1 � e��t), (4.49)

q(t) = q(0)e��t/2. (4.50)

Thus, the population p(t) will relax exponentially towards the “bath-imposed” popula-
tion f , whereas the coherence will relax towards zero. It is interesting to note that q(t)
always relaxes to zero, irrespective of what is the value of f .

Competition
I like to view master equations such as (4.42) as a competition between di↵erent

terms. Each ingredient in the equation is trying to push the system toward some direc-
tion and the steady-state will be a kind of compromise between the relative strengths
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of each term. This is already clear in the dissipator (4.44): the first term pushes to the
south pole and the second term to the north pole. As a result, the system eventually
settles down in the state (4.46), which is somewhere in the middle.

Unitary terms also contribute to the competition and this mixture of unitary and
dissipative elements lead to interesting e↵ects. To have an idea of what can happen,
consider the Liouvillian

L(⇢) = �i
⌦

2
[�z, ⇢] + �(1 � f )D[��] + � f D[�+]. (4.51)

This is just like Eq. (4.45), except that now we added a Hamiltonian term corresponding
to a qubit in the �z basis. The action of this unitary term turns out to be quite simple.
All it will do is change the evolution of q(t) to q(t) = q(0)e�(i⌦+�/2)t. Thus, q(t) will
also oscillate a bit while relaxing. However, the steady-state remains the same, being
given simply by Eq. (4.46).

Now let’s consider a tiny variation of Eq. (4.51), where the Hamiltonian is modified
from �z to �x:

L(⇢) = �i
⌦

2
[�x, ⇢] + �(1 � f )D[��] + � f D[�+]. (4.52)

The steady-state of this equation is now completely di↵erent, being given by

p⇤ =
f�2 +⌦2

�2 + 2⌦2 , (4.53)

q⇤ = i(2 f � 1)
�⌦

�2 + 2⌦2 (4.54)

This is now a weird mixed state lying somewhere in the yz plane. If � � ⌦ then we
recover back the state (4.46). However, if ⌦ � � then the state actually tends to the
maximally mixed state ⇢⇤ = I/2. This is interesting because we could naively think the
system would tend to the x axis. But it doesn’t because unitary and dissipative contri-
butions behave di↵erently. Dissipative terms push you to places, whereas unitaries like
to oscillate around.

A harmonic oscillator subject to a finite temperature bath
In Sec. 3.7 we discussed the idea of a lossy cavity, which is described by a Lind-

blad dissipator that pumps energy away from the system. A similar idea applies to a
continuous variable mode subject to a finite temperature bath. But in this case energy
is not only drained out, but some may also come in. The dissipator describing this type
of process is

D(⇢) = �(n̄ + 1)

a⇢a† � 1

2
{a†a, ⇢}

�
+ �n̄


a†⇢a � 1

2
{aa†, ⇢}

�

= �(n̄ + 1)D[a] + �n̄D[a†], (4.55)
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where � > 0 and n̄ is the Bose-Einstein distribution

n̄ =
1

e�! � 1
, (4.56)

with ! being the oscillator’s frequency and � = 1/T the inverse temperature. If T = 0
then n̄ = 0 and we recover the lossy cavity dissipator of Sec. 3.7.

Let us first ask what is the steady-state of (4.55). A honest guess would be a thermal
state at temperature �. Indeed, I will leave for you the exercise of verifying that

D(e��!a†a) = 0, (4.57)

which works only if the � here is the same � appearing in Eq. (4.56). Thus, the steady-
state is a thermal state with the same temperature as that imposed by the bath.

Dealing with these infinite dimensional master equations can sometimes be cum-
bersome. What I usually do is to always look first at expectation values of operators.
And in this case it is useful to generalize a bit some of the tricks discussed in Sec. 3.7.
Let us write our master equation as

d⇢
dt
= �i[H, ⇢] +D(⇢). (4.58)

Now we compute the expectation value of some operator O, which reads

dhOi
dt
= ih[H,O]i + tr

⇢
OD(⇢)

�
. (4.59)

The first term is simply the Heisenberg equation. It is useful to write down the second
term in a similar way, as the expectation value of something on the state ⇢.

Suppose we have a dissipator of the form D[L] in Eq. (4.44). Then, using the cyclic
property of the trace, we can write

tr
⇢
O

L⇢L† � 1

2
{L†L, ⇢}

��
= hL†OL � 1

2
{L†L,O}i. (4.60)

This motivates us to define the adjoint dissipator

D̄[L](O) = L†OL � 1
2
{L†L,O}. (4.61)

which is a superoperator acting on observables O, instead of density matrices. It is
nice to have a look at the structure of D̄. In the original dissipator (4.44) the first term
has L • L† but the second term has L†L. In the adjoint dissipator, on the other hand,
everything is in the same order, with L† always in the left. What is more, because of
this more symmetric structure, we can actually factor the adjoint dissipator as

D̄[L](O) =
1
2

L†[O, L] +
1
2

[L†,O]L. (4.62)
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With this structure it is now extremely easy to compute expectation values of observ-
ables since it amounts only to the computation of a commutator. And just to summarize,
can now write Eq. (4.59) as

dhOi
dt
= ih[H,O]i + hD̄(O)i. (4.63)

Going back to the harmonic oscillator dissipator (4.55), the corresponding adjoint
dissipator will be

D̄(O) = �(n̄ + 1)

a†Oa � 1

2
{a†a,O}

�
+ �n̄


aOa† � 1

2
{aa†,O}

�

=
�

2
(n̄ + 1)

⇢
a†[O, a] + [a†,O]a

�
+
�

2
n̄
⇢
a[O, a†] + [a,O]a†

�
. (4.64)

Please take a second to notice what I did. In the first line I just used the shape of the
original dissipator (4.55) and changed the order L⇢L† ! L†OL. In the second line I
just used the structure of Eq. (4.62) to rewrite this in terms of commutators.

Let us now look at some examples, starting with O = a. Inserting this in Eq. (4.64)
leads to

D̄(a) = �(n̄ + 1)
⇢
� a

2

�
+ �n̄

⇢a
2

�
= ��a

2
. (4.65)

For concreteness, let us also suppose H = !a†a. Then the equation for hai will be
simply

da
dt
= �(i! + �/2)hai. (4.66)

Interestingly, this is the same equation as for the zero temperature case. Thus, thermal
fluctuations turn out not to a↵ect the first moment hai.

Next we turn to O = a†a. Eq. (4.64) then gives

D̄(a†a) = �(n̄ + 1)
⇢
� a†a

�
+ �n̄

⇢
aa†

�
= ��a†a + �n̄ (4.67)

The evolution of ha†ai will then be given by

dha†ai
dt

= �(n̄ � ha†ai). (4.68)

This will therefore be an exponential relaxation, from the initial occupation ha†ai0
to the bath-imposed occupation n̄. It is interesting to note how the right-hand side
of Eq. (4.68) can be viewed as the current of quanta, in the sense of a continuity
equation:

dha†ai
dt

:= J. (4.69)

That is, the rate at which the number of quanta changes is related to the flux of quanta
from the system to the environment. If at any given time ha†ai > n̄ then the current
will be negative, meaning quanta is flowing from the system to the environment. Con-
versely, if ha†ai < n̄ the current becomes positive, meaning that quanta is flowing from
the environment to the system.
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Proof of Lindblad’s theorem
Let us now prove Lindblad’s theorem. That is, we will show that any quantum

operation which also satisfies the semigroup property can be written in the Lindblad
form (4.42). If the dynamics is to satisfy the semigroup property (i.e., if it is divisible)
then we must be able to write the evolution over an infinitesimal time �t as

⇢(t + �t) =
X

k

Mk(�t)⇢(t)M†k (�t), (4.70)

where the Kraus operators Mk(�t) cannot depend on the time t. Let us then ask what
we want for the Mk(�t). We are after a di↵erential equation for ⇢(t), of the form (4.38).
This means that for small �t we want something like

⇢(t + �t) ' ⇢(t) + �tL(⇢(t)). (4.71)

In general, since the first correction is of the order �t, we will then need to have
Mk(�t) =

p
�tLk, where Lk is some operator. This is so because then Mk⇢M†k ⇠ �t.

But we also have the additional property that, if �t = 0, then nothing should happen:P
k Mk(0)⇢Mk(0) = ⇢. One way to introduce this would be to take one Kraus operator,

for instance k = 0, to be Mk = I. However, as we will see, this will give us trouble with
the normalization of the Kraus operators.

The correct way to fix it is by defining

M0 = I +G�t, Mk =
p
�tLk, k , 0 (4.72)

where G and Lk are arbitrary operators. The normalization condition for the Kraus
operators then leads to

1 =
X

k

M†k Mk = M†0 M0 +
X

k,0

M†k Mk

= (I +G†�t)(I +G�t) + �t
X

k,0

L†k Lk

= I + (G +G†)�t + �t
X

k,0

L†k Lk + O(�t2).

This shows why we need this G guy. Otherwise, we would never be able to normalize
the Kraus operators. Since G is arbitrary, we may parametrize it as

G = K � iH, (4.73)

where K and H are both Hermitian. It then follows from the normalization condition
that

K = �1
2

X

k,0

L†k Lk, (4.74)

whereas nothing can be said about H.
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With this at hand, we can finally substitute our results in Eq. (4.70). We then get

⇢(t + �t) = (I +G�t)⇢(I +G†�t) + �t
X

k,0

Lk⇢L†k

= ⇢(t) + �t(G⇢ + ⇢G†) + �t
X

k,0

Lk⇢L†k

= ⇢(t) � i�t[H, ⇢] + �t
X

k,0


Lk⇢L†k �

1
2
{L†k Lk, ⇢}

�

Rearranging and taking the limit �t ! 0 we then finally obtain

⇢(t + �t) � ⇢(t)
�t

' d⇢
dt
= �i[H, ⇢] +

X

k,0


Lk⇢L†k �

1
2
{L†k Lk, ⇢}

�
, (4.75)

which is Lindblad’s equation (4.42). Woo-hoo! We did it! The only tiny di↵erence is
that in Eq. (4.42) there are also some coe�cients �k. But you can just think that we
redefine p�kLk ! Lk, so they are both really the same thing.

In summary, we have seen that if we combine the semigroup property and the struc-
ture of a quantum operation, the corresponding di↵erential equation must have Lind-
blad’s form. As I mentioned before, we still have no idea of what the operators H and
Lk should be. That will be the topic of next section. But it is great that we can already
tell what the general structure should be.

Vectorization/Choi-Jamiolkowski isomorphism
Master equations and quantum operations can be annoying because we always have

to multiply ⇢ on both sides. But if you remember your linear algebra course, you will
recall that matrices also form a vector space. Hence, we can think of superoperators
(such as the Liouvillian) as just a big matrices multiplying a big vector ⇢. This idea can
be made more formal using the Choi-Jamiolkowski isomorphism, or vectorization. It
is neatly captured by the following relation:

|iih j|! | ji ⌦ |ii. (4.76)

That is, we can think about an outer product (which has two indices) as being just a
vector (with one index) in a doubled dimension. In this way, when we have an arbitrary
density matrix

⇢ =
X

i, j

⇢i, j|iih j|, (4.77)

we can write its vectorized form as

vec(⇢) =
X

i, j

⇢i, j| ji ⌦ |ii. (4.78)
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From a matrix point of view, this operation is the same as stacking columns of a matrix

vec
 
a b
c d

!
=

0
BBBBBBBBBBBB@

a
c
b
d

1
CCCCCCCCCCCCA
. (4.79)

This vectorization trick is very useful, in particular due to two main properties. The
first is related to the Hilbert-Schmidt inner product, defined as

(A, B) := tr(A†B). (4.80)

This quantity satisfies all properties of an inner product and is therefore the operator
analog of h |�i. And, in terms of the vectorized operators (4.79), it becomes exactly
what one would intuitively guess:

tr(A†B) = vec(A)†vec(B). (4.81)

That is, just the inner product between the two vectors.
A particularly important state in this sense is the vectorized version of the identity

operator:
I =

X

i

|iihi| ! vec(I) =
X

i

|ii ⌦ |ii. (4.82)

We therefore see that the identity vectorizes to the (unnormalized) maximally entangled
Bell state. One of the reasons why the identity is so important is in connection with the
normalization of a density matrix:

tr(⇢) = vec(I)†vec(⇢) = 1. (4.83)

The second useful property of the vectorization is as follows. Suppose we vectorize
the product of three matrices ABC. It then turns out that

vec(ABC) = (CT ⌦ A)vec(B). (4.84)

(Please note that what appears here is not the dagger, but the transpose). This is cer-
tainly not an intuitive property. The best way I know of convincing ourselves that it
works is to simply write it out in the ugliest way possible:

ABC =
X

i, j,k,`,m,n

(Ai, j|iih j|)(Bk,` |kih`|)(Cm,n|mihn|) =
X

i, j,m,n

Ai, jB j,mCm,n|iihn|.

Then
vec(ABC) =

X

i, j,m,n

Ai, jB j,mCm,m|ni ⌦ |ii.
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On the other hand

(CT⌦A)vec(B) =
✓ X

m,n,i, j

Cm,nAi, j|nihm|⌦|iih j|
◆X

k,`

Bk,` |`i⌦|ki =
X

m,n,i, j

Cm,nAi, jB j,m|ni⌦|ii,

which is the same thing.
The usefulness of Eq. (4.84) lies in the fact that it provides us with a recipe to write

superoperator products such as A⇢C in the form of a big matrix times vec(⇢):

vec(A⇢C) = (CT ⌦ A)vec(⇢).

This also works for terms like

vec(H⇢) = vec(H⇢I) = (I ⌦ H)vec(⇢).

In this way we can write the full Liouvillian as just a big big matrix:

vec
✓
� i[H, ⇢]

◆
= �i


I ⌦ H � HT ⌦ I

�
vec(⇢), (4.85)

vec
✓
L⇢L† � 1

2
{L†L, ⇢}

◆
=


L⇤ ⌦ L � 1

2
I ⌦ L†L � 1

2
(L†L)T ⌦ I

�
vec(⇢) (4.86)

Taking the vec of the original master equation (4.38), we can now rewrite it as

d
dt

vec(⇢) = L̂ vec(⇢), (4.87)

where L̂ is now a matrix (which is why I put a hat on it). For the general Liouvillian
structure such as (4.42), this matrix will then read

L̂ = �i(I ⌦ H � HT ⌦ I) +
X

k

�k


L⇤k ⌦ Lk �

1
2

I ⌦ L†k Lk �
1
2

(L†k Lk)T ⌦ I
�

(4.88)

Eq. (4.87) then nothing but a simple matrix-vector equation so that its properties can
all be deduced from the properties of the matrix L.

As an example of Eq. (4.88), the vectorized version of the amplitude damping dis-
sipator (4.43) is

D̂ =

0
BBBBBBBBBBBBBBBBBBBB@

��(1 � f ) 0 0 � f

0 ��/2 0 0

0 0 ��/2 0

�(1 � f ) 0 0 �� f

1
CCCCCCCCCCCCCCCCCCCCA

. (4.89)

The matrix is not Hermitian. Notwithstanding, we will now see that it does satisfy a
series of special properties.
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Spectral properties of L
As you may know from the theory of ordinary di↵erential equations, the solution

of Eq. (4.87) is simply
vec(⇢(t)) = eL̂t vec(⇢(0)). (4.90)

Hence, all properties of the solution are determined by this matrix exponential and
hence by the spectral properties of L̂. In principle L̂ may not be diagonalizable. But
let’s assume it is. However, since it is not Hermitian, it will in general have di↵erent
left and right eigenvectors

L̂ x↵ = �↵x↵, (4.91)

y†↵L̂ = �↵y†↵. (4.92)

where �↵ are the eigenvalues and x↵ and y↵ are the corresponding right and left eigen-
vectors (they are both column vectors so y†↵ is a row vector). The diagonal decomposi-
tion of L̂ will then read

L̂ = S⇤S �1. (4.93)

where ⇤ = diag(�1, �2, . . .) is the diagonal matrix containing the eigenvalues and S is
the matrix whose columns are the right eigenvectors x↵, whereas S �1 is a matrix whose
rows are y†↵. Hence we may also write the diagonal decomposition as

L̂ =
X

↵

�↵x↵y
†
↵, (4.94)

These decompositions are useful when we want to write the matrix exponential, which
simply becomes

eL̂t = S e⇤tS �1 =
X

↵

e�↵tx↵y
†
↵. (4.95)

With this form, we can now finally ask what should the properties of the eigenvalues
and eigenvectors be in order for the dynamics to be physically consistent.

First we look at the trace preserving property (4.83). Multiplying Eq. (4.87) by
vec(I)† we get

0 =
d
dt

vec(I)†vec(⇢) = vec(I)†L̂vec(⇢).

But this must be true for all density matrices. Hence, we must have

vec(I)†L̂ = 0. (4.96)

Comparing this with Eq. (4.92), we then conclude that the identity must always be a
left eigenstate of L̂ with eigenvalue 0. Let us label this eigenvector ↵ = 0. Then �0 = 0
and y0 = vec(I). But what about x0? Well, if we think about it, this will be nothing but
the steady-state of the Liouvillian. That is,

x0 = vec(⇢⇤) where L(⇢⇤) = 0. (4.97)
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This is a really powerful result: any trace-preserving Liouvillian must have a zero
eigenvalue. Its right eigenvector will be the steady-state of the equation, whereas the
left eigenvector will be the identity. Of course, a more subtle question is whether this
steady-state is unique. That is, whether the eigenvalue 0 is degenerate or not. I would
say quite often the steady-state is unique, but unfortunately this really depends on the
problem in question.

Let us now return to the general solution (4.90). Using the diagonal decomposi-
tion (4.95) we get

⇢(t) =
X

↵

e�↵t x↵

y†↵vec(⇢(0))

�
=

X

↵

c↵ e�↵t x↵, (4.98)

where c↵ = y†↵vec(⇢(0)) are just coe�cients related to the initial conditions (you may
see a similarity here with the usual solution of Schrödinger’s equation). From this
result we also arrive at another important property of Liouvillians: the eigenvalues
must always have a non-positive real part. That is to say, either �↵ = 0 or Re(�↵) < 0.
Otherwise, the exponentials would blow up, which would be unphysical.

As an example, the Liouvillian in Eq. (4.89) has eigenvalues

eigs(D̂) =
⇢
� �,��

2
,��

2
, 0

�
. (4.99)

In this case they turn out to be real. But if we also add a unitary term, then they will in
general be complex. Notwithstanding their real part will always be non-positive.

Assume now that the zero eigenstate is unique. Then we can write Eq. (4.98) as

⇢(t) = c0x0 +
X

↵,0

c↵ e�↵t x↵. (4.100)

I really like this result. First, note that in the first term c0 = y†0vec(⇢(0)) = 1 by
normalization. Secondly, in the second term all eigenvalues have negative real part so
that, in the long-time limit, they will relax to zero. Consequently, we see that

lim
t!1

⇢(t) = x0. (4.101)

which, as expected, is the steady-state (4.97). Thus, we conclude that if the steady-
state is unique, no matter where you start, the system will always eventually relax
towards the steady-sate. The real part of the eigenvalues �↵ therefore tell you about
the relaxation rate of the di↵erent terms. That is, they give you information on the
time-scale with which the relaxation will occur.
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