
On the energy conversion efficiency in magnetic hyperthermia applications:
A new perspective to analyze the departure from the linear regime
G. T. Landi and A. F. Bakuzis 
 
Citation: J. Appl. Phys. 111, 083915 (2012); doi: 10.1063/1.4705392 
View online: http://dx.doi.org/10.1063/1.4705392 
View Table of Contents: http://jap.aip.org/resource/1/JAPIAU/v111/i8 
Published by the American Institute of Physics. 
 
Related Articles
Fabrication of glycerol liquid droplet array by nano-inkjet printing method 
J. Appl. Phys. 111, 074319 (2012) 
A controlled biochemical release device with embedded nanofluidic channels 
Appl. Phys. Lett. 100, 153510 (2012) 
Effects of DNA nucleotide adsorption on the conductance of graphene nanoribbons from first principles 
Appl. Phys. Lett. 100, 153117 (2012) 
Fe3O4-citrate-curcumin: Promising conjugates for superoxide scavenging, tumor suppression and cancer
hyperthermia 
J. Appl. Phys. 111, 064702 (2012) 
Integrated intravital microscopy and mathematical modeling to optimize nanotherapeutics delivery to tumors 
AIP Advances 2, 011208 (2012) 
 
Additional information on J. Appl. Phys.
Journal Homepage: http://jap.aip.org/ 
Journal Information: http://jap.aip.org/about/about_the_journal 
Top downloads: http://jap.aip.org/features/most_downloaded 
Information for Authors: http://jap.aip.org/authors 

http://jap.aip.org/?ver=pdfcov
http://aipadvances.aip.org/resource/1/aaidbi/v2/i1?&section=special-topic-physics-of-cancer&page=1
http://jap.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=G. T. Landi&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jap.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=A. F. Bakuzis&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jap.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4705392?ver=pdfcov
http://jap.aip.org/resource/1/JAPIAU/v111/i8?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3699388?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4704143?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3703603?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3696001?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3699060?ver=pdfcov
http://jap.aip.org/?ver=pdfcov
http://jap.aip.org/about/about_the_journal?ver=pdfcov
http://jap.aip.org/features/most_downloaded?ver=pdfcov
http://jap.aip.org/authors?ver=pdfcov


On the energy conversion efficiency in magnetic hyperthermia applications:
A new perspective to analyze the departure from the linear regime

G. T. Landi1,a) and A. F. Bakuzis2

1Instituto de Fı́sica da Universidade de São Paulo, 05314-970 São Paulo, Brazil
2Universidade Federal de Goiás, Instituto de Fı́sica, 74001-970, Goiânia-GO, Brazil
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The success of magnetic hyperthermia cancer treatments rely strongly on the magnetic properties

of the nanoparticles and their intricate dependence on the externally applied field. This is

particularly more so as the response departs from the low field linear regime. In this paper we

introduce a new parameter, referred to as the efficiency in converting electromagnetic energy into

thermal energy, which is shown to be remarkably useful in the analysis of the system response,

especially when the power loss is investigated as a function of the applied field amplitude. Using

numerical simulations of dynamic hysteresis, through the stochastic Landau-Lifshitz model, we

map in detail the efficiency as a function of all relevant parameters of the system and compare the

results with simple—yet powerful—predictions based on heuristic arguments about the relaxation

time. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4705392]

I. INTRODUCTION

Magnetic hyperthermia is a rapidly developing tech-

nique in medical research and oncology.1–4 It is based on the

dissipation in the form of heat caused by magnetic nanopar-

ticles under the influence of a high-frequency external mag-

netic field HðtÞ ¼ H0 cosxt. Considerable effort has been

made to optimize the materials properties for this applica-

tion. From the chemical standpoint, for instance, it is neces-

sary to adequately functionalize the particle’s surface with

molecules that selectively adhere to cancerous cells, thus

leaving healthy cells unharmed. As for the magnetic proper-

ties of the particles, one aims at maximizing the power dissi-

pated per unit mass—called the specific absorption rate

(SAR). This is also subject to biological restrictions, such as

avoiding toxic materials or using sufficiently low frequencies

and field amplitudes to prevent the formation of eddy cur-

rents inside the patient’s body. Because of these issues, sev-

eral papers have focused on ferrite-based nanostructures,5–12

in particular, magnetite-coated nanoparticles, which have al-

ready been approved by the FDA for diagnosis purposes,

such as contrast agents in magnetic resonance imaging.13

The fundamental concept underlying magnetic hyper-

thermia concerns the dissipation mechanisms of the magnet-

ization, a subject of intensive experimental3,14 and

theoretical research.1,15–20 Historically, Gilchrist et al.,21

which was the first to propose this application, had already

pointed out to three distinct possibilities, namely, dielectric,

eddy current, and hysteresis losses. The first two are believed

to be irrelevant for ferrite-based nanoparticles, while the lat-

ter can be related to both domain wall motion in sufficiently

large particles or (in) coherent spin rotation under alternating

magnetic fields. Since the nanoparticles in this context are

usually smaller than the critical single-domain size,22 the

contribution from domain walls may also be safely

neglected. In this paper we thus consider only single-domain

nanoparticles and assume, for simplicity, that coherent rota-

tion is the only relevant reversal mechanism. In this case the

heat production may be directly associated with irreversible

overbarrier jumps taking place between the stable energy

minima formed by the anisotropy potential.23 In addition, it

is also necessary to take into account the intrinsic magnetiza-

tion damping stemming from the interaction (via the spin-

orbit coupling) of the individual spins with electronic

degrees of freedom.16 In any case, however, it is important

to note that all dissipation mechanisms are actually entangled

so that their relative contributions cannot be individually

retrieved from experiment.

Experimentally, the SAR is usually computed from calo-

rimetry experiments, being proportional to the initial slope

of the heating rate curve. Conversely, the theoretical

approach is to first simulate the hysteresis loop formed by

plotting the projection of the magnetization onto the mag-

netic field [here denoted as MðtÞ] vs. HðtÞ. This follows from

the fact that magnetic hyperthermia belongs to the broader

scope of dynamic hysteresis,1,17–20,24–26 where one measures

the magnetic response to an alternating magnetic field of ar-

bitrary strength, frequency, and direction. Then, on noting

that the magnetic work performed by the system is simply

HdM, the first law of thermodynamics immediately implies

that the energy dissipated per hysteresis cycle is precisely

the area of the hysteresis loop (A).27 The SAR, in turn, is

given simply by fA, where f ¼ x=2p is the frequency of the

magnetic field. That this approach in fact agrees with

calorimetry measurements was recently demonstrated

experimentally in Ref. 28.

A theoretical description of magnetic hyperthermia thus

involves computations of dynamic hysteresis using some

suitable model capable of accounting for the aforementioned

damping mechanisms. For instance, in the present paper we

employ the Néel-Brown theory,29,30 corresponding to the

stochastic version of the Landau-Lifshitz equation. This

approach is both robust and flexible, enabling one to com-

pute the response to any field amplitude or frequency witha)Electronic mail: gtlandi@gmail.com.
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great accuracy. However, being an intrinsically non-linear

problem, no analytical solutions are available, forcing one to

resort exclusively to numerical calculations.

Alternatively, if the field amplitude H0 is sufficiently

small, one expects that MðtÞ / H0, corresponding to the lin-

ear response regime. Solution methods in this case also have

the Néel-Brown theory as a starting point, which is then used

in conjunction with the linear response theory.30 Formally,

even in this case, no closed form solutions exist. Notwith-

standing, several approximate but accurate formulae have

been developed.30–32 Owing to the existence of such expres-

sions, the linear regime has been in the center of much of the

recent literature on magnetic hyperthermia. This is unfortu-

nate given that, in the quest to optimize the heating capabil-

ities of the material, the field amplitude directly determines

the energy input, thence being a parameter of utmost impor-

tance. As a matter of fact, combining high anisotropy par-

ticles with sufficiently large fields may entail losses that are

orders of magnitude larger than the linear response, while

simultaneously remaining well within the aforementioned

biological restrictions.

Except for some recent studies,1,18,33 the transition

between the linear and non-linear regimes has not yet been

theoretically explored in detail within the context of single-

domain particles. Most papers have focused either exclu-

sively on the linear response theory15,32,34 or on the other

extreme of high field amplitudes.17,19,20,24–26 For magnetic

hyperthermia, the latter is not of much interest given that

such high fields are both difficult to achieve in the laboratory

and possibly hazardous to the patient. It is also known both

experimentally3,35 and theoretically30,33 that the linear re-

gime is in fact an asymptotic approximation to the limit of

zero field amplitude so that even small fields should already

manifest measurable nonlinearities. The question then fol-

lows as to weather or not these deviations contain interesting

physical information about the system, which may enable

one to better understand the damping mechanisms involved

and, perhaps, even predict the system’s response to even

higher field amplitudes. As an example, it is well known that

the heating rate shows a maximum depending on the physi-

cal parameters (diameter or anisotropy constant) of the mate-

rial. The probing of such, however, may be quite challenging

experimentally given the large number of samples necessary

and the thorough knowledge of the structural and morpho-

logical properties of each that is required. In this paper we

will show how it is possible to identify, via a field amplitude

hyperthermia analysis, if the particles are at the high barrier

or low barrier regime. This, in turn, can be used as a guide-

line to optimize the heating properties of the material.

It is the purpose of this paper to discuss in detail the

magnetic response as the system departs from the linear re-

gime. In Sec. II we review some relevant properties of the

linear response theory and show how heuristic arguments

may be employed to qualitatively predict this departure,

yielding additional insight into the energy barrier distribution

of the system. In Sec. III we briefly introduce the Néel-

Brown theory, whose solution methods are described in the

Appendix and which may be employed to compute dynamic

hysteresis loops in any condition desired. Results of the

numerical calculations are presented in Sec. IV where the de-

pendence of the SAR with the field amplitude is probed in

detail. For clarity, these results concern mono-disperse

particle assemblies, a restriction which is then lifted in

Sec. V, where poli-disperse samples with a lognormal

distribution are briefly discussed. Finally, Sec. VI provides

the conclusions.

II. LINEAR REGIME

In the linear regime the magnetization, albeit closely

following the oscillating magnetic field, will do so with a

phase lag. A parametric graph of MðtÞ vs. HðtÞ thus yields an

ellipsis, the area of which may be identified with the energy

dissipated during each cycle,27 as mentioned in Sec. I. If we

write MðtÞ ¼ H0½v0ðxÞ cosxt� v00ðxÞsinxt�, where v0 and v00

are the real and imaginary susceptibilities, then a simple

computation shows that A0 ¼ pH2
0v
00ðxÞ (the subscript 0

indicates that the result is exclusive of the linear regime). It

is the premise of the linear response theory that, through the

fluctuation-dissipation theorem, one can relate the AC sus-

ceptibility to the relaxation properties of the system. In the

event that the latter is dictated by a single relaxation time

(s), the susceptibility takes the form of the famous Debye

factor, v00ðxÞ ¼ v0xs=ð1þ ðxsÞ2Þ, where v0 is the static

susceptibility (these concepts have a broader range of applic-

ability and are discussed in detail in the books by Scaife36

and Coffey et al.30 For a discussion specific to single-

domain particles or ferro-fluids, cf., Refs. 1 and 32.). Whence

A0 ¼ pH2
0v0

xs

1þ ðxsÞ2
: (1)

This equation should be interpreted as an asymptotic expres-

sion for H0 ! 0 and is expected to hold as long as the field

does not distort significantly the energy landscape of the par-

ticle. We restrict our discussion to Néel relaxation—where

only the magnetization vector is allowed to rotate—and also

assume a single effective uniaxial anisotropy. These are

common assumptions, well justified from experimental

grounds.37–39 In this case an adequate expression for the

relaxation time, assuming uniaxial anisotropy, is the Néel-

Brown formula29

s ¼ s0

ffiffiffi
p
r

r
er; (2)

where r ¼ Kv=kBT, K being the anisotropy constant

(assumed uniaxial) and v the particle’s volume. Equation (2)

is valid for r > 1 and accurate to �10% with respect to the

exact value, which may be computed, for instance, by the

methods described in the Appendix. On noting that the mag-

netic properties of the particles are almost entirely dictated

by s, which, in turn, depends exponentially on r, it becomes

clear that the latter is the most important parameter in this

type of system. We also note that, except for a scaling con-

stant, the static susceptibility is well described30 by

v0 � r� 1.

It is important to note that, within the present context,

the area and the SAR are practically equivalent quantities
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since most experiments are performed at a fixed frequency.

In this paper we will frequently speak of A, and it is under-

stood that the relation SAR ¼ fA may be used to convert

between one and the other.

Equation (1) predicts that initially A0 should increase

quadratically with H0. The central question, discussed in this

paper, is how it will behave as the system departs from the

linear regime. Intuitively, one expects it to be a monotoni-

cally increasing function, eventually saturating at sufficiently

high fields. This type of behavior is not easily analyzed. See,

for instance, Fig. 2(a) (to be properly discussed below): all

curves rise quickly, crossing one another at different posi-

tions and saturating at different values. In other words, from

an experimental viewpoint, plotting A (or the SAR) vs. H0

for different samples, yields little information on how the

magnetic properties of the material affect its heating

capabilities.

On the other hand, note that this quadratic dependence

(A0 / H2
0) actually incites an interesting physical interpreta-

tion since H2
0 is proportional to the electromagnetic energy

density in the vicinity of the particles. Whence, we may

define the efficiency in converting electromagnetic energy
into thermal energy as

X ¼ A

H2
0

: (3)

Thus, from Eq. (1) we see that the linear response efficiency

(X0) is independent of H0

X0 ¼ pv0

xs

1þ ðxsÞ2
: (4)

Equation (3) is plotted with a dashed line in Fig. 1, to be dis-

cussed below (it practically coincides with the outermost

blue curve); the relaxation time was computed using the

exact method described in the appendix. As can be seen, X0

shows a narrow peak with a maximum whose position (rmax)

is determined by the relation

xs ¼ 1: (5)

Finally, it is important to emphasize that Eq. (3) does

not represent the efficiency of the material in eliminating

tumorous cells per se (which is simply given by A or the

SAR), but only a measure of the input/output gain.

Notwithstanding its interesting physical interpretation,

the fact that in the linear regime X0 is independent of H0

makes the efficiency an extremely convenient quantity:

graphing X vs. H0 should yield a horizontal line so that any

deviations may be readily interpreted as stemming from the

departure to the non-linear regime. We note in passing that,

since A must eventually saturate, we necessarily have that

XðH0Þ ! 0 when H0 !1; that is, if X ever increases, it

must eventually reach a maximum. In this paper we employ

numerical simulations to probe the behavior of XðH0Þ in

detail. However, before we proceed, we show how it is possi-

ble to obtain an approximate answer by a remarkably simple

heuristic argument, as follows.

The value rmax determined by Eq. (5) coincides with the

condition that the measurement time, here one period of HðtÞ,
match the relaxation time. Whence, r < rmax characterizes a

low barrier region where the spins may precesses nearly unim-

peded. Conversely, r > rmax corresponds to a high barrier re-

gime in which the spins tend to be blocked and may, at most,

precess close to the potential wells. We therefore reach the

following important conclusion. If r < rmax, small fields are

already capable of promoting spin reversals, and thence the ef-

ficiency should decrease as H0 increases. On the other hand,

if r > rmax, the spins will be essentially blocked, requiring

FIG. 1. Efficiency X ¼ A=h2
0 vs. r ¼ Kv=kBT for different values of the

reduced applied field amplitude (h0), ranging from 0:02 to 0:2 in steps of

0:02. The frequency is fixed at f s0 ¼ 10�4 (or f ’ 100 kHz for s0 � 10�9s).

The linear response efficiency X0 [Eq. (4)] is shown in dashed. Also shown

are the two characteristic values of r; namely, the linear response maxima

rmax ’ 8:5 and the zero-slope threshold rs ’ 9:2, which separate the regions

of increasing and decreasing slope as X departs from the linear regime.

FIG. 2. Area and efficiency vs. the reduced applied field amplitude (h0)

for different values of r, with fixed f s0 ¼ 10�4. (a) Hysteresis loop area (A);

(b) efficiency (X ¼ A=h2
0); (c) difference between X and the linear response ef-

ficiency X0 [Eq. (4)]; and (d) magnification of image (c) for small fields. Points

were computed to Eqs. (7) and (8).
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larger fields to promote efficient reversals; consequently, X
should increase with increasing field.

This analysis is correct, except for the fact that the tran-

sition value is actually greater than rmax by a small factor.

We refer to this new value as the zero-slope threshold, rs.

The reason for this discrepancy may be understood qualita-

tively by considering that the presence of the field alters the

energy landscape of the particle and, as is well known, low-

ers the relaxation time. Thus, for condition (5) to be met, a

larger value of r is required to counterbalance the presence

of the external field. We also note that, as asserted from our

simulations, this shift is independent of frequency and has

the value rs � rmax ’ 0:65 (cf., the upcoming Fig. 1).

Thus, although we will not present any experimental

data in this paper, it is clear from the above arguments that

the efficiency concept can be used to identify if a given

nanoparticle system is in the high or low barrier regime.

Such information, in turn, may be employed to delineate

strategies to enhance the hyperthermia properties of the ma-

terial, thus being clearly of considerable importance.

III. NÉEL-BROWN THEORY

We now turn to the Néel-Brown theory, which may be

used to compute the SAR in any condition desired and thence

validate the arguments of the preceding section. The starting

point for our simulations is the stochastic Landau-Lifshitz equa-

tion29 for the magnetization MðtÞ of a single-domain particle,

M
:
¼ �cM �He � ðca=MsÞM � ðM �HeÞ; (6)

where a is the damping constant, Ms is the saturation mag-

netization, c ¼ c0=ð1þ a2Þ and c0 is the gyromagnetic factor

of the electron. Here He is the effective field which com-

prises, besides the external field, a term describing the uniax-

ial anisotropy and a random thermal field to account for the

thermal fluctuations.

We restrict the discussion to the situation where the

external field is parallel to the anisotropy easy axis.24,25

Albeit not realistic, this condition is known to give an

adequate qualitative description of the system’s response and

is advantageous for its low computational cost, thus enabling

a more detailed investigation. Moreover, and perhaps most

importantly, it enables us to reduce to only three the number

of parameters required to fully describe the system:

h0 ¼ H0=HA, where HA ¼ 2K=Ms; r ¼ Kv=kBT; and f s0,

where s0 ¼ ðcHAÞ�1
. Note that s0 is now the only quantity

where the damping appears explicitly. Accordingly, defini-

tion (3) is now modified to read X ¼ A=h2
0. Real values for A

and X are obtained by multiplying the quantities presented

here by MsHA and Ms=HA, respectively.

Details of the computational procedure are given in the

Appendix. The solution method we employ consists of trans-

forming the stochastic differential equation (6) into a system of

ordinary differential equations for the averages (statistical

moments) of the magnetization.17,19,25,26,30 This approach

is not only extremely efficient computationally but is also

numerically exact, in the sense that it does not require statisti-

cal averages over the stochastic trajectories, as is needed in the

direct solution of Eq. (6).40 We also note that it can be easily

extended to the more general situation where the field is not

parallel to the anisotropy axis, as discussed in detail in Ref. 17.

IV. RESULTS AND DISCUSSION

A. Numerical results

Before we proceed we call attention to the weak depend-

ence of A and X on the frequency. Indeed, if we take s ’
s0er then Eq. (5) implies r ’ �logðxs0Þ so that increasing

(decreasing) the frequency will only shift, logarithmically,

the peak in X0 to lower (higher) values of r. Accordingly,

except for Fig. 4, we fix throughout this paper f s0 ¼ 10�4.

This is motivated by the fact that taking the common experi-

mental value s0 � 10�9s yields f � 100 kHz, which agrees

with frequencies usually employed in hyperthermia

experiments.3,10,35,41

In Fig. 1 we present results for X vs. r. First and fore-

most, it is possible to see that the curve for h0 ¼ 0:02 practi-

cally coincides with the linear response efficiency (dashed

line). As the field increases, X gradually deviates from X0,

being simultaneously broadened and shifted to the right. The

chosen value of f s0 results in rmax ’ 8:55 and rs ’ 9:2. The

former agrees with condition (5) using the exact relaxation

time, and the latter was determined by the fitting procedure

described in Sec. B. From the figure it is clear that for r < rs,

all curves lie below X0, while the opposite occurs for r > rs.

The dependence with h0 is presented in Fig. 2 for both A
and X. As mentioned, the area (Fig. 2(a)) always increases

monotonically with h0. At low r the increase is rather small

and so is the value at saturation. At the other extreme, at

high r, A remains close to zero up to a certain field, above

which it rises quickly, crossing the other curves and finally

saturating at large values. The efficiency, plotted in

Fig. 2(b), enables for a much more transparent interpretation.

First note that X starts at X0 (cf., Fig. 1), which is large for

r � rs and negligible otherwise. Furthermore, it is now quite

clear that curves for r < rs always have a negative slope

and decrease monotonically towards zero. The converse is

true for r > rs: X starts with a positive slope, reaches a max-

ima, and then falls towards zero. The higher the value of r,

the larger is the field where the maxima is reached.

In Fig. 3 we condense the results of the previous figures

by showing the behavior of A and X in the form of a density

FIG. 3. (a) Area and (b) efficiency vs. ðr; h0Þ with fixed f s0 ¼ 10�4. The

color scale is in arbitrary units, with blue and red denoting small and

large quantities, respectively. The resolution is Dr ¼ 0:25 and Dh0 ¼ 0:005.
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plot in the ðh; rÞ plane, where blue and red denote small and

large quantities, respectively. As for the area, two points are

worth noting. First, when r� rs, one observes an abrupt

change as the field increases. This marks the threshold field,

above which the promotion of spins over the anisotropy bar-

rier becomes possible.1 Second, at the opposite extreme

(r� rs), even at high fields such as h0 ¼ 1 (i.e., H0 ¼ HA, a

quite high value), the area is still significantly small. This

illustrates the fact that simply increasing the field amplitude

irrespective of the properties of the material is clearly not a

fruitful approach. As for the efficiency (Fig. 3(b)), one sees

that its overall maxima in the ðh; rÞ plane occurs precisely at

the linear response value rmax ’ 8:5 (cf., Eq. (5)). Then, on

increasing h0, the function XðrÞ is simultaneously broadened

and shifted to higher values of r, as is also seen in Fig. 1.

B. Series expansion of the efficiency

Previous attempts to quantify the field dependence of A
(or equivalently the SAR) have customarily resorted to numer-

ical fits of exponents in a power law, A / Hn
0. While such a

procedure has been extremely relevant in understanding the

magnetic properties of a variety of magnetic materials,27 this

is not true for hysteresis loops in single-domain nanoparticles.

Indeed, this approach, which has already been vehemently

criticized,1 yields results which are quite arbitrary in the sense

that practically no physical information may be extracted

from them. On the other hand, we now show how it is possible

to gain additional insight on the initial deviations from linear-

ity by considering the area as a formal series expansion in

powers of H0, with coefficients that depend on r and x. In

this sense, Eq. (1) may be regarded as the smallest non-

vanishing term. Clearly, this springs from expanding M in

powers of H0. For systems in thermal equilibrium, due to sym-

metry arguments, the expansion will only contain odd powers

of H0. Then the area, being the product of M and H, will con-

tain only even powers, the next term being proportional to H4
0.

Notwithstanding the fact that the present system is obviously

not in thermal equilibrium, we have found this approach to be

both simple and effective. Whence, we write

X ’ X0 þ c2ðr;xÞh2
0: (7)

The quantity DX ¼ X� X0 is plotted in Figs. 2(c) and 2(d),

the latter being a magnification of the former at small fields. In

Fig. 4(a) we present the fitted values of c2ðr;xÞ for h0 < 0:1

at five different frequencies. The following conclusions may

be drawn from this analysis:

• c2 ¼ 0 at rs (by definition). It is reasonable to expect that

the entire frequency dependence is contained within rs

and so we write c2ðr;xÞ ¼ c2ðr; rsÞ.
• c2? 0 for r?rs, reflecting the fact that DX is positive for

r > rs and negative otherwise.
• c2 ! 0 at r � 0 and r� rs. As expected, at small h0 the

response for the low and high barrier regimes are nearly

equivalent. However, note that albeit small, the slope of

DX (which is simply 2c2) has indeed opposite signs in

both regimes [cf., Fig. 2(d) for r ¼ 5 and r ¼ 15].
• c2 is not symmetrical about rs, being much larger for

r < rs. That is, the efficiency falls much more rapidly for

r < rs than it rises for r > rs.
• While the functional dependence of c2 is clearly seen to

depend only on r� rs, the overall height is different for

each frequency. We have found that this scales as � r3
s .

A thorough attempt to obtain elaborate analytical

expressions for c2ðr;xÞ is beyond the scope of this paper,

especially given the non-linearity of the problem which

would undoubtedly yield utterly complicated results, if any.

However, it is interesting to note that, as shown in Fig. 4(b),

all curves can be made to approximately overlap by plotting

c2=r3
s vs. r� rs. Moreover, they are quite well described by

the function

c2ðr; rsÞ
r3

s

¼ 4x=3

1þ ðxþ 1=2Þ2
e�ðx=3Þ2 ; (8)

where x ¼ r� rs. This result was derived heuristically by

choosing a function which satisfied all the properties of c2

just listed. The series in Eq. (7), together with Eq. (8) is

plotted in Fig. 2(d), where, as can be seen, the agreement is

indeed satisfactory up to h0 ¼ 0:1. We emphasize that the

importance of this discussion lies on the properties that c2

must satisfy and not on Eq. (8) or other similar functions.

Hopefully, these properties may serve as useful guidelines

for theoreticians developing realistic non-linear models.

C. Discussion

All results presented thus far are equally valid for the

SAR, which is almost always measured at a fixed fre-

quency. Thus, we have shown that plotting the SAR=H2
0 vs.

H0 provides an interesting way of analyzing experimental

data. From the slope of X it is possible to determine

whether the particles are in a low or high barrier regime.

Moreover, while a measure of the slope may not give a

quantitative estimate of r—due to the inherent complexities

of experimental systems—this may be achieved by compar-

ing different samples.

For completeness, let us consider a comparative exam-

ple between two given samples, described by (say) curves 4

and 5 in Fig. 2. If one has access only to a limited field

amplitude (e.g., h0 < 0:1), an analysis of the area yields no

information about curve 5 [Fig. 2(a)]. Conversely, the effi-

ciency may indicate a small increasing slope which enables

FIG. 4. (a) Next term, c2ðr;xÞ, in the power series expansion of X [Eq.

(7)], fitted from the initial values of Xðh0Þ up to h0 ’ 0:1. (b) Plot of c2=r3
s

vs. r� rs showing that all curves approximately overlap. The approximate

expression given by Eq. (8) is presented in dashed.
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one to assert that curve 5 is far into the high barrier regime

and not the opposite [Fig. 2(d)]. Moreover, if both samples

have roughly the same mass and saturation magnetization,

the initial efficiency immediately shows that curve 4 will

also be in the high barrier regime, but with a value of

r smaller than that of curve 5.

This comparison permits one to rank several samples

according to different (qualitative) values of r, without any

explicit reference to neither anisotropy nor volume nor

packing fraction. This is of particular importance for a vari-

ety of reasons. First, the actual value of r is usually

smeared by the size distribution and simultaneously shifted

due to particle-particle interactions. Moreover, the region

in the r axis where X is appreciably different from

zero depends not only on f but also on s0, which is rarely

known to any satisfactory accuracy. Notwithstanding, this

approach is impermeable to these difficulties since a simple

relative ranking of the particles already yields considerable

information.

This analysis also suggests a way to manage magnetic

materials in order to enhance its hyperthermia properties.

This follows since r / Kv so that a change in volume or in

anisotropy is entirely equivalent (at least within the single-

domain approximation). For instance, if one discovers that

for a given particle size the system is in the low (high) bar-

rier regime, one could improve the dissipation by increasing

(decreasing) the magnetic anisotropy value. Indeed, the fact

that XðrÞ is usually a narrowly peaked function further cor-

roborates the necessity of such fine tuning. The importance

of optimum magnetic anisotropies has already been discussed

by several authors1,34 and is also endorsed by other aspects of

the application. For instance, although not commonly dis-

cussed, the feasibility of producing highly-stable colloids is

greatly enhanced by using lower particle sizes (probably in

the 10 nm range). The same is true for embolization issues, as

follows from its lower agglomerate dimensions.42 Thus, from

the perspectives of both the heating power and colloidal sta-

bility, the ability to tune the magnetic anisotropy is seen as

being paramount to the success of magnetic hyperthermia.

Fortunately, in ferrites, this can be performed with great flexi-

bility either by modifying the cation distribution in the spinel

structure or through atom-substitution.2,3,43,44

The results in Fig. 2(a) are quite similar to experiments

recently reported by Bordelon et al.35 using commercial fer-

rite samples (cf., Fig. 5). A rough estimate considering

the magnetite bulk anisotropy (K ’ 2:3� 105erg=cm3)

yields r in the ranges of 0:2–3, 3–5, and 10–23, for the Feri-

dex (4–10 nm), nanomag-D-spio (10–12 nm), and BNF-

starch (15–20 nm) samples, respectively, i.e., very similar to

the values presented in Fig. 2. Thus, their results may be

readily interpreted within the present scope as arising from

different values of r. Similar arguments apply to the results

in Fig. 5(a) of Ref. 3. In this case, it is worth pointing out

that the differences are brought about not only by the

changes in the size of the particles but also by those in their

anisotropies, stemming from the different cation distribution/

substitution of the ferrites studied. Finally, we note that in

both cases the limited number of experimental points also

endorses the use of the efficiency: interpreting an increasing

or decreasing trend starting from a horizontal line is far sim-

pler than interpreting a rapidly increasing function.

Our numerical simulations clearly show that within the

present (several) approximations, the initial slope of the effi-

ciency is directly related to the height of the energy barrier.

It is not possible for us to claim that this will remain true in

more realistic situations. We nonetheless do have reasons to

believe so. First, several tests for randomly oriented ensem-

bles (not shown) indicate that, as we expect, taking the field

as parallel to the anisotropy axis does not yield incorrect pre-

dictions. More importantly however, is the fact that the sim-

ple heuristic arguments given in Sec. II agree quite well with

the numerical simulations. These arguments were based

solely on the concept of an energy barrier, which is a very

general assumption that is true for any system. Therefore,

such an agreement serves as powerful evidence that the

scope of applicability of the present results is indeed much

wider. Conversely, the effect of inter particle interactions is

not entirely clear and we are unable to make any definitive

judgements: the long-range nature of the dipolar interaction

renders this as a many-body problem, the properties of which

remain a subject under discussion. We also note in passing

that simulations including dipolar interaction are much more

expensive computationally, given that the methods described

in the Appendix are not applicable; the only alternative is the

direct solution of the stochastic differential Eq. (6), which

involves the use of a large quantity of random numbers.

Finally, there remains the problem of poli-dispersivity,

which, as we now show, also does not invalidate our results.

V. INFLUENCE OF THE SIZE DISPERSION

We briefly consider the effect that a poli-disperse

sample has on the efficiency. For definiteness, we assume

FIG. 5. Poli-disperse efficiency hXi vs. h0 for three values of the dispersion

parameter dr. Mono-disperse curves are shown in dashed. (a) r0 ¼ 6, (b)

r0 ¼ 12, (c) r0 ¼ 18, and (d) r0 ¼ 24.
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spherical particles with diameters distributed according to a

log-normal distribution. We use the notation x �Lðx0; dxÞ
to denote that the random variable x is distributed according

to a log-normal distribution with location parameter x0 and

dispersion parameter dx. The probability density function is

pðxÞ ¼ 1ffiffiffiffiffiffi
2p
p

xdx

exp �ðlogðx=x0ÞÞ2

2d2
x

" #
: (9)

A useful and sometimes unexplored property of the log-

normal distribution is as follows: if y ¼ axn and

x �Lðx0; dxÞ, then y �Lðy0; ndxÞ, where y0 ¼ axn
0. In

other words, y is also distributed according to a log-normal

distribution, with a dispersion parameter that is n times

larger than that of x. This relation follows immediately from

the definition pðyÞ dy ¼ pðxÞ dx.

Thus, if a sample has a diameter distribution of the form

D �LðD0; dDÞ, then r �Lðr0; drÞ, where r0 ¼ Kv0=kBT
¼ pKD3

0=ð6kBTÞ and dr ¼ 3dD. Usual size distributions

reported in the literature45,46 have dr. 0:25 yielding

dr. 0:75.

Numerical simulations for poly-disperse samples are com-

puted by taking the expectation value of the mono-disperse

results with respect to Eq. (9). In Fig. 5 we present results for

the average efficiency (hXi) vs. h0, for different values of r0

and dr, once again fixing f s0 ¼ 10�4. As one might expect,

the response for poly-disperse systems is quite different. The

key point is that for each value of h0 (and x), the original func-

tion XðrÞ is appreciably different from zero only over a nar-

row range of r, which is also asymmetrical with respect to it’s

maximum. The same is obviously true for pðrÞ: it is both nar-

row and asymmetrical. Thus, on convolving XðrÞ with pðrÞ,
only those regions where there is considerable overlap will

give a response that is appreciably different from zero.

In Fig. 5(a), where r ¼ 6, it is possible to see that

increasing dr increases the overall value of hXi. Clearly, as

shown in Fig. 1, the response for r ¼ 6 itself is almost negli-

gible so that, on increasing the dispersion, higher values of r
start to contribute more substantially. The situation reverses

for r ¼ 12, where the statistical importance of those values

of r which are much smaller than rs are seen to gradually

increase with dr, whereas their contribution to XðrÞ remains

quite small. It is also interesting to note that due to the com-

plex dependence on h0, the efficiency may initially decrease

but then increase, as illustrated by curve 3 in Fig. 5(c).

Even though the size distribution smears the result, in the

sense of making it less clear to discern between the high and

low barrier regimes, it remains possible to rank different sam-

ples in precisely the same way. Thus, the arguments of the pre-

ceding section remain entirely valid in this case. As for the

ranking, one may either use r0, which is the median of Eq. (9),

or the mean, which is �r ¼ r0ed2
r=2 ¼ r0e9d2

D=2 (the latter is

larger than the former by a factor of �30% when dr ¼ 0:75).

VI. CONCLUSIONS

In this paper we analyzed the properties of magnetic

nanoparticles intended for magnetic hyperthermia applications

from the view point of a new parameter, referred to as the

energy transfer efficiency. This is computed simply as the ra-

tio between the power (or energy) loss and the square of the

field amplitude: (SAR=H2
0). Besides having an interesting

physical interpretation, we have shown that this approach ena-

bles a much richer analysis of the experimental data, giving

information on the behavior of the system as it departs from

the low field linear regime. From a graph of the efficiency vs.

the field amplitude, we have found that a simple qualitative

analysis is capable of yielding significant information about

the anisotropy energy barrier distribution. As is now being

realized by the community, the anisotropy is paramount in

enhancing the heating capabilities of nanoparticles for mag-

netic hyperthermia. Moreover, exploiting its intimate relation

with the field amplitude is now seen as the most promising

route towards sizable advances in this important application.

One final important point should be clarified. The pres-

ent paper does not suggest that the efficiency should replace

the SAR. On the contrary, we have shown that they are in

fact complementary and may be presented together. The

SAR, on one hand, yields the system’s heating capabilities,

and the efficiency, on the other hand, points to whether the

system lies in the low or high barrier regime, thence provid-

ing guidelines to further optimize the SAR.
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APPENDIX: SOLUTION METHODS

Under the assumptions discussed in Sec. III that the field

is parallel to the anisotropy axis (here taken as the z-axis),

the quantity of interest is hmzi, where m ¼ M=Ms. By aver-

aging Eq. (6) using the methods of stochastic calculus,30 the

non-linearity of the equations force all statistical moments to

be entangled; in other words, the differential equation for the

time evolution of hmzi will depend, for instance, on hm3
z i.

The results may be expressed, however, as a system of

coupled ordinary differential equations, also referred to as a

hierarchy of differential recurrence relations. We use spheri-

cal coordinates with mz ¼ cosh and expand these moments

in terms of Legendre polynomials, PnðxÞ (i.e., hmzi ¼
hP1ðcoshÞi. Let pn ¼ hPnðcoshÞi. Then, by the methods

described in Refs. 17, 19, 25, and 26, we obtain

s0 _pn �
nðnþ 1Þ

ð2n� 1Þð2nþ 3Þ �
nðnþ 1Þ

2r

� �
pn ¼

nðn2 � 1Þ
4n2 � 1

pn�2

� nðnþ 1Þðnþ 2Þ
ð2nþ 1Þð2nþ 3Þ pnþ2 þ h

nðnþ 1Þ
2nþ 1

ðpn�1 � pnþ1Þ;

(A1)

where h ¼ h0 cosxt and n ¼ 1; 2;….

Let us then define the column vector P ¼
½p1; p2;…; pN� T, where N � 200 is taken large enough to

ensure convergence. Then, by collecting the terms in Eq.

(A1) we may transform it in a system of first order ordinary

linear differential equations
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P
:

¼FPþU; (A2)

where F is an N � N matrix and U is a column vector of

length N, both of which depend on time implicitly through hðtÞ.
The hysteresis loops are computed integrating the sys-

tem of Eq. (2) until transient effects are eliminated, thus

yielding a stationary solution. The matrix F–which is also

the Jacobian of the system—is tightly banded, a property

which if cleverly explored yields considerable gains in com-

putational speed. We employed the SUNDIALS library,47

which enabled computation times . 1s for each loop. We

note that for practical purposes transients are entirely unim-

portant for magnetic hyperthermia for, albeit being able to

persist for over 100 periods of the external field, when one

considers the high frequencies involved, this only accounts

for micro-seconds which are negligible compared to the usual

measurement times that are of the order of several seconds.

Further details of this method are described in Refs. 17

and 25. We refer the reader to Refs. 18, 19, and 24 for a dif-

ferent solution method stemming from the same system of

equations or Refs. 1 and 20 for a different approach based on

transition state theory.

Finally, we note that the exact relaxation time [cf., Eq. (2)]

may be easily computed from the matrix F by setting h ¼ 0.

In this case the difference between the relaxation time and the

smallest non-vanishing eigenvalue of F, k1, is negligible. This

yields an incredibly efficient way of computing s since, due

the strong sparseness of F (in this case it actually becomes tri-

diagonal), Arnoldi’s iterative method48 may be employed to

calculate only k1. In fact, it is interesting to note that this

approach is much faster than using the exact solution for k1,

which is written in terms of sums of hypergeometric func-

tions31 that are usually computationally expensive.
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