
5.2 Optomechanics
The name optomechanics refers, as you probably guessed, to the combined interac-

tion of an optical mode and mechanical vibrations. The two most typical configurations
are shown in Fig. 5.1. For simplicity, the problem is usually approximated to that of a
single radiation mode interacting with a single harmonic oscillator. However, the inter-
action between the two is either cubic or quartic, so that Gaussianity is not preserved.
Much of our mathematical work will then be on an approximation method which is
used to re-Gaussianize the theory.

The radiation mode is a standing mode of a cavity, of frequency !c, which is
pumped by a laser at frequency !p through a semi-transparent mirror. In the configu-
ration of Fig. 5.1(a) the other mirror is allowed to vibrate slightly from its equilibrium
position and this vibration is modeled as a harmonic oscillator. In (b), on the other
hand, both mirrors are fixed, but a semi-transparent membrane is placed inside the
cavity and allowed to vibrate.
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Figure 5.1: Schematic representation of the two most widely used optomechanical configura-
tions. In both cases an optical cavity of frequency !c is pumped with a laser at
frequency !p through a semi-transparent mirror. In (a) one of the mirrors is allowed
to vibrate with a frequency !m. In (b), on the other hand, the mechanical vibration
is that of a semi-transparent membrane placed inside the cavity.

When dealing with physical implementations, such as this one, it is always recom-
mended that you start by establishing the Hamiltonian and the dissipation channels. I
will call this awesome advice # 1. In the end, we want to start with a master equation
of the form

d⇢
dt
= �i[H, ⇢] + D(⇢),

for some Hamiltonian H and some dissipator D(⇢). Let us start with the cavity mode,
which we associate with an annihilation operator a. Its Hamiltonian was discussed in
Sec. 3.2 and reads

Hc = ~!ca†a + ~✏a†e�i!pt + ~✏⇤aei!pt. (5.45)

I have reintroduced ~ for now, just for completeness. But I will get rid of it very soon.
Recall also that ✏ is the pump intensity and can be written as |✏|2 = 2P/~!p where  is
the loss rate [that also appears in D(⇢)] and P is the laser pump power. Moreover, the
loss of photons through the cavity is described by the dissipator

Dc(⇢) = 2

a⇢a† � 1

2
{a†a, ⇢}

�
, (5.46)
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which, as I probably mentioned before, is absolutely standard in all descriptions of
lossy cavities.

Next we turn to the mechanical mode. We assume it is a single harmonic oscillator
with position Q and momentum P satisfying [Q, P] = i~. Its free Hamiltonian will then
be

Hm =
P2

2m
+

1
2

m!2
mQ2 = ~!m(b†b + 1/2), (5.47)

where m is the mass, !m is the mechanical frequency and

b =
1
p

2

⇢rm!m

~
Q +

iP
p

m~!m

�
, (5.48)

is the annihilation operator for the mechanical mode.
A much harder question concerns the choice of dissipator for the mechanical mode.

The mechanical mode is of course dissipative because it is connected to your sample
so the bath in this case are the phonons; i.e., the mechanical vibrations of the material
which makes up both the vibrating mirror and its surroundings. Consequently, they
will cause the oscillator to thermalize at the temperature of your experimental setup.
But is not well modeled by a Lindblad equation, since Lindblad assumes a rotating-
wave approximation, which is usually not good for mechanical frequencies. In fact,
more than that, as shown recently in arXiv 1305.6942, the dynamics can actually
be highly non-Markovian, so not even that is guaranteed. Traditionally, one normally
uses quantum Brownian motion, in which the degree of non-Markovianity can be taken
into account. However, this makes the entire treatment quite di�cult.

So we now arrive at awesome advice # 2: never start with very realistic descrip-
tions of your model. Realistic descriptions are always too complicated and always
contain an enormous number of parameters whose values you usually don’t know very
well. This will then completely mask the physics of the problem. Instead, the advice is
to always start with the simplest description possible, containing only a small amount
of parameters. Even if that description is not very good. Then, after your learned ev-
erything you can from this simplified picture, you start to add ingredients and see how
they a↵ect your toy-model results. Even though this may at first seem like extra work,
it turns out it is not: if you start with a complicated realistic model, it will take you
forever to obtain answers. But if you start with a simple model, then each ingredient
you add will only change the calculations by a small bit and therefore they will not be
so hard.

Concerning the dissipative channel of the mechanical mode, the simplification I
will adopt is to use a Lindblad equation to model Dm(⇢). This is definitely a rough
approximation, but will allow us to extract the physics more clearly. Thus, we will
assume that

Dm(⇢) = �(n̄ + 1)

b⇢b† � 1

2
{b†b, ⇢}

�
+ �n̄

b†⇢b � 1

2
{bb†, ⇢}

�
. (5.49)

where � is the coupling constant of the mechanical mode to its bath and n̄ = (e!m/T �
1)�1 is the Bose-Einstein distribution, with T being the temperature of the mechanical
mode.
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Finally, we reach que most important question, which concerns the optomechan-
ical interaction. Here we shall focus on the setup in Fig. 5.1(a). In this case the
coupling comes from the fact that the cavity frequency !c actually depends on the po-
sition of the mirror. In fact, from electromagnetism3 one can show that the dependence
is of the form !c(L) = A/L where L is the size of the cavity and A is a constant. When
the mirror is allowed to vibrate we should then replace L by L + Q. Assuming that Q
is small compared to L we can then get

!c(L + Q) ' A
L

✓
1 � Q

L

◆
= !c �

!c

L
Q,

where !c = !c(L) is the equilibrium frequency of the cavity. Consequently, we see
that the Hamiltonian !ca†a is to be transformed into

!ca†a! !ca†a � !c

L
a†aQ.

We therefore now have a coupling between a†a and Q. This is called the radiation
pressure coupling. And if you think about it, it makes all the sense in the world: A
term such as � f Q in a Hamiltonian means a force f pushing the coordinate Q. This is
exactly what we have here, except that now the force actually depends on the number
of photons a†a inside the cavity. The more photons we have, the more we push the
mirror. Makes sense!

Collecting everything, our Hamiltonian can then be written as

H = ~!ca†a + ~!mb†b � ~!c

L
a†aQ + ~✏a†e�i!pt + ~✏⇤aei!pt.

To make it a little bit cleaner, we substitute Q =
q

~

2m!m
(b + b†) and then write this as

H = ~!ca†a + ~!mb†b � ~g0a†a(b + b†) + ~✏a†e�i!pt + ~✏⇤aei!pt, (5.50)

where g0 =
!c
L

q
~

2m!m
. This is the so-called radiation pressure optomechanical cou-

pling. You will find it in most papers on optomechanics. Note also that this is not a
Gaussian Hamiltonian since the interaction term is cubic in the creation and annihila-
tion operators. Thus, it cannot be solved exactly and we will therefore have to resort to
some approximations.

To summarize, the model in Fig. 5.1(a) can be described, to a first approximation,
as

d⇢
dt
= �i[H, ⇢] + Dc(⇢) + Dm(⇢), (5.51)

where H is given in (5.50), Dc(⇢) is given in (5.46) and Dm(⇢) is given in (5.49). As
discussed above, the weakest link here is the choice of Dm, which is in general a bit

3 The standard reference on this is C. Law, Phys. Rev. A., 51, 2537-2541 (1995).
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Table 5.1: Typical parameters for an optomechanical setup, all given in Hz. Based on arXiv
1602.06958. Typical temperatures are of the order of 1 K, which give n̄ = (e~!m/kBT �
1)�1 ⇠ 103.

Parameter !c !m  � g0 ✏
Order of magnitude (Hz) 1014 106 107 10 103 1012

drastic. All other ingredients are, in general, quite well justified. Typical values of the
parameters for an experiment that I participated a few years ago (arXiv 1602.06958)
are shown in Table 5.1. But, of course, part of the experimental game is to really have
flexibility in changing these parameters.

Before we delve deeper into Eq. (5.51), let me comment on the configuration in
Fig. 5.1(b). I will not try to derive the Hamiltonian in this case. But I want to sim-
ply point out that it definitely cannot be the same as (5.50) due to its symmetry. The
Hamiltonian (5.50) is linear in Q precisely because it pushes the mirror in one specific
direction. In the case of Fig. 5.1(b) there is no preferred direction. Thus, from such an
argument we expect that the radiation pressure interaction in this case should, to lowest
order in Q, be quadratic. That is, something like

g(2)
0 a†a(b + b†)2,

for some constant g(2)
0 . Indeed, that is what is found from a more careful derivation.

Pump it up!
The first step in dealing with the Hamiltonian (5.50) is to move to a rotating frame

with respect to the pump frequency, exactly as was done in Sec. 3.3. That is, the unitary
transformation is taken to be ei!pta†a, while nothing is done on the mechanical part. The
dissipative part does not change, whereas the Hamiltonian simplifies to

H = �0a†a + !mb†b � g0a†a(b + b†) + ✏a† + ✏⇤a, (5.52)

where �0 = !c � !p is the cavity detuning (I’m using �0 instead of � because below
we will come across another quantity that I will want to call �). As promised, here I
already set ~ = 1.

This Hamiltonian is still non-linear (higher than quadratic) and therefore cannot
be solved analytically. However, in this case, and in many other problems involving
cavities, there is a trick to obtain very good approximations, which is related to the
pump intensity. Roughly speaking hai will try to follow the intensity ✏. So if the pump
is su�ciently large the first moments hai and hbi will tend to be much larger than the
fluctuations (i.e., the second moments such as h�a†�ai). This then allows us to linearize
our equations and Hamiltonians and therefore obtain solvable models. I call this the
pump trick. In statistical mechanics they would call it a mean-field approximation.

To see how it works, let us consider the evolution equations for the first moments
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↵ = hai and � = hbi. Following the usual procedure, they read
d↵
dt
= �( + i�0)↵ � i✏ + ig0ha(b + b†)i,

d�
dt
= �(

�

2
+ i!m)� + ig0ha†ai.

Thus, as promised, since the Hamiltonian is non-Gaussian, the evolution of the first
moments actually depend on second moments. And if we were to try to compute the
evolution of the second moments, they would depend on third moments and so on.

The pump trick is now to write a = ↵ + �a and b = � + �b. Exploiting the fact that
h�ai = h�bi = 0, by construction, we can then write, for instance,

habi = h(↵ + �a)(� + �b)i = ↵� + h�a�bi.

So far this is exact. The approximation is now to assume that the second term is much
smaller than the first, so that it may be neglected. A similar idea holds for all other
terms.

With this trick the equations for ↵ and � become closed, but non-linear:
d↵
dt
= �( + i�0)↵ � i✏ + ig0↵(� + �⇤), (5.53)

d�
dt
= �(

�

2
+ i!m)� + ig0|↵|2. (5.54)

We are interested in the steady-states of these equations, obtained by setting d↵/ dt =
d�/ dt = 0. From the second equation we get

� =
ig0|↵|2
�/2 + i!m

. (5.55)

This result highlights some of the weirdness of using a Lindblad description for the
mechanical mode. What we are talking about here is really the equilibrium configu-
ration of the mirror and Re(�) is proportional the displacement hQi, whereas Im(�) is
related to hPi. Of course, since we are talking about a mechanical dude, equilibrium
should mean hPi = 0, but this is not what happens in Eq. (5.55). So Lindblad predicts
an equilibrium with a finite momentum, which doesn’t make much sense. As I said,
in this case the rotating wave approximation is a bit rough. However, lucky for us, the
value of � is usually really small (see Table 5.1) so that this imaginary part is almost
negligible. In fact, if we discard it we get something that makes quite some sense,
which is a displacement hQi = Re(�) proportional to the number of photons |↵|2.

Substituting (5.55) into (5.53) then yields the equation
⇢
 + i�0 �

2ig2
0!m|↵|2
�2

4 + !
2
m

�
↵ = �i✏.

This is now a non-linear equation for ↵, which has to be solved numerically. It is
convenient to define an e↵ective detuning

� = �0 � g0(� + �⇤) = �0 �
2g2

0!m|↵|2
�2

4 + !
2
m

, (5.56)
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so that we can rewrite the equation above as

↵ =
�i✏
 + i�

. (5.57)

Of course, � is still a function ↵ so this is an implicit equation. But we can just assume
that we have solved this equation numerically and therefore found the numerical value
of �.

Another useful trick is to adjust the relative phase of ✏ in order to make ↵ real. The
phase of the pump is arbitrary so we can also tune it in this way. And, of course, the
final result will not depend on this, so it is just a way to make the calculations a bit
simpler. Hence, from now on we will assume that ↵ 2 R.

Fluctuations around the average
The next step is to rewrite the master equation (5.51) in terms of the fluctuation

operators �a = a � ↵ and �b = b � �. Note that these are still bosonic operators, the
only di↵erence is that they now have zero mean and therefore describe only fluctuations
around the average. We start with the Hamiltonian (5.50) and then express each term
as something like:

a†a = |↵|2 + ↵�a† + ↵⇤�a + �a†�a.

Doing this for every term allow us to write

H = const + H1 + H2 + H3,

where “const” refers to a unimportant constant and

H1 = �
0(↵�a† + ↵⇤�a) + !m(��b† + �⇤�b) + ✏�a† + ✏⇤�a (5.58)

�g0

⇢
|↵|2(�b + �b†) + (� + �⇤)(↵�a† + ↵⇤�a)

�
, (5.59)

H2 = �
0�a†�a + !m�b†�b � g0(↵�a† + ↵⇤�a)(�b + �b†) (5.60)

�g0(� + �⇤)�a†�a, (5.61)

H3 = �g0�a†�(�b + �b†). (5.62)

Yeah. I know its messy. But don’t panic. There is nothing conceptually di�cult. It is
just a large number of terms that we have to be patiently organized.

The key di�culty lies with the term H3, which is cubic in the creation and anni-
hilation operators. But note also that this is the only term which is not multiplied by
either ↵ or �. This is the spirit behind the pump trick: we are assume the pump is large
so ↵ and � are large. Consequently, the cubic term H3 will be much smaller than the
other terms and we may then neglect it. If we do so, the resulting theory is quadratic
and therefore Gaussianity is restored.
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Next let us do the same expansion for the dissipators. It is useful to write down the
following formulas, which I will leave for you as an exercise to check:

D[a] = �1
2

[↵�a† � ↵⇤�a, ⇢] + D[�a], (5.63)

D[a†] =
1
2

[↵�a† � ↵⇤�a, ⇢] + D[�a†] (5.64)

It is interesting to realize that the linear contribution in this expansion actually looks
like a unitary term. Of course, these formulas hold for any operator a, or b, expanded
around its average. Thus, for instance, the dissipator Dm(⇢) of the mechanical part,
Eq. (5.49), becomes

Dm(⇢) = ��
2

[��b† � �⇤�b, ⇢] + �(n̄ + 1)D[�b] + �n̄D[�b†].

If we now plug all these results into the master equation (5.51) we shall get, already
neglecting H3,

d⇢
dt
= �i[H1 � i(↵�a† � ↵⇤�a) � i

�

2
(��b† � �⇤�b), ⇢]

�i[H2, ⇢] + 2D[�a] + �(n̄ + 1)D[�b] + �n̄D[�b†].

The first line in this expression contains only linear terms, whereas the second line
contains quadratic terms. Let me call the term inside the commutator in the first line as
H1,e↵. Organizing it a bit, we may write it as

H1,e↵ = i�a†
⇢
� ( + i�0)↵ + ig0↵(� + �⇤) � i✏

�

+i�b†
⇢
� (
�

2
+ i!m)� + ig0|↵|2

�
+ h.c..

I wrote it in this clever/naughty way because I already have Eqs. (5.53) and (5.54) in
mind: the terms multiplying each operator are just the steady-state of these equations.
Thus, if we are only interested in the fluctuations around the average, then H1,e↵ = 0. It
should be noted, however, that in practice we don’t actually need to worry about this.
When a Hamiltonian is Gaussian, the linear terms do not interfere with the evolution
of the covariance matrix. So we don’t even need to care about the linear terms. All that
is going to matter for us is the quadratic part.

But, in any case, summarizing, we find that after linearizing the system around the
fluctuations, we end up with the master equation

d⇢
dt
= �i[H2, ⇢] + 2D[�a] + �(n̄ + 1)D[�b] + �n̄D[�b†]. (5.65)

which is now a quadratic and Gaussian equation for the new operators �a and �b. Let
us also work a bit more on H2 in Eq. (5.60). The term multiplying �a†�a is actually
�0 � g0(� + �⇤), which is nothing but the quantity � in Eq. (5.56). Thus,

H2 = ��a†�a + !m�b†�b � g0(↵�a† + ↵⇤�a)(�b + �b†).
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This Hamiltonian is Gaussian so we could in principle just keep going. However, the
final result will appear rather ugly, so it is convenient to do here another approximation.
Namely, we shall do a rotating-wave approximation and neglect the counter-rotating
terms �a�b and �a†�b†. With this approximation our Gaussian Hamiltonian simplifies
further to

H2 = ��a†�a + !m�b†�b � g(�a†�b + �a�b†), (5.66)

where g = g0↵ and only now did I assume that ↵ was real. After we are done, it is a
good idea to come back and redo the calculations without the RWA, which I will leave
for you as an exercise.

Lyapunov equation
We are now ready to set up our Lyapunov equation for the covariance matrix using

the tools we developed in the previous section. In this case the covariance matrix ⇥,
defined in Eq. (5.8), has the form

⇥ =

0
BBBBBBBBBBBBBBBBBBBB@

h�a†�ai + 1/2 h�a�ai h�a�b†i h�a�bi
h�a†�a†i h�a†�ai + 1/2 h�a†�b†i h�a†�bi
h�a†�bi h�a�bi h�b†�bi + 1/2 h�b�bi
h�a†�b†i h�a�b†i h�b†�b†i h�b†�bi + 1/2

1
CCCCCCCCCCCCCCCCCCCCA

,

and it will satisfy the Lyapunov equation (5.20):

d⇥
dt
= W⇥ + ⇥W† + F.

The matrices W and F can be found using the tricks discussed in the previous section.
I will simply state the result. The matrix F has two diagonal blocks containing the
contributions from each dissipative channel:

F =

0
BBBBB@
 I2 0

0 �(n̄ + 1/2) I2

1
CCCCCA .

The matrix W, on the other hand, has both a dissipative and a unitary contribution. In
fact, the unitary contribution is identical to Eq. (5.27) since our final Hamiltonian H2
in Eq. (5.66) is structurally identical to the Hamiltonian (5.26). Thus,

W =

0
BBBBBBBBBBBBBBBBBBBB@

�i� �  0 ig 0

0 i� �  0 �ig

ig 0 �i!m � �/2 0

0 �ig 0 i!m � �/2

1
CCCCCCCCCCCCCCCCCCCCA

.

It is now a matter of asking the friendly electrons living in our computer to solve for
the steady-state:

W⇥ + ⇥W† = �F.
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As a result we find a CM with the following structure

⇥ =

0
BBBBBBBBBBBBBBBBBBBB@

h�a†�ai + 1/2 0 h�a�b†i 0

0 h�a†�ai + 1/2 0 h�a†�bi
h�a†�bi 0 h�b†�bi + 1/2 0

0 h�a�b†i 0 h�b†�bi + 1/2

1
CCCCCCCCCCCCCCCCCCCCA

,

where

h�a†�ai = 2g2�n̄(� + 2)
2g2(� + 2)2 + �[(� + 2)2 + 4(� � !m)2]

,

h�b†�bi = n̄ � 4g2n̄(� + 2)
2g2(� + 2)2 + �[(� + 2)2 + 4(� � !m)2]

,

h�a†�bi = 2g�n̄[2(� � !m) � i(� + 2)]
2g2(� + 2)2 + �[(� + 2)2 + 4(� � !m)2]

.

You see, even though we already did a bunch of approximations, we still end up with a
rather ugly result.

To clarify the physics, it is useful to assume (as is often the case) that � ⌧ .
In this case the results are more neatly expressed in terms of a quantity called the
cooperativity:

C =
2g2

�
. (5.67)

We then get

h�a†�ai = g2n̄
2(1 +C) + (� � !m)2 . (5.68)

h�b†�bi = n̄ � n̄2C
(1 +C)2 + (� � !m)2 , (5.69)

h�a†�bi = gn̄(� � !m � i)
(1 +C)2 + (� � !m)2 . (5.70)

Now things are starting to look much better.
So let us extra the physics from Eqs. (5.68)-(5.70). We first look at a phenomenon

called sideband cooling. Namely, we look at the thermal fluctuations of the mechani-
cal mode, Eq. (5.69). As can seen, h�b†�bi is always lower than the sample temperature
n̄. And we can lower it more by two di↵erent paths. The first is by increasing the co-
operativity C in Eq. (5.67). This makes sense since C is a type of competition between
the coupling g and the damping mechanisms  and �. So the higher is the value of C
the more strongly coupled are the optical and mechanical modes. Hence, by making
the coupling stronger, we can cool the mechanical mode more.

However, making C large is not always an easy task. Instead, another e�cient
way to make the cooling e↵ect stronger is by playing with � � !m. This is something
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that can be done rather easily since the Detuning � is something one usually has great
control over. Thus, we see that cooling is maximized in the so-called side-band cooling
condition � = !m. In this case Eqs. (5.68)-(5.70) can be simplified even further to

h�a†�ai = g2n̄
2(1 +C)

. (5.71)

h�b†�bi = n̄
1 +C

, (5.72)

h�a†�bi = � ign̄
(1 +C)

. (5.73)

Another result that is also more transparent in this case is the fact that the steady-
state photon fluctuations are proportional to n̄. If the cavity was not coupled to the
mechanical mode, the electromagnetic mode would be in a coherent state, which has
h�a†�ai = 0. Instead, due to the contact with the mechanical vibration, the occupation
increases a bit by a term proportional to both the coupling strength, g2 and the thermal
fluctuations n̄.
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