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Influence of the magnetization damping on dynamic hysteresis loops
in single domain particles
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This article reports on the influence of the magnetization damping on dynamic hysteresis loops in

single-domain particles with uniaxial anisotropy. The approach is based on the Néel–Brown theory

and the hierarchy of differential recurrence relations, which follow from averaging over the

realizations of the stochastic Landau–Lifshitz equation. A new method of solution is proposed,

where the resulting system of differential equations is solved directly using optimized algorithms

to explore its sparsity. All parameters involved in uniaxial systems are treated in detail, with

particular attention given to the frequency dependence. It is shown that in the ferromagnetic

resonance region, novel phenomena are observed for even moderately low values of the damping.

The hysteresis loops assume remarkably unusual shapes, which are also followed by a pronounced

reduction of their heights. Also demonstrated is that these features remain for randomly oriented

ensembles and, moreover, are approximately independent of temperature and particle size.
VC 2012 American Institute of Physics. [doi:10.1063/1.3684629]

I. INTRODUCTION

Magnetic single-domain particles have been actively

studied for several decades, motivated by persistent theoreti-

cal and experimental advances and novel potential applica-

tions. This remains true nowadays, for instance in magnetic

storage technologies1 and magneto-hyperthermia treat-

ments.2 The most intensively studied effect present in these

materials is their enhanced sensitivity to thermal fluctuations,

a phenomenon known as superparamagnetism.3–5 However,

with fluctuations there is always dissipation. This magnetiza-
tion damping, which has received considerable attention in

recent years, also arises from the interaction of the constitu-

ent spins with the thermal bath. The microscopic degrees of

freedom include, among others, nuclear spins, phonons, and

conduction electrons, with the spin-orbit coupling seen as

the key mechanism responsible for the energy transfer. Such

complexity may be simplified, however, by introducing a

phenomenological effective damping (a), as in the Landau-

Lifshitz equation [see the upcoming Eq. (1)]. This allows the

problem to be divided in two: understanding the origin of the

damping and studying the effect it has on the magnetic prop-

erties of the system. This paper concerns the latter.

As for the former, the value of a has been determined

for several materials, both experimentally6–8 and through ab
initio calculations.9,10 In bulk ferromagnets and thin films it

is known to be quite sensitive to the stoichiometry, crystal-

lography, and temperature of the sample. For particulate sys-

tems, due to the reduced dimensionality, the particle’s

environment also plays a prominent role. For instance, they

may be embedded in dielectric or metallic matrixes, either as

solids or powders. Conversely, they may be dispersed in dif-

ferent solvents, with organic capping layers for protection or

metallic shells tailored for specific applications. In most

systems the damping is usually found to lie between 0.01

. a. 1, known as the low damping (LD) regime. In this

interval the precessional modes of the magnetization are of

considerable importance. Most notably, they enable the

appearance of ferromagnetic resonance (FMR) in high fre-

quency experiments. Another regime, frequently studied the-

oretically, is the intermediate-to-high damping (IHD) regime

where a� 1. Here these modes are assumed to be entirely

suppressed, inhibiting any resonant responses.

Perhaps the most important problem in single-domain

particles, both experimentally and theoretically, is that of

dynamic hysteresis where an external harmonic field of

arbitrary amplitude and frequency is applied. Its usefulness

lies in the fact that within a single framework it is possible to

transit between the linear and non-linear magnetic responses

by modulating the field amplitude. In addition, there is no

distinction between quasi-static or high-frequency loops

enabling one to study any frequency desired. This problem

was the subject of Refs. 11–15, all of which however, have

not provided any consistent account of the influence of a. In

particular, the effect that the FMR modes have on the hyster-

esis loops has thus far been entirely avoided. This was done

either by assuming that the system was in the IHD regime or

by limiting the frequency spectrum to sufficiently low

frequencies.

If one combines the previous assertion that most real

systems are in the LD regime with the fact that both of the

aforementioned applications (and many others) employ fre-

quencies precisely within the FMR range, it is possible to

conclude that this problem is quite relevant and should not

be ignored.

It is the primary goal of this paper to give a detailed

investigation of the impact of the magnetization damping on

dynamic hysteresis loops in single-domain particles witha)Electronic mail: gtlandi@if.usp.br.
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uniaxial anisotropy. The starting point is the Néel-Brown

theory16 in which the Landau-Lifshitz dynamical equation is

augmented with a Gaussian white noise term to account for

the interactions with the thermal bath. On averaging over the

stochastic realizations it is possible to obtain an infinite hier-

archy of differential recurrence relations describing the time

evolution of the statistical moments of the magnetization.

This in turn can be cast in the form of a system of coupled

first-order linear ordinary differential equations (ODEs),

which is straightforward to implement and solve numerically

using any of the powerful algorithms available (here the

SUNDIALS17 library was employed). The sparsity of

the system may also be exploited to significantly optimize

the routines. Consequently, each loop takes on average only

�5 s to compute, which includes eliminating transient

solutions that may survive for more than 100 periods. This is

noteworthy given that the calculations involve no approxi-

mations whatsoever (except for those already implied by the

theory itself). The author is also unaware of any papers using

this method, with matrix continued fractions18,19 (MCF)

being the usual choice. As this paper will show, this

approach is simple, fast, accurate, and hence competitive

with any MCF method.

This paper considers the combined influence of all free

parameters of uniaxial system. With the appropriate choice

of coordinates this may be reduced to a total of five

(explained in detail in Sec. II): the damping (a); the ratio of

the anisotropy barrier and the thermal energy (r); the field

amplitude (h0), its frequency (x), and the angle it makes

with the anisotropy axis (w). The influence of the damping is

noticeable throughout the entire frequency spectrum. This

study focuses, however, primarily on high frequencies near

the FMR bands, where novel and unusual effects are

observed. The hysteresis loops assume very exotic shapes,

which are markedly sensitive to all parameters, an effect

referred to as resonant hysteresis (RH). The situation of a

transverse field encompasses several of the key aspects of

RH loops. Therefore, a thorough account of this condition is

first given in Sec. IV. Oblique angles are also discussed, fo-

cusing on the representative case of w¼ 45� (Sec. V). In Sec.

VI it is shown that RH loops in randomly oriented ensembles

(mimicking real samples) retain most of the important fea-

tures of their orientally textured counterparts. Moreover,

they are also approximately independent of temperature,

remaining visible even in the superparamagnetic regime.

These assertions combined indicate that RH is, in fact, prone

to experimental investigation.

II. NÉEL-BROWN THEORY

The magnetic Langevin equation corresponds to the

Landau-Lifshitz equation for a magnetic dipole, augmented

with a Gaussian white noise thermal field Hth whose

Cartesian coordinates satisfy the statistical properties:

Hi
th tð Þ

� �
¼ 0 and Hi

th tð ÞHi
th sð Þ

� �
¼ 2 kBTg=vð Þdi;jd t� sð Þ.

Here v is the particle’s volume, T is the temperature, kB is

Boltzmann’s constant, and g is the dimensionless damping

parameter. The Kronecker and Dirac deltas indicate that the

thermal field is both spatially and temporally uncorrelated.

Whence, the magnetic Langevin equation (or, similarly, the

Stochastic Landau-Lifshitz equation) is

1þ a2
� � dM

dt
¼ �c0M � He þHthð Þ

� ac0

Ms
M � M � He þHthð Þ½ �; (1)

where c0 is the electron’s gyromagnetic ratio and a¼ c0gMs

is what shall effectively be used as the damping parameter.

The effective field He is obtained from the gradient of the

free energy which reads

E ¼ �M �H � K

M2
s

M � uð Þ2; (2)

where H is the externally applied field, K is the anisotropy

constant, Ms is the saturation magnetization and u 	 êz is the

unit vector in the direction of the anisotropy axis. Thus,

He ¼ �
@E

@M
¼ H þ 2K

M2
s

M � uð Þu: (3)

The unit vector m¼M/Ms is used to describe the magnetiza-

tion and h¼H/HA for the external field, where HA¼ 2 K/Ms

is the maximum coercive field available in the context of the

model of Stoner and Wolfarth.20 The Langevin equation then

takes the following simple form:

1þ a2
� �

s0

dm

dt
¼ �m� he þ hthð Þ � am� m� he þ hthð Þ½ �;

(4)

where s0¼ (c0HA)�1. Note that this definition of s0 differs

from what is sometimes used in the literature, namely

s00¼ (1þ a2)(ac0HA)�1. The obvious reason for this choice is

that in investigating the influence of a it is important that the

time scale be independent of it. The effective field (3)

becomes

he ¼ hþ mzêz (5)

and the thermal field may now be written very simply as

hi
th tð Þ

� �
¼ 0; hi

th tð Þhi
th sð Þ

� �
¼ a

r
di;jd t� sð Þ; (6)

where r¼Kv/kBT is what shall be used as a measure of

inverse temperature.

The magnetic field is assumed to be harmonic, with am-

plitude h0 and frequency x (given in units of s0), which

makes an angle w with the z axis:

h ¼ h0 cxêx þ czêzð Þ cos xt; (7)

where cx¼ sin w and cz¼ cos w. Thus, the problem is

completely determined by the following five parameters:

a, r, h0, x, and w; all important and all investigated in this

paper.

In passing it is noted that when w¼ 0, axial symmetry is

preserved so that, except for a multiplicative factor, the hys-

teresis loops are independent of a. Thus, this problem will

not be treated in this paper (see, for instance, Refs. 13–15).
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III. METHODS OF SOLUTION

The development of the hierarchy of differential recur-

rence relations is performed in spherical coordinates where

mz¼ cos h and mxþ imy¼ sin hei/. The statistical moments

may then be represented in terms of spherical harmonics

defined as21

Yl;m h;/ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4p
l� mð Þ!
lþ mð Þ!

s
Pm

l cos hð Þeim/; (8)

with l¼ 0, 1, 2,… and �l
m
 l. Here Pm
l are the associated

Legendre functions.

Let f(m) be an arbitrary function of the random set {mx,

my, mz}. On performing an initial average over sharp initial

conditions it is possible to derive18 the following equation

for the time evolution of f:

1þ a2
� �

s0

df

dt
¼ � m� hþ am� m� hð Þ½ � � @f

@m

þ a
2r

m� @

@m

� �2

f : (9)

The last term follows from the noise-induced drift and can

be identified with the angular momentum operator �L̂2.

Thus, taking f(m)¼Yl,m(h, /) the result is

L̂2Yl,m¼ l(lþ 1)Yl,m. The first term in Eq. (9) will, in general,

contain products of spherical harmonics, which must be writ-

ten exclusively as linear combinations of these functions.

The procedure, albeit straightforward in essence, involves

some algebraic manipulations. The transformations can be

accomplished by means of three formulas, which are given

in Appendix A, together with further details on how to affect

the calculation. Once it is done, another ensemble average

must be taken over W(m; t) (denoted by angular brackets).

The final result is

1þ a2ð Þ
a

s0

d Yl;m

� �
dt

¼ l lþ 1ð Þ� 3m2

2l� 1ð Þ 2lþ 3ð Þþ
imh0cz

a
� l lþ 1ð Þ

2r

	 

Yl;m

� �
þ lþ 1

2l� 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2�m2ð Þ l� 1ð Þ2�m2

h i
2lþ 1ð Þ 2l� 3ð Þ

vuut
Yl�2;m

� �

� l

2lþ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1ð Þ2�m2

h i
lþ 2ð Þ2�m2

h i
2lþ 1ð Þ 2lþ 5ð Þ

vuut
Ylþ2mh iþ h0cz lþ 1ð Þþ im

a

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2�m2

4l2� 1

r
Yl�1;m

� �

� h0cz�
im

a

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1ð Þ2�m2

2lþ 1ð Þ 2lþ 3ð Þ

s
Ylþ1;m

� �
þ h0cx

2
lþ 1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l�m� 1ð Þ l�mð Þ

2l� 1ð Þ 2lþ 1ð Þ

s
Yl�1;mþ1

� �(

� lþ 1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþm� 1ð Þ lþmð Þ

2l� 1ð Þ 2lþ 1ð Þ

s
Yl�1;m�1

� �
þ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþmþ 1ð Þ lþmþ 2ð Þ

2lþ 1ð Þ 2lþ 3ð Þ

s
Ylþ1;mþ1

� �

� l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l�mþ 1ð Þ l�mþ 2ð Þ

2lþ 1ð Þ 2lþ 3ð Þ

s
Ylþ1;m�1

� �
þ i

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþmþ 1ð Þ l�mð Þ

p
Yl;mþ1

� �
þ i

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l�mþ 1ð Þ lþmð Þ

p
Yl;m11

� ��
:

(10)

This equation was first obtained by Coffey et al.22 and is

discussed in detail in Ref. 18. All terms involving a in Eq. (10)

are followed by the imaginary unit and hence the equations

must be separately solved for the hRe(Yl,m)i and hIm(Yl,m)i.
Negative values of the index m are avoided by means of

the formulas Re(Yl,�m)¼ (�1)mRe(Yl,m) and Im(Yl,�m)

¼ (�1)mþ1Im(Yl,m).

The next step is to truncate this infinite hierarchy at

some point, e.g., N, and write it as a system of ODEs,

_X ¼FXþU; (11)

where X and U are column vectors of length N and F is an

N�N matrix. The value of N can be easily determined by

inspection. It is known that it must be increased with increas-

ing r and decreasing a. This research have found that, in all

situations here studied, it sufficed to set N� 103. For safety,

N¼ 1400 was used. It follows that, in this case, less than 1%

of the terms in F are non-zero, thus emphasizing the impor-

tance of adequately benefiting from its sparsity. Also note

that both F and U now depend explicitly on time through h

[Eq. (7)].

The quantity of interest is the projection of the magnet-

ization onto the field direction, which is denoted simply as

mh,

mh tð Þ ¼ cz mzh i tð Þ þ cx mxh i tð Þ

¼
ffiffiffiffiffiffi
4p
3

r
cz Y1;0

� �
tð Þ �

ffiffiffi
2
p

cx Re Y1;1

� �� �
tð Þ

h i
: (12)

The results may be cast in the form of average trajectories

(mh(t)) or, by means of a parametric plot, as hysteresis loops

(mh(h)).

Equation (11) corresponds to a system of coupled first-

order linear ODEs, which may be solved directly by standard

methods. The SUNDIALS17 library was opted for, which is
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not only remarkably fast but also conveniently handles two

important features of this system. First, the fact that the

equations are stiff, which originate from the vastly different

rates of change of the statistical moments. Thus, backward

differentiation formulas were used. Secondly, even though

F is sparse, it is not tightly banded. Thence, Krylov iterative

linear solvers are much more efficient in treating the sys-

tem’s Jacobian than banded Newton methods.

The hysteresis loops must be independent of initial con-

ditions so that transients need to be completely eliminated.

The simplest (and safest) way to do this is to start with equi-

librium in the absence of any external field and then proceed

with the integration, computing one period at a time and test-

ing weather the loop has changed up to some tolerance when

compared to the previous period. One may also gain addi-

tional efficiency if curves for different frequencies are com-

puted sequentially. This way the final solution vector of the

previous computation may be used as the initial condition

for the current one, hence partially skipping the transients.

For low frequencies, two periods usually suffice, whereas on

the other extreme up to 100 periods may be required. But, as

the periods are shorter the net computing time remains

roughly the same. In order to meet the prescribed error toler-

ances the number of steps is automatically adjusted and

hence the computation time varies with the parameters. The

average loop takes �5 s on a simple desktop computer. For

low r, low h0 or high a, times as small as �1 s are observed.

Conversely, for a¼ 0.05 they rise to �30 s and may as well

surpass �200 s when a¼ 0.01, a situation that this study has

therefore opted to avoid. Note, however, that even such long

times are still negligibly small compared to other methods

such as the Stochastic Landau-Lifshitz (SLL) (see the

following).

In order to quantify some properties of the hysteresis

loops the following useful parameters are defined. The coer-

cive field (hc) is such that mh(hc) : 0 with 0
 hc
 h0.

Much more interesting is the coercive time (tc) defined so

that mh(tc) : 0, but with p/2
 tc
 3p/2; i.e., independent of

x. If tc¼p/2 there is no hysteresis, whereas if tc> p the re-

versal time has surpassed the extrema of cos xt and the loops

become asymmetrical. This region is referred to as the asym-

metric regime and the frequency where tc¼p as the asym-

metry threshold frequency (ATF). It is also convenient to

define the average susceptibility per cycle as

v ¼ v0 � iv00 ¼ x
ph0

ð2p=x

0

mh tð Þeixtdt; (13)

where v0 is related to the average phase-lag between mh and

h, whereas v00 is proportional to the energy dissipated per

cycle (the loop area in this notation is A ¼ ph2
0v
00). With this

definition, if h0� 1, the susceptibility should tend to the lin-

ear response result

mh tð Þ ¼ h0 v0 cos xtþ v00sinxtð Þ: (14)

As will become evident tc¼ p necessarily implies v0 ¼ 0,

which may therefore also be taken as a signature of the ATF.

In passing, this frequency roughly coincides with the linear

response resonance frequency, xR ’ c0HA (i.e., xRs0 ’ 1).

In problems involving harmonic fields, it is customary to

expand the susceptibility in a Fourier series22–25 and thus an-

alyze each component separately. Therefore, it is worth not-

ing that due to the orthogonality of the harmonic functions,

the definition here13 agrees with the first component of this

Fourier series.

As an auxiliary method this research directly solved the

stochastic differential equation (4) using Heun’s scheme.26,27

This will be referred to as the SLL method (which stands for

Stochastic Landau-Lifshitz). The average was done of a total

of 104 realizations over 80 periods of the external field; the

first 40 were discarded and a second average over the

remaining was then carried. The entirely different nature of

both methods should serve as a convenient check of the va-

lidity of these results.

Finally, also performed were calculations using linear

response theory (LRT), whose starting point is also Eq. (11).

It allows inexpensive computation of v(x) and serves as a

useful benchmark. Details of the procedure are given in Ap-

pendix B. See also Ref. 18 and references therein.

IV. RESPONSE TO A TRANSVERSE FIELD

The case where w¼ 90� is a peculiar one as the external

field does not introduce any asymmetries in the energyscape

of Eq. (2). The ensemble remains with roughly half of its

spins in each hemisphere (mz
>
< 0) except that now hmxi= 0.

This means that only precessional modes are excited and

consequently, any hysteresis observed cannot originate from

overbarrier processes. Indeed, they must arise solely from

the gyromagnetic response, viz. the restriction over the mag-

netic moment to precess exclusively on the unit sphere.

Hysteresis loops for different values of x and a are

shown in Fig. 1 for h0¼ 1 and r¼ 10 (which may be taken

as “moderately cold”). The value a¼ 1, as is known from the

LRT, is already in the IHD regime. The corresponding loops

thus follow a simpler behavior, becoming increasingly

shorter and wider as x increases. They finally become quasi-

elliptical by the time xs0¼ 1.5, with the major axis

approaching the abscissa. Conversely, the LD curves (a< 1)

show a drastically different response. The loops assume a va-

riety of unusual shapes and between xs0¼ 0.4 and 0.6 the

apex of the curves get bent up (by apex it is meant the point

where h¼ 1; conversely, the point where h¼�1 gets bent

down). Finally, when xs0¼ 1.5 the loops become quasi-

elliptical and out-of-phase with the external field, meaning

the ATF has been supassed.

In order to gain a more thorough insight into the transi-

tion that takes place between xs0¼ 0.4 and 0.6, presented in

Fig. 2 are trajectories mh(t), together with their correspond-

ing loops, when a¼ 0.02. The external field is depicted in

dashed, normalized to fit the plot.

Attention is also called to the fact that in order to prop-

erly visualize the curves the vertical scale had to be

expanded. The importance of the apex becomes clear from

the mh(t) curves in the sense that they correspond to peaks

that appear precisely at the extrema of h. As x approaches

the resonance region they become increasingly more pro-

nounced but, concurrently, the rest of the loops become
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suppressed. Consequently, it eventually comes a point where

the trajectory shifts in phase with the field. While not shown,

for even higher frequencies the apex is also eventually sup-

pressed, and the phase lag starts to increase once again until

finally surpassing p/2 at the ATF. Given the atypical shapes

of the loops it seems natural to query the correctness of the

results. To settle this, Fig. 2 also presents hysteresis loops

calculated using the SLL approach. The agreement, as can

be seen, is irrefutable. Any discrepancies arise from the sta-

tistical nature of the latter and can be made arbitrarily small

by increasing the number of realizations computed.

Another important effect observed in Fig. 1 regards the

sensitive dependence of the loop heights with a. An abrupt

change is observed between xs0¼ 0.1 and 0.2, which gradu-

ally continues as x is increased further; when xs0¼ 0.4

there is an almost fivefold difference between a¼ 1 and

a¼ 0.05. This behavior follows immediately from the fact

that the lower the damping the longer the magnetization

takes to adjust itself to the external field. Hence, the number

of spins crossing the mx¼ 0 plane also becomes considerably

smaller. It is important to stress that, on average, the height

is a direct measure of the number of spins that are able to fol-

low the external field. Besides the temperature, this number

is also suppressed by the gyromagnetic response, as seen in

the IHD curves (a¼ 1). However, the dependence with a is a

complementary effect and takes place at frequencies where

the gyromagnetic response does not have a strong influence,

xs0¼ 0.4 being a good example.

This paper now turns to a quantitative analysis in terms

of the susceptibility and the coercive time, as presented in

Fig. 3 for r¼ 10. The linear v0, shown in the inset of

Fig. 3(a), illustrates the FMR and serves as a useful guide-

line. It has a pronounced maxima followed by a negative

minima, both of which increase considerably in magnitude

as a is decreased. As one might expect from the non-

linearity of the problem, the behavior of v0 for h0¼ 1 differ

dramatically from its linear counterpart. It shows no maxima,

decaying from its quasi-static value until the ATF. After-

wards, all LD curves become negative and, interestingly,

overlap entirely. This indicates that in this regime the

FIG. 1. (Color online) Hysteresis loops for different values of a and x with fixed r¼ 10, h0¼ 1, and w¼ 90�.

FIG. 2. (Color online) Hysteresis loops mh(h) (left) and corresponding tra-

jectories mh(t) (right) for different values of x with fixed a¼ 0.02, r¼ 10,

h0¼ 1, and w¼ 90�. The magnetic field (cos xt) is shown as a dashed line,

also normalized to fit the graph. Asterisks were computed using the SLL

method.
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average phase-lag is independent of a, which is quite differ-

ent from the linear response. The coercive time shown in

Fig. 3(b) starts with tc¼ p/2 (zero coercivity) and increases

to tc¼p as x approaches the ATF. Similarly to v0, all LD

curves enter the asymmetric region, first reaching a maxima

which now increases with decreasing a, and then tending

back toward tc ! p as x ! 1. As a consequence of tc sur-

passing p, even though the coercive field (inset) reaches

unity near xR, it then falls significantly at the asymmetric

region, reaching values as low as hc¼ 0.2.

It is also possible to observe in Fig. 3 a “noisy” oscilla-

tory behavior before xR. This, to emphasize, is by no means

an artifact of the numerical procedure. In fact, it is an intrin-

sic property of the non-linearity of RH loops. Figure 2 may

serve to further illustrate this point. Note, for instance, that

the coercive field in Fig. 2(b) is simultaneously larger than

those of Figs. 2(a) and 2(c), the same being true for the

height. It is also worth mentioning that the oscillations

remain for all other angles (cf. the upcoming Fig. 7). The

noisiness, however, is peculiar of w¼ 90�, being a conse-

quence of it is highly symmetric energyscape (i.e., the oscil-

lations become smoother). Finally, note that similar results

have been obtained by Mrabti et.al.,23 which draw an inter-

esting comparison between these oscillations and non-linear

resonance phenomena occurring in soft springs. Indeed, a

characteristic of the latter is the appearance of a second reso-

nance peak at frequencies of �xR/2, similarly to what is

observed in Fig. 3.

Next, the temperature dependence focusing on the LD

case a¼ 0.05 is studied, as shown in Fig. 4. The vertical

scale has once again been expanded in order to better visual-

ize the results. Overall, increasing the temperature decreases

the loop height and simultaneously makes some of the

sharper features smoother. Notwithstanding, the RH remain

clearly visible indicating that they are not restricted to low

temperature conditions. In this image it is also possible to

FIG. 3. (Color online) Parameters obtained from the hysteresis loops as a

function of frequency, with fixed r¼ 10, h0¼ 1, and w¼ 90�. (a) Real part

of the average susceptibility, Eq. (13); (inset) LRT counterpart. (b) Coercive

time; (inset) coercive field.

FIG. 4. (Color online) Temperature dependence (r / 1/T) of the hysteresis loops for different values of x with a¼ 0.05, h0¼ 1, and w¼ 90�.
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observe a quite remarkable phenomenon: As the frequency

approaches the ATF [Figs. 4(d)–4(g)], the loops become

approximately independent of temperature but, afterward,

the usual dependence returns. This indicates that the resonant

modes that are being excited are so intense—due to the

strong external field—that the thermal fluctuations become

practically innocuous. Also note that this is exclusive of the

LD regime (cf. the upcoming Fig. 10). Another interesting

effect, also exclusive of this regime, is that the loops become

wider with increasing temperature, in contrast to the usual

superparamagnetic behavior. Such result is peculiar of

w¼ 90� as no overbarrier processes are involved and shows

that the damping has indeed a noticeable influence on the

thermal response.

V. RESPONSE TO OBLIQUE FIELDS

Hysteresis loops for oblique fields contain both longitu-

dinal and transverse relaxation mechanisms. Consequently,

the FMR response gets superimposed by interwell and intra-

well dynamical modes arising from the finite anisotropy bar-

rier that the spins must now surmount. The former

preponderate at the low frequency part of the spectrum

where the external field is capable of reversing practically all

spins during each half-cycle (the loops saturate). In this

region a does not have a strong influence so that the average

width of the loops is determined mainly by the competing

effects of r and x. The intrawell modes, on the other hand,

correspond to the motion near the bottom of the potential

wells. They usually take place at higher frequencies where

the gyromagnetic response time impedes the spins to over-

come the energy barrier. However, in the LD regime this

region usually coincides with the FMR bands, thus making

the distinction between them not always entirely clear. In

this section the focus is on the representative case of

w¼ 45�. The temperature dependence, as found, is quite sim-

ilar to what is observed in Fig. 4 and therefore was fixed

once again r¼ 10.

Figure 5 presents curves for different values of a and x
with h0¼ 1, r¼ 10, and w¼ 45�. The interwell modes are

clearly demonstrated in Figs. 5(a) and 5(b), where the area

increases with x, both situations being almost independent

of a. More significant changes are first observed between

xs0¼ 0.01 and 0.1, exactly as in Fig. 1. This is expected as

most changes in this region should arise from transverse

modes. However, these are now mixed with interwell and

intrawell modes and consequently the curves become even

more deformed, and their behavior even more unpredictable.

There are two other similarities with the transverse case that

are also clearly visible. The first is the rapid diminution of

the loop heights that take place between xs0¼ 0.1 and 0.2,

whereas the second is that after the ATF [Fig. 5(h)], the LD

loops turn into asymmetrical quasi-ellipsoids. These results

show that overbarrier processes are also strongly suppressed

in low damping environments.

It is important to stress that the frequencies presented in

Fig. 5 by no means exhaust the number of different shapes

which appear over the range 0.1 . xs0 . 1.0. In fact, it is

striking how abruptly the loops (and particularly their

heights) may change over very small frequency intervals. To

further illustrate this, Fig. 6 shows two loops for a¼ 0.02

when xs0¼ 0.26 and 0.28. It can be seen that, even though

the shape of the curves are somewhat similar, their heights

nearly double from one to the other, from �0.11 to �0.19.

Once again, the superimposed calculations using the SLL

method serve as an independent check of the correctness of

the results.

Now turn to v0 and tc once again (Fig. 7). In the linear

regime (inset) the interwell and FMR modes are clearly sepa-

rated by several decades in frequency. This follows from the

fact that the weak field is only capable of promoting spin

reversals at very low frequencies, where it is assisted by the

thermal fluctuations. When h0¼ 1 this is certainly not the

FIG. 5. (Color online) Hysteresis loops for different values of a and x with fixed r¼ 10, h0¼ 1, and w¼ 45�.
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case and therefore v0 remains close to its quasi-static value

up until xs0 ’ 0.1. Afterward it abruptly falls in a oscillatory

and irregular fashion, becoming negative after the ATF. The

coercive time in Fig. 7(b) first increases monotonically and

slowly with x, from tc¼p/2 when x¼ 0 to tc� 3p/4 when

xs0 ’ 0.1. It then enters the resonant regime, oscillating

fiercely and eventually crossing the ATF near xR. There is a

clear similarity in the asymmetric region, between Figs. 3

and 7. In particular, v0 also becomes independent of a when

in the LD regime.

A noticeable phenomena appear in the oscillations,

which happen before the ATF in Fig. 7. Not only are they

smoother than when w¼ 90�, as already anticipated, but in

the second one the curves briefly surpass the asymmetry

threshold during a narrow frequency interval before proceed-

ing toward the actual ATF. To explain these results recall

some properties of longitudinal (w¼ 0) hysteresis loops dis-

cussed in Refs. 13 and 14. During each cycle the time win-

dow that the external field has to promote spins from (for

instance) mz> 0 to mz< 0 is p/(2x)
 t
 3p/(2x), corre-

sponding to the region where h< 0. In the model of Stoner

and Wolfarth all spins flip at t¼p/x and, at finite tempera-

tures, this usually occurs at earlier times since the thermal

fluctuations facilitate the process. However, albeit unlikely,

it is possible that the reversal occurs after t¼ p/x as a conse-

quence of the combined influence of the gyromagnetic and

thermal responses. Thence the observed reaction is lagged

and the corresponding loops asymmetrical. This effect, also

referred to as noise induced switching in some contexts,28

only remains during a narrow frequency interval, after which

intrawell modes become dominant. It is also entirely inde-

pendent of any FMR modes, occurring even in the IHD re-

gime. Unfortunately, these arguments do not suffice for a

full quantitative description of such phenomenon. For

instance, note that in Fig. 7(a) it does not occur for a¼ 1

and, moreover, is stronger for a¼ 0.1 than for a¼ 0.05.

Now the restriction of a fixed field amplitude is lifted.

Fig. 8 presents results similar to those of Fig. 7, but for dif-

ferent values of h0, with fixed r¼ 10, a¼ 0.1 and w¼ 45�.
The circles in Fig. 8(a) denote the LRT results which, as can

be seen, agrees precisely with h0¼ 0.01. Note that such

exceptional correspondence strongly endorses the numerical

accuracy of this method. As can be seen, up to h0¼ 0.1 only

slight deviations from the linear behavior are observed.

Moreover, a clear transition takes place between h0¼ 0.1

and 0.2, with the latter presenting the characteristic oscilla-

tions pertaining to non-linear resonance phenomena. Increas-

ing the field further yields larger deviations and an

increasingly more irregular response, which is also visibly

quite unpredictable. Also note that these results are in com-

plete agreement with those of Refs. 23 and 24. An important

conclusion extracted from this analysis is that fields as small

as �20% of the Stoner and Wolfarth field are already capa-

ble of exciting resonant hysteresis loops. This is quite rele-

vant when one considers experimental systems, in which

large magnetic fields are not easily achieved under high-

frequency excitations.

VI. RANDOMLY ORIENTED ENSEMBLES

Systems with randomly oriented anisotropy axes may be

computed by appropriately averaging loops for different val-

ues of w (steps of 2�were used). Results for fixed r¼ 10 and

varying a are shown in Fig. 9. The temperature dependence

is treated in Fig. 10, which presents loops for different values

of r, with a¼ 1 (dashed lines) and a¼ 0.05 (solid lines).

Such calculations are important because they give a more re-

alistic description of real systems. In fact, the most relevant

conclusion drawn from Figs. 9 and 10 is precisely that

FIG. 7. (Color online) Parameters obtained from the hysteresis loops as a

function of frequency, with fixed r¼ 10, h0¼ 1, and w¼ 45�. (a) Real part

of the average susceptibility, Eq. (13); (inset) LRT counterpart. (b) Coercive

time; (inset) coercive field.

FIG. 6. (Color online) Hysteresis loops for a¼ 0.02, r¼ 10, w¼ 45�, and

h0¼ 1. Asterisks correspond to the SLL method.
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resonant hysteresis remain present, thus making it prone to

experimental analysis. As for Fig. 9, the following similar-

ities with previously presented results are worth noting: (i)

shape changes begin to take place above xs0¼ 0.1, with

forms that are clearly peculiar of the LD regime; (ii) a strong

diminution of the loop height when a is small appears after

xs0¼ 0.2; (iii) at xs0¼ 0.55 the loop apex is bent up; and

(iv) after the ATF all curves turn into quasi-ellipsoids but

only those in the LD regime become out-of-phase.

In Fig. 10 it is possible to see that the distinct tempera-

ture dependence of the LD curves, that was discussed in

Sec. IV and Fig. 4, also remain in randomly oriented ensem-

bles; that is, as x approaches xR the loops become practi-

cally independent of r but, afterward, the dependence

returns. Two very important consequences follow. First,

since r / 1/T, this shows that RH loops are not artifacts of

low temperature environments and may in fact be detected at

any temperature, even in the superparamagnetic regime.

Conversely, for fixed T, r / v, the particle’s volume. This

implies that RH loops have only but a weak dependence on

the particle size, a fact of considerable importance in view of

the intrinsic size distributions present in any real system.

Also note that the results of Fig. 10 provide a way to

measure the temperature dependence of the damping. For

instance, one may first locate the RH region by finding loops

that have distinct shapes. Then, on measuring curves for dif-

ferent temperatures, any changes observed are guaranteed

not to have come from the change in T, but from that in a(T).

Such experiments are quite relevant, both from the academic

and technological standpoints. In Refs. 25 and 29, a method

based on linear susceptibility was proposed that allowed a to

be determined quantitatively by fitting the model to the ex-

perimental data. The present approach is clearly not as so-

phisticated, being limited to a qualitative analysis only.

Finally, attention is called to the interesting fact that in

low frequencies [Fig. 10(a)] the area increases with decreas-

ing a. This was also observed in Figs. 5(a) and 5(b).

Although being quite subtle for r¼ 10, Fig. 10(a) shows that

it can become significant at the superparamagnetic regime

(r¼ 2; red curves) where, for instance, the coercivity for

a¼ 0.05 is seen to be nearly three times larger than for a¼ 1.

To interpret this, two arguments are necessary. The first, al-

ready discussed, is that low damping implies a longer

response time. The second, required to explain the tempera-

ture dependence, is that the precession actually takes place

around the total field, which includes the thermal contribu-

tion [Hth; cf. Eq. (1)]. The random nature of this noise-

induced precession may hamper the magnetic response, thus

also increasing the area.

FIG. 9. (Color online) Hysteresis loops for a randomly oriented particle en-

semble, with fixed r¼ 10 and h0¼ 1.

FIG. 8. (Color online) Parameters obtained from the hysteresis loops as a

function of frequency for different values of h0, with fixed r¼ 10, a¼ 0.1,

and w¼ 45�. (a) Real part of the average susceptibility, Eq. (13); (inset)

magnification of the FMR region. Circles denote the LRT results. (b) Coer-

cive time.
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VII. DISCUSSION

The primary goal of this paper is to show that the mag-

netization damping—which is seldom included in numerical

investigations of dynamic hysteresis in single domain par-

ticles—has indeed a paramount influence on the magnetic

response of the system. This is particularly more so for

xs0� 0.1, where novel effects were observed. They include,

among others, the appearance of unusual and unpredictable

shapes and a strong reduction of the average loop height. In

fact, the magnetic behavior in this region may be deemed as

unstable, with the response being sensitive to all parameters.

Notwithstanding, it is remarkable that several key aspects

remain in randomly oriented ensembles, as shown in

Sec. VI. Moreover, in this frequency region the response is

weakly dependent on the stability parameter r¼Kv/kBT,
which is a consequence of the combined influence of reso-

nant excitations and a strong field amplitude (cf. Fig. 4 or

Fig. 10). This shows that, on the one hand, this phenomenon

should not be restricted to low temperatures and, on the other

hand, it will not be smeared out in poly-disperse particle

assemblies, which is always the case in real systems. Thus,

these assertions combined allow us to conclude that resonant

hysteresis loops are in fact liable for experimental analysis.

Finally, the author would like to stress once more that, even

though most of the analysis has focused on a fixed field am-

plitude of h0¼ 1, the results of Fig. 8 show quite clearly that

resonant hysteresis loops can be excited with fields well

below the Stoner and Wolfarth field, HA¼ 2 K/Ms.

As one might expect, these results differ markedly from

simple models such as that of Stoner and Wolfarth where nei-

ther frequency nor temperature are considered. At low and in-

termediate frequencies, a better agreement is found with

respect to the rate equation method of Ref. 15 and the IHD

approximation of Ref. 14. This confirms the predictions that

the low frequency dynamics are not strongly influenced by the

damping. It is worth mentioning, however, that there exists an

influence nonetheless which, albeit small, is measurable and

extends throughout the entire frequency spectrum (cf. Fig. 7).

On the other hand, above xs0 ’ 0.1 these results are entirely

novel and differ markedly from all these previous studies.

Results for the non-linear response for arbitrary values of

a have been recently reported in Refs. 23 and 24, which

focused on the behavior of v1(x), the first term in the Fourier

series expansion of the magnetic response. As already men-

tioned, because of the orthogonality of the harmonic func-

tions, this agrees with the definition of v(x) as the average

susceptibility per cycle. In terms of these quantities, the pres-

ent results agree consistently with theirs, as one would expect

given that both stem from the very same model (note that the

solution methods are different; see the following). Attention is

called, however, to the fact that in those papers the frequency

was normalized by the Néel relaxation time, sN¼ s0r(1þ a2)/

a, which depends explicitly on the damping. When comparing

results for different values of a, such a choice gives the possi-

bly misleading impression that the FMR occurs at different

frequencies; as discussed in the present paper, this is certainly

not the case (cf. the inset in Fig. 3).

Now discussed is the numerical approach employed in

this paper and how it compares with other methods usually

found in the literature. Although certainly not new, this

approach is seldom used in this type of stochastic problem,

with the method of choice being usually MCF,18,19 whose

convergence rate and accuracy are both noteworthy. Not-

withstanding, in terms of computational efficiency, this

approach is by no means inferior. This follows from the re-

markable efficiency of libraries, such as SUNDIALS,17 in

treating systems of ODEs with sparse Jacobian matrixes, as

in the present case. However, an important aspect of this

method is that the average computational time depends heav-

ily on the relative magnitude of the terms appearing in

Eq. (10). This is a consequence of the adaptive step size used

to maintain the solution within the prescribed error toleran-

ces. The damping, in particular, may vary over several orders

of magnitude and is therefore the primary factor in the

convergence of the calculations. Indeed, the increase in

computational time from, say, a¼ 1 to a¼ 0.01 is well over

20-fold. This research was unaware of the scaling of MCF

methods with a but, from the range of results usually pre-

sented in the literature,22–25 this seems like a clear disadvant-

age of this current method.

FIG. 10. (Color online) Hysteresis loops for a randomly oriented particle

ensemble for different values of r and x, with a¼ 1 (dashed lines) and

a¼ 0.05 (solid lines).
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There is, however, another difference between the two

that is of particular importance, which is the simplicity of the

current approach. There are several obvious advantages in

using the hierarchy of differential recurrence relations—as

compared to the direct solution of the Langevin equation—

that justify the analytical effort involved in deriving it. From

there on, however, it is also necessary to implement it, so as

to be used for computational purposes, and it is in this sense

that both methods diverge contrastingly. If one is interested

only in the linear response, the MCF method requires some

effort in arranging matrixes, which is not markedly different

from this method. Thus, given it is superior convergence

rate, the MCF will unquestionably be superior. However, for

the nonlinear response a further expansion in Fourier series

is required, which gives a different hierarchy, now notably

more complex. This in turn requires a complicated arranging

of supermatrixes in order to cast the system in a numerically

solvable form. Moreover, this is only possible for harmonic

fields, which limits considerably it is use in other applica-

tions as, for instance, pulsed magnetic fields. In this approach

there are no intermediate steps from the hierarchy to the nu-

merical solution since, after truncating Eq. (10), the ODE

system desired is already obtained. It also follows that the

procedure is independent of the form of the applied field.

Indeed, any parameter appearing in Eq. (10) may be taken as

time-dependent if desired. Conversely, one possible disad-

vantage of this method is the need to eliminate transients, a

feature which is entirely absent in the MCF approach. How-

ever, as discussed, the computational burden of such is quite

low and, moreover, an analysis of transients may actually be

of value in certain physical situations.

By comparing these calculations with a variety of other

methods (SLL, LRT, and IHD regime) the accuracy of the

proposed method was able to be scrutinized. Note, in particu-

lar the exceptional agreement with the SLL calculations, as

shown in Figs. 2 and 6. This is quite important given that the

latter is the only choice available when one wishes to con-

sider interacting particles. In a recent paper30 it was shown

that in magnetic relaxation the initial conditions are para-

mount for both methods to agree. These results which, on the

other hand, must be entirely independent of transients, also

corroborate their equivalence.

It is straightforward to translate the results presented in

this paper to real systems. Take for instance the popular mate-

rial maghemite. Using K ’ 105 erg/cm3 and Ms ’ 500 G one

arrives at HA ’ 400 G which, as usual, gives s0 ’ 10�10s.

Therefore, the lowest and highest frequencies employed were

respectively x� 102 Hz and x� 1012 Hz. Notice that the lat-

ter is still below the Nyquist frequency, which is �1013 Hz,

and in principle justifies the correctness of the approximation

of a white noise thermal field16 [Eq. (6)]. The values of h0

studied in Sec. V, Fig. 8, correspond directly to fractions of

HA. Hence, above �40 G (i.e., h0¼ 0.1), one should already

observe strong deviations from the linear behavior. Finally,

assuming particles with 4 nm radius Kv/kB ’ 200 K is

obtained, which immediately allows one to convert between r
and T through the relation T¼ (Kv/kB)r-1 � 200� r�1. Thus,

r¼ 10, 5, and 2 correspond to 20, 40, and 100 K,

respectively.

VIII. CONCLUSIONS

In summary, the influence of the magnetization damping

on dynamic hysteresis loops in single-domain particles has

been discussed in detail. The system was assumed to have uni-

axial anisotropy and calculations were performed, which are

free of any approximations, except those already implied by

the Néel-Brown theory. The proposed numerical procedure

has shown to be of remarkable efficiency and simplicity,

being also readily applicable in a variety of other problems in

magnetism and stochastic processes. These results indicate

that above a frequency of �1/10 of the resonance frequency

the magnetization damping influences drastically the magnetic

behavior, leading to novel and interesting effects.
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APPENDIX A: DIFFERENTIAL RECURRENCE
RELATIONS

In order to go from Eq. (9) to Eq. (10), first write the

former in spherical coordinates. Since f(m)¼ Yl,m(h, /),

@f/@m¼!Yl,m(h, /) where

rYl;m ¼
@Yl;m

@h
ĥþ 1

sinh
@Yl;m

@/
/̂¼ ĥ � lþ 1ð Þcosh

sinh
Yl;m

	

þ 1

sinh

ffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

2lþ 3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1ð Þ2�m2

q
Ylþ1;m

#
þ /̂

im

sinh
Yl;m

� �
:

(A1)

Here, ĥ and /̂ are the unit vectors in the polar and azimuthal

directions respectively. If the effective field is written as

he¼ hrr̂þ hhĥþ hu/̂, then on noting that m : r̂ (the radial

unit vector), Eq. (9) becomes

1þ a2
� �

s0

dYl;m

dt
� ahh þ h/
� �

ĥþ ah/ þ hh
� �

/̂
h i

� @Yl;m

@h
ĥþ 1

sin h
@Yl;m

@/
/̂

	 

þ a

2r
l lþ 1ð ÞYl;m; (A2)

where

hh ¼ h0 �cz sin hþ cx cos h cos /ð Þ � sin h cos h

h/ ¼ �h0cx sin /:

After expanding the dot product in Eq. (A2) one is left with

products of the trigonometric functions and the Yl,m. To write

these as linear combinations of spherical harmonics it is nec-

essary to make use of the following formula:

Yl;mYl;m1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1ð Þ 2l1þ 1ð Þ

4p

r Xlþl1

l2¼ l�l1j j

Cl2;0
l;0;l1;0

Cl2;mþm1

l;m;l1;m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l2þ 1
p Yl2;mþm1

;

where C are the Clebsch-Gordan coefficients. Fortunately,

only three relations suffice,
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cos hYl;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � m2

4l2 � 1

r
Yl�1;m þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1ð Þ2�m2

2lþ 1ð Þ 2lþ 3ð Þ

s
Ylþ1;m

cos2 hYl;m ¼
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l2 � m2ð Þ l� 1ð Þ2�m2

h i
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vuut
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h i
lþ 2ð Þ2�m2

h i
2l� 1ð Þ 2lþ 3ð Þ2 2lþ 5ð Þ

vuut
Ylþ2;m þ

2

3

l lþ 1ð Þ
2l� 1ð Þ

	 

ffiffiffiffiffiffi
8p
3

r
Y1;61Yl;m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l6mþ 1ð Þ l6mþ 2ð Þ

2lþ 1ð Þ 2lþ 3ð Þ

s
Ylþ1;m61 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l
 m� 1ð Þ l
 mð Þ

2l� 1ð Þ 2lþ 1ð Þ

s
Yl�1;m61:

It is also necessary to use the last equation with Y1,61 in the

denominator, which can be written as

Yl;m

Y1;61

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8p
3

2l� 1ð Þ 2lþ 1ð Þ
l6mð Þ l6m� 1ð Þ

s
Yl�1;m
1

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l� 1ð Þ l
 mð Þ l
 m� 1ð Þ
2l� 3ð Þ l6mð Þ l6m� 1ð Þ

s
Yl�2;m

Y1;61

:

With these equations one is able to write Eq. (A2) entirely as

linear combinations of the Yl,m and hence arrive at Eq. (10).

APPENDIX B: LINEAR RESPONSE THEORY

The main result from the LRT is that v(x) may be com-

puted as the one-sided Fourier transform of the magnetic

relaxation autocorrelation function mr(t), calculated in the

absence of an external field. Namely

v xð Þ
v 0ð Þ ¼ 1� ix

ð1
0

mr tð Þe�ixtdt: (B1)

The relaxation assumes that a small static field (h� 1) has

been applied for an infinitely long time up to t¼ 0 where it

was abruptly shut off. Whence, mr(t) is easily calculated

from the ODE system 11 by defining ~X ¼ X� F�1U
� �

h¼0
.

It then follows that
_~X ¼Fh¼0

~X, which corresponds to a

system of linear ODEs with constant coefficients, whose so-

lution may immediately be written as

~X tð Þ ¼
XN

k¼1

akgkepkt: (B2)

Here the pk are the eigenvalues of F and gk its correspond-

ing eigenvectors. The ak are constants to be determined from

the initial condition vector ~X0. This in turn is also obtained

from Eq. (11) by solving the linear system

~X0 ¼ lim
h!0

F�1U
� �

h 6¼0
� F�1U
� �

h¼0

h

" #
: (B3)

Although other methods such as, e.g., using the equilibrium

partition function, can be used to determine the initial condi-

tions, this equation has the merit of being readily available

and hence easily calculable.

One may prove that the eigenvalues arising from the

Fokker-Planck equations are always in the open left half-

plane19 from where it follows that F must always be stable.

The author writes pk¼�kkþ imk with kk> 0. If a!1, then

mk : 0 and only exponentially decaying relaxation mecha-

nisms are possible. If not, then the eigenvalues of F will

appear as complex conjugate pairs and oscillatory solutions

will surface. After finding the ak’s one may use an equation

similar to Eq. (12) to write the desired relaxation autocorre-

lation function as

mr tð Þ ¼
X

k

e�kkt c
1ð Þ

k cos lktþ c
2ð Þ

k sin lkt
n o

; (B4)

where c
1ð Þ

k and c
2ð Þ

k are constants and the sum is taken over

distinct eigenvalues. Finally, upon calculating the integral in

Eq. (B1) the author arrives at

v xð Þ
v 0ð Þ ¼ 1� ix

X
k

c
1ð Þ

k kk þ ixð Þ þ c
2ð Þ

k lk

l2
k þ kk þ ixð Þ2

; (B5)

which gives v(x) for arbitrary x.
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