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Longitudinal dynamic hysteresis in single-domain particles

G. T. Landia) and A. D. Santos
Instituto de Fı́sica da Universidade de São Paulo, 05314-970 São Paulo, Brazil

(Presented 1 November 2011; received 23 September 2011; accepted 10 November 2011; published

online 6 March 2012)

We present results for longitudinal dynamic hysteresis in single domain particles with uniaxial

anisotropy. The combined influence of temperature, field-sweeping frequency, and field amplitude

is discussed in detail. A novel and efficient numerical method is proposed, based on the direct

solution of the infinite hierarchy of differential recurrence relations obtained from averaging over

the stochastic realizations of the magnetic Langevin equation. VC 2012 American Institute of
Physics. [doi:10.1063/1.3676416]

I. INTRODUCTION

In magnetic nanoparticles the exchange interaction is

usually the dominant energy contribution, inhibiting the for-

mation of magnetic domains and forcing all spins to behave

in unison,1 with a single magnetization vector MðtÞ. These

materials have been the subject of intensive research for sev-

eral decades motivated, in parts, by their potential use in

applications such as magnetic data storage and magneto-

hyperthermia. For systems with uniaxial anisotropy, such as

Co or c - Fe2O3, the free energy density of the particle may

be written as

E ¼ �M �H � K=M2
s ðM � uÞ

2; (1)

where H is the externally applied field, K is the anisotropy

constant, Ms is the saturation magnetization and u is the unit

vector in the direction of the anisotropy axis, here taken to

be parallel to the z-axis. At zero field, the energyscape

Eq. (1) is bistable with two minima separated by a barrier of

height Kt, where t is the volume of the particle. Due to the

small value of t, this barrier may be of the same order of

magnitude as the thermal fluctuations, thus rendering the sys-

tem as thermally unstable (superparamagnetism).

A robust model to describe the dynamics of single-

domain nanoparticles is the Néel-Brown theory2,3 where

Gilbert’s equation is augmented with a random field (Hth) to

account for the temperature dependence:

_M ¼ �c0M � ðHef � g _M þHthÞ; (2)

here c0 is the electron’s gyromagnetic ratio and g is the

dimensionless damping parameter. The first term on the

right-hand side corresponds to the effective magnetic field,

obtained from the gradient of the free energy (1):

Hef ¼ �@E=@M. The thermal field is assumed to be a Gaus-

sian white noise, whose Cartesian components (i; j ¼ 1; 2; 3)

satisfy hHthi
ðtÞHthj

ðt0Þi ¼ ð2kBTg=tÞdi;jdðt� t0Þ. Here kB is

Boltzmann’s constant and T is the temperature.

Among the several experiments that are performed in

magnetic nanoparticles, one which is of considerable interest

is that of dynamic hysteresis,4 whose starting point is the

application of a harmonic field H ¼ H0 cos xt. From the aca-

demic standpoint, this problem is important because it allows

several conditions to be studied within the same framework

by simply modulating x and H0. Moreover, from the per-

spective of applications, this experiment is quite similar to

what is done in magneto-hyperthermia cancer treatments,5 a

rapidly progressing field of medical research.

In this paper we study dynamic hysteresis loops in uni-

axial single-domain particles. For conciseness, we fix the

direction of the applied field to be longitudinal to the anisot-

ropy axis. This preserves the axial symmetry, making it

impossible to excite precessional modes of the magnetiza-

tion. Therefore, the damping enters merely as a multiplica-

tive constant, simplifying the equations involved and

reducing the number of parameters necessary to fully

describe the system. In Ref. 6 we began this investigation,

focusing on the temperature dependence. Here we study the

combined influence of temperature, field amplitude and fre-

quency, with particular emphasis on the latter. It is also im-

portant to note that albeit being seldom the case in real

samples, longitudinal loops are known4 to encompass several

essential features of the problem.

II. METHODS OF SOLUTION

We work solely with reduced coordinates. Since

jMj ¼ Ms, we use the unit vector m ¼ M=Ms to describe the

magnetization. All magnetic fields are normalized by

HA ¼ 2K=Ms, which is the maximum coercive force available

in the context of the Stoner and Wolfarth model.1 The effec-

tive field becomes hef ¼ h0 cos xtþ mz and the thermal field

now obeys hhthi
ðtÞhthj

ðt0Þi ¼ a=rdi;jdðt� t0Þ. Here a ¼ c0gMs

and r ¼ Kt=kBT.

Our quantity of interest is the ensemble average of the

projection of the magnetization onto the field direction,

hmziðtÞ. In spherical coordinates we may write

mz ¼ cos h ¼ P1ðcos hÞ, where PnðxÞ are the Legendre poly-

nomials. The noise term in Eq. (2) is multiplicative causing

the statistical moments of mz to be entangled. On averaging

over the stochastic realizations it is possible to show3 that, in

terms of pnðtÞ ¼ hPnðcos hÞiðtÞ, these moments obey the fol-

lowing infinite hierarchy of differential recurrence relations:a)Electronic mail: gtlandi@if.usp.br.
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~s0 _pn ¼
nðnþ 1Þ

ð2n� 1Þð2nþ 3Þ �
nðnþ 1Þ

2r

� �
pn þ

nðn2 � 1Þ
4n2 � 1

pn�2

� nðnþ 1Þðnþ 2Þ
ð2nþ 1Þð2nþ 3Þ pnþ2 þ h

nðnþ 1Þ
2nþ 1

ðpn�1 � pnþ1Þ; (3)

where n ¼ 1; 2;… and ~s0 ¼ ð1þ a2Þ=ðac0HAÞ. From this

equation we construct a system of N coupled first-order lin-

ear ordinary differential equations (ODEs) for the pn by

defining the column vector P ¼ ðp1; p2;…; pNÞT . We have

found that for the present conditions N � 100 sufficed to

guarantee convergence but, for safety, fixed N ¼ 240. We

may then write

_P ¼FPþU; (4)

where F is a N � N matrix and U is a column vector of

length N.

To solve systems such as Eq. (4), where the input is har-

monic, it is customary to further expand the pn in a Fourier

series and then solve the resulting system of algebraic equa-

tions for the coefficients.4 In this paper we opted to use a

simpler, yet much more powerful approach, which is to solve

Eq. (4) directly. The strength of this method lies in the fact

that, since Eq. (3) is only a five-term recurrence relation, the

resulting matrix F — which is also the Jacobian of the ODE

system — is remarkably sparse. Powerful integration

schemes have been developed to handle such systems,7

resulting in considerably inexpensive computation times. We

also note in passing that this method may be readily

extended to the more general case of arbitrary field orienta-

tions, the results of which will be published elsewhere.

In this approach both transient and steady-state solutions

coexist. However, even though transients are an intrinsic part

of the dynamics, in this paper we opted to focus only on the

steady-state solutions. The reason is that, in many experi-

ments, it is necessary to average over several cycles of the

external field, thus making the role of the transients not

entirely clear. To obtain the steady-state solution we begin

the integration assuming that the system is in zero-field ther-

mal equilibrium. Then, after each cycle, we verify to what

extent the loops have changed with respect to the preceding

one. As one might expect, the number of periods required to

obtain the final solution increases with increasing frequency

or decreasing temperature. While in most conditions only 2

periods are required, in certain cases this value may well sur-

pass 100 periods. Notwithstanding, even in such situations

the total integration time remains considerably small, taking

on average <1 s in a simple desktop computer. We believe

that this is noteworthy given that the solutions are numeri-

cally exact and involve no approximations whatsoever.

III. RESULTS AND DISCUSSION

Three parameters suffice for a complete description of the

problem: r / 1=T, h0, and x, given in units of s0 ¼ ~s0=2. We

begin the discussion with fixed h0 ¼ 1, which corresponds to

H ¼ HA. In Fig. 1 we present hysteresis loops for a wide

range of frequencies and three different temperatures: r ¼ 30,

10, and 2, which may be taken as cold, intermediate and hot

respectively. Image (a) illustrates quasi-static loops. As it can

be seen, only r ¼ 30 is in the ferromagnetic regime with the

other two curves showing a superparamagnetic (Langevin-

type) behavior. This region is dictated by interwell modes,

where the external field promotes the spins with considerable

efficiency over the anisotropy barrier (mz ¼ 0). Thence,

except for r ¼ 2 where the strong thermal fluctuations inhibit

the alignment of the spins with the external field, the loops

saturate. Hysteresis is, in parts, related to ferromagnetic order

which should occur if the measurement time — viz., 2p=x —

is smaller than the relaxation time of the particle. An example

of such is seen by comparing Figs. 1(a) and 1(b) when r ¼ 10

(orange curve).

In the Stoner and Wolfarth model, where neither the

temperature nor the frequency are relevant, the longitudinal

loops are perfect squares with coercivity hc ¼ 1. In Fig. 1 it

can be seen that hc remains well below this value for all r
and x (except at high frequencies; see below). This means

that even at very low temperatures, the shallower potential

minima may be completely depleted well before the bistable

character is destroyed (depletion effect3).

In Fig. 1(d), the curve for r ¼ 2 begins to show a non-

zero coercivity, even with the loops still being unable to

saturate. This hysteresis is caused by an effect known as

gyromagnetic response, related to the restriction jMj ¼ Ms,

which forces the magnetization to precess on a sphere of

radius Ms. Therefore, as the frequency is increased, it becomes

FIG. 1. (Color online) Hysteresis loops with fixed h0 ¼ 1 and different tem-

peratures: (1) r ¼ 30, (2) r ¼ 10, and (3) r ¼ 2. From (a)�(f): xs0 ¼ 10�7,

10�5, 10�3, 10�2, 10�1, and 1.
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unable to follow the external field. For instance, note that

even though the curves for r ¼ 10 and 30 are still able to sat-

urate [Fig. 1(d)], they are already remarkably wide. This effect

is further enhanced in Figs. 1(e) and 1(f). At this point the

external field is no longer capable of efficiently promoting the

spins over the equatorial barrier. Therefore, the interwell

modes are replaced by a perturbative intrawell motion, near

the equilibrium positions mz ¼ 61. Note also that, as a conse-

quence, the loops at high temperatures become taller.

An interesting phenomena is observed in Fig. 1(e) for

r ¼ 30 (blue curve), where the hysteresis loop is tilted to the

left meaning that MðtÞ and HðtÞ are out-of-phase. This is com-

monly seen in ferromagnetic resonance experiments which,

however, cannot be the case in the current problem since the

precessional modes of the magnetization vanish from Eq. (2)

whenever axial symmetry is preserved. In fact, this is the last

step before the intrawell modes become dominant. In order to

further understand this effect we introduce a remarkably useful

parameter, which we refer to as the “coercive time’’ (tc).

While the coercive field (hc) is defined from the mðhÞ plots

such that mðhcÞ ¼ 0, the coercive time is computed from the

mðtÞ curve such that mðtcÞ ¼ 0. Note that, since h ¼ h0 cos xt,
hc is limited by the value of h0 and contain no information

about the time-dependent dynamics [obviously, hc ¼ hðtcÞ].
For instance, the loops for r ¼ 30 in Figs. 1(d) and 1(e) are

completely different but, notwithstanding, have similar hc. We

define tc as corresponding to the crossing from the second to

third quadrants, where h< 0; that is xp=2 � tc � x3p=2.

However, for comparative purposes it is convenient to drop

the dependence on x, thus taking it as ranging between

p=2 � tc � 3p=2. With this definition we have that if

tc ¼ p=2 there is no hysteresis, as in the superparamagnetic

case, whereas if tc ¼ p we have reached the maxima hc ¼ h0.

In the vast majority of cases the reversal occurs at

p=2 � tc � p, since the thermal fluctuations facilitate the

promotion. However, there is nothing that restricts it from

occurring at the complementary interval and, albeit unlikely,

this is precisely what happens in Fig. 1(e). This effect comes

from a delicate balance between r and x, where the thermal

fluctuations assist the external field in promoting reversals

that it would otherwise be unable to. In Fig. 2(a) we present

results for tc � x where it can be seen that this effect mani-

fests itself for both r ¼ 10 and 30, remaining only during a

short frequency interval of roughly one decade, which is also

sensitive to the value of r. The usefulness of tc becomes

clear from this image, in the sense that it encompasses all

properties of hc, plus information related to the relative phase

between MðtÞ and HðtÞ.
We now lift the restriction of h0 ¼ 1. In Fig. 2(b) we

present, for fixed r ¼ 10, curves of tc � x for 19 values of

h0, ranging from 0:01 to 1:0 in logarithmic steps. The transi-

tion from the linear to the nonlinear response regimes is

clearly visible, taking place between h0 ¼ 0:1 and 0:2 (this

curve is marked with an asterisk). For all conditions, tc has a

distinct maxima followed by a minima. At very low frequen-

cies, spin reversals occur with relative ease, independent of

h0. However, as x increases, a stronger field becomes neces-

sary and therefore the reversal tends to take place near

tc ¼ p (where h is a minimum). Afterwards, these modes are

eventually replaced by intrawell modes, which causes tc to

gradually diminish. Notwithstanding, at sufficiently high fre-

quencies the gyromagnetic response becomes important and,

therefore, tc begins to rise once again, this time indefinitely,

toward it is asymptote tc ! p. Above h0 ¼ 0:2, both extrema

get shifted to higher frequencies and, after h0 ¼ 0:7, the

tc ¼ p threshold is surpassed. It is quite interesting to note

that this effect can now be seen to be nothing but the maxima

in tc, which is gradually being shifted to higher frequencies

as h0 increases.

In conclusion, we have discussed longitudinal dynamic

hysteresis loops in single-domain particles, treating all free

paramaters of the system. The simulations cover an extensive

range of conditions, which was made possible by the remark-

able efficiency of the algorithms employed.
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FIG. 2. (Color online) Coercive time as a function of frequency. (a) fixed

h0 ¼ 1 and different values of r; (b) fixed r ¼ 10 and different values of h0.
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