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The random dipolar-field approximation for systems of interacting magnetic
particles
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The dipolar interaction is known to play an important role on the magnetic properties of small
magnetic particles. For moderate concentrations the most noticeable effect is an increase of the
relaxation time, whereas for sufficiently dense systems some degree of correlational order may be
observed. In this paper, a mean-field approximation is introduced to correctly account for these
changes. It is based on the interpretation of the dipolar field, produced by an ensemble of particles,
as a random field acting on a reference particle. This field contains the statistical moments of the
magnetisation of the reference particle and is computed assuming a random spatial distribution of
the particles. The result is a new term in the free energy of the reference particle, expressed as a
cumulant expansion of the random field, carried up to fourth-order. This model correctly predicts
both the increase in the relaxation time and a phase transition to a ferromagnetic state for
sufficiently dense systems. The dynamics is also studied by introducing this new free energy into
the Fokker-Planck equation for the single-particle magnetic moment. The result is a non-linear
Fokker-Planck equation, which is solved numerically to illustrate the divergence of the relaxation
time at the phase transition. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4802583]

I. INTRODUCTION

Fine magnetic particles continue to be a subject of inten-
sive experimental and theoretical research, motivated by
their interesting magnetic properties1–4 and their potential
for several applications.5–7 Much of this interest stems from
their reduced dimensions, which bring about two unique and
important properties. First, it inhibits the formation of mag-
netic domains, inducing the spins to behave in unison as a
single magnetic dipole. Second, it shallows the potential bar-
rier that separates the stable energy minima, leading to a
strong dependence of the system on both temperature and
the relaxation time. The problem is therefore dynamical in
nature and relevant only at finite temperatures. On the other
hand, the absence of physical contact between the particles
implies that they may only interact via the dipole-dipole
interaction. Thus, a sufficiently diluted sample will approxi-
mately behave as a non-interacting ensemble, which greatly
simplifies the problem. The dynamics of the magnetisation
may be described using (for instance) Brown’s stochastic
description of the Landau-Lifshitz-Gilbert equation.4,8,9 This
approach has been extremely successful, leading to consider-
able progress in the understating of the thermo-magnetic
properties of fine particles.10–19

Neglecting the dipole-dipole interaction, however, is not
always a good approximation. Several experiments20–25 have
unambiguously demonstrated that common practical situa-
tions encountered in the laboratory can seldom be regarded
as “sufficiently diluted.” This is a consequence of the large
magnetic moment of the particles, usually orders of magni-
tude higher than that of ordinary paramagnets. The effects of
the dipolar interaction manifest themselves in different

ways, depending on the particle concentration:26 upon
increasing it from an infinitely diluted state, one first
observes a change in the relaxation time (related to the ani-
sotropy barrier), followed by the appearance of some degree
of orientational correlation and finally reaching an ordered
state with a non-zero net magnetisation even at zero field.
The importance of this interaction was well illustrated in
Ref. 21, where AC susceptibility was used to study the effec-
tive energy barrier of Ni nanoparticles embedded in an amor-
phous SiO2/C matrix at different concentrations. The authors
observed astounding 35% and 75% increases in the effective
barrier, with respect to a sufficiently diluted system, for sam-
ples with 7.9 and 12.8 wt.%, respectively.

Unfortunately, introducing the dipolar interaction in a
theoretical framework is an extremely complex task. It invar-
iably results in a many-body problem, for which few techni-
ques have been developed. All single-particle techniques are
rendered useless and even the simplest of calculations
become extremely involved.

Numerical studies of dipole-interacting systems are also
challenging, due mainly to three reasons. First, the interac-
tion is of long-range, thus scaling faster than O(N), where N
is the number of particles: in principle it scales as OðNÞ2,
which can be reduced to OðN log NÞ using fast Fourier trans-
form methods27 and further to O(N) (albeit with a high multi-
plier) using multipole expansions.28 Second, the dipolar
interaction has a reduced symmetry. This means that the
properties of systems containing only a handful of particles14

are not guaranteed to reflect, a priori, those of larger (and
thus more realistic) samples. The same is true for simple
geometries, such as chains29 or layers of particles. Finally,
unlike bulk magnets where thermal fluctuations can be omit-
ted in certain circumstances, the strong temperature depend-
ence of small particles entails that all simulations must be ofa)Electronic mail: gtlandi@gmail.com
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statistical nature. This means either Monte Carlo30–34 or the
direct solution12,18 of the aforementioned stochastic equa-
tions.4,8,9 The former, albeit usually more efficient than the
latter, suffers from a ill defined time-step, thus making
the stochastic approach physically more meaningful (for an
alternative see Ref. 35).

In view of the aforementioned difficulties, in order to
advance in the understanding of dipole-interacting systems
some type of approximation is required. Equilibrium proper-
ties have successfully been treated using thermodynamic per-
turbation theory.36,37 As for the dynamics, one must invariably
reduce the problem back to that of a single-particle, where a
plethora of techniques has already been developed (a good
example is the use of Kramers escape rate theory8,9,38 to com-
pute the relaxation time). This is a form of mean-field approxi-
mation and bears some resemblance to the Curie-Weiss theory
of ferromagnetism. However, a fundamental difference exists;
namely, that the first manifestation of the dipolar interaction is
not to incite some degree of order in the system, but rather to
increase its effective anisotropy barrier.21,22 This leads to the
so called Vogel-Fulcher modification of the relaxation
time.39,40 In other words, orientational correlations that lead to
spin-glass or ordered states are corrections of higher order,
unlike in the Curie-Weiss theory.

Two important contributions in this direction were
recently given by Felderhof and Jones,41 and Dejardin.42

They introduced the mean-field approximations into the
dynamics of the problem via an effective field appearing in
the Fokker-Planck equation. The result is a non-linear (in the
distribution function) Fokker-Planck equation, which reduces
to the original in the limit of infinite dilution. Felderhof and
Jones, however, did not include the fundamental effects of
anisotropy, as Dejardin did.

It is possible to give the following arguments about
a mean-field approximation. The focus lies on a reference
particle whose free energy in the limit of infinite dilution is
U. The introduction of the dipolar interaction is tantamount
to adding a new term Udip, constructed such that it becomes
negligible in the limit of infinite dilution. Moreover, besides
depending on the magnetisation of the reference particle, it
may also depend on its statistical moments. The reason being
that it implicitly contains a sum over the magnetisation
vectors of all other particles in the sample. But, since all par-
ticles are indistinguishable, this sum can be replaced by the
average magnetisation of the reference particle. The effec-
tive field, which is the gradient of the free energy, will then
depend on these averages as well. Whence, introducing it in
the Fokker-Planck equation will make it non-linear; the
same is true for the equations dictating the time evolution of
the statistical moments.

In this paper, I will present a mean-field approximation
devised to meet these criteria. This will be accomplished by
treating the dipolar field, acting on a reference particle due to
all particles in the sample, as a random field, an approxima-
tion which will be justified in Sec. II. The new terms will
come about in the form of a cumulant expansion of this ran-
dom field containing the aforementioned expectations, as
developed in Secs. III and IV. The main premise in devising
the approximation will be to exploit the random spatial

arrangement of particles usually encountered in real systems.
In Sec. V, it will be shown that this model correctly predicts
for the first correction an increase in the effective anisotropy
barrier. Further increase of the dipolar interaction also leads
to a phase transition toward an ordered state, the properties
of which are the subject of Sec. VI. This transition is equiva-
lent to a divergence of the relaxation time, also predicted by
Dejardin in Ref. 42, and which will be studied via the new
non-linear Fokker-Planck equation developed in Sec. VII.
Discussions and conclusions are given in Sec. VIII.

II. CONSTRUCTION OF THE EFFECTIVE FREE
ENERGY

Consider a system of N magnetic particles with mag-
netic moments ls and magnetisation orientation ms

¼ ðms1;ms2;ms3Þ, where jmsj ¼ 1 and s ¼ 1; 2;…;N. The
total free energy of the system may be written as

E ¼
XN

s¼1

UsðmsÞ þ
XN

s ¼ 1
r > s

Usrðms;mrÞ; (1)

where UsðmsÞ represent the single-particle free energies
comprising, for instance, anisotropy terms or the Zeeman
interaction with an external field. The second term refers to
the dipole-dipole interactions and may be written as the
quadratic form

Usrðms;mrÞ ¼ %mT
sDsrmr; (2)

where T stands for transpose and Dsr is the dipolar-
interaction tensor between particles s and r

Dsr ¼ lslr
l0

4p

! " 3esreT
sr % I

R3
sr

# $
: (3)

Here Rsr and esr are, respectively, the distance and the unit
vector between particles s and r; I is the 3& 3 identity matrix
and l0 is the permeability of free space. In equilibrium, the
probability density function f ðm1;…;mNÞ for the N-particle
system is given by the Maxwell-Boltzmann formula

f ðm1;…;mNÞ ¼
e%bE

ð
e%bE dm1… dmN

; (4)

where b ¼ 1=kBT, each integral begin over a unit sphere.
Now focus on a single particle, e.g., m1. Integrating

over m2;…;mN , we obtain the marginal distribution

f ðm1Þ ¼
e%bU1ðm1ÞXðm1Þð

e%bU1ðm1ÞXðm1Þ dm1

; (5)

where

Xðm1Þ ¼
ð

exp %b
XN

s¼2

Us % b
XN

s ¼ 1
r > s

Usr

8
>><

>>:

9
>>=

>>;
dm2… dmN : (6)
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Equation (5) is an exact result in the sense that, if it were
possible to compute Xðm1Þ, it would give the distribution of
particle 1, irrespective of the behaviour of the other particles.

Next, define the (dimensionless) dipolar field n of all
other particles acting on m1

n ¼ b
XN

r¼2

D1rmr: (7)

Also, change integration variables in Eq. (6), from
fm2;m3;…;mNg to fn;m3;…;mNg. This transformation is
one-to-one and the Jacobian is a constant, which will eventu-
ally cancel in Eq. (5), since it will also appear in the denomi-
nator. Thus, we may write Eq. (6) as

Xðm1Þ ¼
ð

KðnÞemT
1 n dn; (8)

where

KðnÞ ¼
ð

exp %b
XN

s¼2

Us % b
XN

s ¼ 2
r > s

Usr

8
>><

>>:

9
>>=

>>;
dm3… dmN; (9)

with m2 taken to be a function of n;m3;…;mN .
Alternatively, we could also write the joint distribution

of m1 and n as

f ðm1; nÞ ¼
e%bU1ðm1ÞþmT

1 nKðnÞð
e%bU1ðm1ÞþmT

1 nKðnÞ dm1 dn

: (10)

Marginalising over m1 then yields the equilibrium distribu-
tion of n

f ðnÞ ¼ KðnÞCðnÞð
KðnÞCðnÞ dn

; CðnÞ ¼
ð

e%bU1ðm1ÞþmT
1 n dm1: (11)

Now comes the first approximation: it is possible to argue
that the contribution of CðnÞ (i.e., of m1) to the distribution
f ðnÞ is minuscule compared with that of all other particles
appearing implicitly in KðnÞ. Hence, we shall take CðnÞ ' 1
and discard it entirely from Eq. (11). In this case, it is possi-
ble to conclude that the function KðnÞ can, apart from a
normalisation constant, be interpreted as the distribution
function of n. Whence, Eq. (8) may be written as an average
over this random field n

Xðm1Þ ' hemT
1 ni:

The normalisation constant is again irrelevant, since it can
be factored out in Eq. (5). Thus, omitting the suffix 1, we
may finally write the single-particle distribution function as

f ðmÞ ¼ 1

Z
exp %bUðmÞ þ loghemTni
n o

; (12)

where Z is the partition function

Z ¼
ð

expf%bUðmÞ þ loghemTnig dm: (13)

From Eq. (12), it is possible to identify the mean-field effec-
tive energy

UeffðmÞ ¼ UðmÞ % 1

b
loghemTni: (14)

III. CUMULANT EXPANSION OF THE DIPOLAR FIELD

The second term in the right-hand side of Eq. (14) is the
cumulant generating function of n with parameter m. Thus, it
is possible to perform a series expansion written in terms of
the cumulants H of n. Using Einstein’s sum convention, this
may be written as

loghemTni ¼ miHi þ
1

2!
mimjHij þ

1

3!
mimjmkHijk þ…; (15)

where i; j; k ¼ 1; 2; 3. The cumulants are related to the
moments by the following expressions:

Hi ¼ hnii; (16)

Hij ¼ hninji% hniihnji; (17)

Hijk ¼ hninjnki% hninjihnki½3) þ 2hniihnjihnki; (18)

Hijk‘ ¼ hninjnkn‘i% hninjnkihn‘i½4) % hninjihnkn‘i½3)
þ 2hninjihnkihn‘i½6) % 6hniihnjihnkihn‘i: (19)

In these equations, the quantities inside brackets indicate a
sum over distinct partitions with the same block sizes. For
instance,

hninjihnki½3) ¼ hninjihnkiþ hninkihnjiþ hnjnkihnii:

More generally, an arbitrary cumulant is a sum over all pos-
sible distinct products of moments, each multiplied by a
coefficient ð%1Þk%1ðk % 1Þ, where k is the number of blocks
in each term.

Henceforth, we will consider a reference particle with
magnetic moment l and magnetisation orientation m,
located at the origin of the coordinate system. The random
field n stems from the dipolar field created by N other par-
ticles, whose distances and unit vectors with respect to the
origin are Rs and es, respectively. According to Eq. (7), n
may be written as

n ¼
XN

s¼1

Xs; (20)

where

Xs ¼ blls
l0

4p

! " 1

R3
s

3ese
T
s % I

& '
ms: (21)

Up to this point nothing has been said about the spatial
arrangement of the particles. To continue, it is useful to
exploit the fact that in most real systems, such as powder
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samples or colloidal suspensions, the particles are randomly
dispersed in space. Thus, the vectors X will be treated as
random variables and, according to Eq. (21), they are them-
selves combinations of several other random variables:
(i) the distance Rs of particle s from the origin, (ii) the unit
vector es, (iii) the magnetic moment ls, and (iv) the magnet-
isation ms. The magnetic moment l of the reference particle
is assumed to be known, which is equivalent to saying that,
if we were to average a product such as lslr then, since the
magnetic moments are independent, hlslri ¼ hlsihlri.
Except for the magnetisation ms, all other random variables
are independent from one particle to another—i.e., they are
independent identically distributed (iid) random variables.
As for the magnetisation of each particle, they certainly need
not be independent. However, it is possible to argue as fol-
lows: if the particles have a uniaxial (or some other type) of
anisotropy, then the orientation of each magnetic moment
will be dictated, mostly, by the direction of the easy axis
which, from one particle to another, is an iid random vari-
able. Thus, as the next approximation, we shall take that
hmsimrji ¼ hmsiihmrji when r 6¼ s. Since the particles in the
sample are indistinguishable this is in turn simply hmiihmji,
the moments of the reference particle. Below it will be
shown that, since the unit vectors e are iid, the correlations
in the magnetisation shall appear only in the fourth cumulant
of the expansion (15).

From Eq. (20), it is then possible to conclude that n is a
sum of iid random variables. Its cumulants are, therefore, N
times the cumulants of X (since they are iid we may drop the
suffix s). The unit vectors e are assumed to be uniformly dis-
tributed over the unit sphere (isotropic distribution). Thus, in
deriving the cumulants of X their averages will be computed
explicitly, while all others will be left unspecified for the
moment. Let us define the dimensionless quantities

gk ¼
bll0

4p

# $k

hlki 1

R3k

( )
: (22)

Moreover, for simplicity of notation, define

qij…‘ ¼ hmimj…m‘i; (23)

i.e., qi ¼ hmii, qij ¼ hmimji, etc.
The first cumulant is the mean. Taking the expectation

of Eq. (21) and using that heieji ¼ ð1=3Þdij, we find

Hi ¼ hnii ¼ NhXii ¼ 0: (24)

This result requires only an average over the e; it is thus true
irrespective of the value of the magnetisation and follows
from the isotropy of space. It also greatly simplifies
Eqs. (16)–(19).

The calculation of the second, third, and fourth order
cumulants is straightforward, albeit cumbersome. One needs
simply multiply out the terms that appear when we take
products of X and then average over e. The second cumulant
will contain terms of the form hX2

i i and hXiXji. The result is

Hij ¼
Ng2

5
½3dij þ qij); (25)

where dij is the Kronecker’s delta. For the third cumulant
there are three characteristic terms; namely hX3

i i, hX2
i Xji, and

hXiXjXki. The results can be written compactly as

Hijk ¼
2Ng3

35
½3dijqk½3) % qijk)

¼ 2Ng3

35

9qi % qiii if i ¼ j ¼ k;

3qk % qiik if i ¼ j 6¼ k;

%qijk if i 6¼ j 6¼ k:

8
><

>:
(26)

The fourth-order cumulant, according to Eq. (19), is the
first where two different types of terms appear, namely
hXiXjXkX‘i and hXiXjihXkX‘i½3). After a cumbersome compu-
tation, we obtain the result

Hijk‘ ¼
3Ng4

35
3dijdk‘½3) þ dijqk‘½6) þ qijk‘

* +

% 3Ng2
2

25
3dijdk‘½3) þ dijqk‘½6) þ

1

3
qijqk‘½3)

, -
; (27)

or

Hijk‘ ¼

3Ng4

35
½9þ 6qii þ qiiii) % 3Ng2

2

25
½9þ 6qii þ q2

ii) if i ¼ j ¼ k ¼ ‘;

3Ng4

35
½3þ qii þ qkk þ qiikk) %

3Ng2
2

25
3þ qii þ qkk þ

qiiqkk þ 2q2
ik

3

. /
if i ¼ j 6¼ k ¼ ‘;

3Ng4

35
½3qi‘ þ qiii‘) % 3Ng2

2

25
½3qi‘ þ qiiqi‘) if i ¼ j ¼ k 6¼ ‘;

3Ng4

35
½qk‘ þ qiik‘) % 3Ng2

2

25
qk‘ þ

qiiqk‘ þ 2qikqi‘

3

. /
if i ¼ j 6¼ k 6¼ ‘:

8
>>>>>>>>>>><

>>>>>>>>>>>:

(28)

This completes the problem. Both the equilibrium distribu-
tion f ðmÞ in Eq. (12) and the effective free energy UeffðmÞ in
Eq. (14) can be written in terms of the mi and the q’s, by sub-
stituting Eqs. (24)–(27) in Eq. (15). For this reason, we will

also eventually write f ðm; qÞ and Ueftðm; qÞ for these quanti-
ties. In total, there are 3 coefficients qi of first order; 6 coeffi-
cients qij of second order; 10 coefficients qijk of third order;
and 15 coefficients qijk‘ of fourth order.

163908-4 Gabriel. T. Landi J. Appl. Phys. 113, 163908 (2013)



The new equilibrium distribution depends, itself, on the
moments of the magnetisation. Thus, they must be deter-
mined by the self-consistency relation,

qij…‘ ¼
ð

mimj…m‘f ðm; qÞ dm: (29)

This is a nonlinear equation which must be solved simultane-
ously for the statistical moments of the magnetisation, q. The
root-finding can be accomplished using Newton’s method.43

The integral on the right-hand side is performed over the unit
sphere and can be efficiently computed using Lebedev
quadrature.44

Now assume, conversely, that the ms (and thence the
Xs) were not independent. Then, we should instead perform
a cumulant expansion in n directly. The first order cumulant
is again zero. In the second order cumulant, e.g., hn2

1i, there
will appear N terms of the form hX2

s1i, as before. In addition,
there will be many other terms of the form hXs1Xr1i with
r 6¼ s. Now, let hie and him denote averages over e and m,
respectively. Then hXs1Xr1ie;m ¼ hhXs1iehXr1ieim. The aver-
age over e is, by itself, always zero. Thus, even if the
magnetizations ms were dependent, this would make no
difference on the second order cumulants due to the inde-
pendence of the e. Similarly, for the third order cumulant,
for instance hn3

1i, there will be terms of the form hX2
s1Xr1i

and hXs1Xr1Xp1i. For the same reasons, all these extra terms
are again zero. It is only when we reach the fourth order
cumulant that the dependence of the ms begins to play a role.
This appears in the second term of Eq. (27) or Eq. (28) (pro-
portional to g2

2) and consists mainly in replacements of the
type hm2

i i
2 ! hm2

sim
2
rii.

As a rough estimate of g1, we may use the data of
Ref. 22 for Ni nanoparticles: l ' 103lB, where lB is the
Bohr magnetron, and R ' 20 nm. For T ¼ 300 K, we find
g1 ' 10%4. Notwithstanding the arbitrariness of these num-
bers, the main point is that it is reasonable to expect that
g1 < 1, in which case the coefficients g2; g3;…; form a
decreasing sequence. This guarantees a rapid convergence of
the series (15), hence, corroborating the validity of the pres-
ent model. On the other hand, one should note that the prod-
uct Ngk may very well be higher than unity.

It is possible to give a physical interpretation to combi-
nations such as Ng2, appearing for instance in Eq. (25). It is
customary to assume that the average inter-particle distance
is proportional to the particle density n ¼ N=V, where V is
the total volume of the sample; i.e., hRi ' n%1=3. Therefore,
the coefficient of the second-order cumulant will scale as
'Nn2 ¼ Vn3. Thus, if we take a system with a fixed density
and increase the total volume, the net dipolar interaction will
also increase. This non-extensivity is a direct consequence of
the long-range nature of the dipolar interaction. Of course, it
is also important to note that it depends much more strongly
on n than on V.

IV. AXIALLY SYMMETRIC POTENTIALS

For definiteness, let us assume that the original free
energy of the particle reads

%bUðmÞ ¼ rm2
z þ 2rmTh; (30)

where

r ¼ Kv
kBT

; h ¼ lHext

2Kv
; (31)

K is the uniaxial anisotropy constant (with easy axis in the
z-direction), v is the volume of the particle, and Hext is an
externally applied field.

The coefficients q must reflect the symmetries contained
in the unperturbed free energy of the reference particle. For
instance, if the external field is zero and r 6¼ 0, then all coef-
ficients must not only depend exclusively on mz but must
also be invariant with respect to inversions. In this section, it
will be shown how the entire scheme greatly simplifies in the
event of axial symmetry, i.e., when h ¼ he3. In this case, the
following general comments can be said about the coeffi-
cients q [having in mind definition (23)].

For the first order coefficients, q1 ¼ q2 ¼ 0 and (in gen-
eral) q3 6¼ 0. As for the second order, q12 ¼ q13 ¼ q23 ¼ 0.
Moreover, q11 ¼ q22 and q11 þ q22 ¼ 1% q33, which yields

q11 ¼ q22 ¼
1% q33

2
:

Thus, the second order term in the cumulant expansion (15)
is reduced to

1

2!
mimjHij ¼

Ng2

10

3q33 % 1

2

# $
m2

z : (32)

The third order coefficients must satisfy q111 ¼ q222 ¼ 0
and q333 6¼ 0. Furthermore,

q112 ¼ q221 ¼ q331 ¼ q332 ¼ q123 ¼ 0:

Using q113 ¼ q223 and q113 þ q223 ¼ q3 % q333, we find

q113 ¼ q223 ¼
q3 % q333

2
:

From these results, recalling the multiplicity of the terms
appearing in the sum, we obtain

1

3!
mimjmkHijk¼

Ng3

70
½ð5q3þq333Þmzþðq3%

5

3
q333Þm3

z ): (33)

Finally, for the fourth-order coefficients, we must have
q1123 ¼ q2213 ¼ q3312 ¼ 0. The same is true of all coeffi-
cients qiiij for j 6¼ i. From q1133 ¼ q2233 and q1133 þ q2233

¼ q33 % q3333, we find

q1133 ¼ q2233 ¼
q33 % q3333

2
:

We may also use that q1111 ¼ q2222 and q1111 þ q2222

þ 2q1122 ¼ 1% 2q33 þ q3333. Moreover, there is also the less
intuitive relation that 3q1122 ¼ q1111. Whence, we find that

q1111 ¼ q2222 ¼ 3q1122 ¼
3

8
ð1% 2q33 % q3333Þ:
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Taking all these relations into account and discarding con-
stant terms, we obtain

1

4!
mimjmkm‘Hijkl ¼ a1m2

z þ a2m4
z ; (34)

where

a1 ¼
Ng4

280
½3% 6q33 % 5q3333) %

Ng2
2

200
½ð3þ q33Þð1% 3q33Þ);

a2 ¼
Ng4

280

3% 30q33 þ 35q3333

8

. /
% Ng2

2

200

1% 3q33

2

. /2

: (35)

Combining Eqs. (32)–(34) in the series expansion (15),
we finally obtain the effective free energy, Eq. (14) for an
axially symmetric problem

%bUeffðz; qÞ ¼ k1zþ k2z2 þ k3z3 þ k4z4;

where from now on, we shall use z * mz for simplicity of
notation. The coefficients k are functions of q

k1 ¼ 2rhþ Ng3

70
ð5q3 þ q333Þ; (36)

k2 ¼ rþ Ng2

20
ð3q33 % 1Þ þ a1; (37)

k3 ¼
Ng3

70
q3 %

5

3
q333

# $
; (38)

k4 ¼ a2: (39)

Note that the terms involving z are not corrections of first
order, but rather of third order; i.e., they depend on g3. As
will be shown, keeping terms up to third order is important
to describe the phase transition to an ordered state. On the
other hand, for simplicity we will usually neglect the fourth-
order correction, which will not alter any of the basic
conclusions.

For the purpose of modelling, it is also convenient to
make the following changes. Define p‘ ¼ hP‘ðzÞi as the aver-
age of the Legendre polynomial of order ‘ on z. Also, define
the new constants

Ng2

10
¼ cr2;

2Ng3

25
¼ xr3; (40)

so that r ¼ Kv=kBT can be interpreted as a measure of
inverse temperature. Then Eqs. (36)–(38) become

k1ðp1; p3Þ ¼ 2rhþ xr3p1 þ xr3 1

14
p3; (41)

k2ðp2Þ ¼ rþ cr2p2; (42)

k3ðp3Þ ¼ %
5

42
xr3p3: (43)

The effective free energy, we shall work with thus reads

%bUeffðz;PÞ ¼ k1ðp1; p3Þzþ k2ðp2Þz2 þ k3ðp3Þz3: (44)

For completeness, we also note that Eq. (35) becomes

a1 ¼ %
Ng4

280

8

7
ð6p2 þ p4Þ þ

Ng2
2

200
p2ðp2 þ 5Þ;

a2 ¼
Ng4

280
p4 %

Ng2
2

200
p2

2:

The consistency relations for the equilibrium moments
are now written in terms of p‘ ¼ hP‘ðzÞi

p‘ ¼

ð1

%1

P‘ðzÞek1ðp1;p3Þzþk2ðp2Þz2þk3ðp3Þz3
dz

ð1

%1

ek1ðp1;p3Þzþk2ðp2Þz2þk3ðp3Þz3

dz

: (45)

This is a set of 3 non-linear equations (for p1, p2, and p3).
They may be solved using Newton’s method and the
integrals on the right-hand side may be computed very effi-
ciently using Gauss-Legendre quadrature. Once the first
three coefficients have been computed, this same formula
can be used to find all other p‘.

V. QUALITATIVE DISCUSSION OF THE RELAXATION
TIME

Before we go into the dynamical problem, where the
relaxation time will be studied in more detail, let us stop to
discuss some equilibrium properties of the system. For sim-
plicity, we will assume an axially symmetric potential, so
that the effective free energy is given by Eq. (44) with coeffi-
cients (41)–(43).

The original formula of N!eel for the relaxation time is
s ' er, where r ¼ Kv=kBT; i.e., it depends on the term pro-
portional to the uniaxial anisotropy. If we assume that the
dipolar interaction is small, then we may retain only the first
correction, which is actually contained in k2z2 and not k1z.
Suppose, also, that h¼ 0. The effective free energy in Eq.
(44), thus, becomes that of a simple uniaxial anisotropy with
effective anisotropy parameter k2 ¼ rþ cr2p2 ' rþ cr2,
since p2 ' 1. The relaxation time in this case scales as

s ' expðrþ cr2Þ: (46)

Whence, we conclude that the first manifestation of the dipo-
lar interaction is to increase the effective anisotropy barrier
of the system and thence the relaxation time. It is also seen
to depend quadratically on the inverse temperature.

A common correction to the N!eel relaxation time, to
include the dipolar interaction, is the Vogel-Fulcher law

s ' exp
Kv

kBðT % T0Þ

. /
; (47)

where T0 is a parameter that arises from the dipolar interaction.
Expanding the term in the exponent in powers of T0, we find

Kv
kBðT % T0Þ

’ Kv
kBT
þ Kv

kBT2
T0:
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To estimate T0, Shtrikman and Wohlfarth39 argued as fol-
lows. For a small magnetic field H, the relaxation time is
roughly approximated by

s ' exp
Kv
kBT
þ lH

kBT

. /
:

Due to the dipolar interaction, they proposed to replace H by
its average

H ! "H ¼ H tanh
lH

kBT

# $
’ lH2

kBT
;

which results in

s ' exp
Kv
kBT
þ lH

kBT

# $2
" #

: (48)

This is precisely the first term in the cumulant expansion of
Sec. III (assuming an axially symmetric potential a priori). It
also has the same quadratic dependence on the temperature.
Whence, the present model is seen to be in agreement with
the Vogel-Fulcher law, which has been extensively tested
experimentally. In a sense, it may be regarded as a general-
isation of this law. Comparing Eqs. (47) and (48), we obtain
the correction T0 ¼ ðlHÞ2=ðkBKvÞ. Since this field H is not
usually known, this result cannot be compared to experimen-
tal data. On the other hand, using the present model, it
becomes possible to express T0 in terms only of known
quantities

T0 ¼
Nl2

10kBKv
l0

4p

! "2
hl2i 1

R6

( )
: (49)

In Ref. 42, Dejardin obtained a correction for the relaxa-
tion time of the form

s ' er

1% d
; (50)

where d (in his paper called k) is of the same order as g1 in
Eq. (22). Incorporating the denominator into the exponential
and expanding as a series in d yields

s ' exp rþ dþ 1

2
d2 þ…

, -
: (51)

Since d is proportional to b ¼ 1=kBT, this can be interpreted
as a series in b, similar to the result here obtained. An impor-
tant difference, however, lies in the fact that in D!ejardin’s
result the first order correction to the dipolar interaction is
linear in b, and not quadratic as in the present case or in
Shtrikman and Wohlfarth’s model just discussed.39

However, this discrepancy is merely due to the fact that
D!ejardin’s calculations involved an expansion carried only
up to first order. If, instead, higher orders had been com-
puted, then the parameter r appearing in Eq. (51) would cer-
tainly be replaced by an effective anisotropy, similarly to
that obtained here.

VI. FERROMAGNETIC ORDER

For sufficiently dense systems, including the third order
corrections represented by x, the present model predicts a
phase transition to a ferromagnetic state. This is illustrated in
Fig. 1, which shows curves of p1 ¼ hzi as a function of the
inverse temperature parameter r, with fixed c ¼ 0:02. These
curves were computed numerically using Eq. (45). Fig. 1(a)
contains curves for h ¼ 0 and different values of x. The
observed phase transition is seen to be very similar to most
mean-field theories of magnetic materials. In Fig. 1(b) simi-
lar results are shown, but with fixed x ¼ 1& 10%3 and vary-
ing applied field h.

To estimate the critical temperature (in terms of r), we
make use of the fact that, at the phase transition odd powers
p1, p3, etc., vanish, whereas even powers p2, p4, etc., vary
continuously. Expanding Eq. (45) for p1 in terms of the odd
powers and assuming h¼ 0 yields

p1 ’ k1fþ k3f
2;

where

f ¼

ð
z2ek2z2

dz
ð

ek2z2

dz

is the average hz2i above the transition (where the odd terms
are zero). We have also approximated hz4i ’ hz2i2. Moreover,

FIG. 1. Magnetisation hzi as a function of inverse temperature r for
c ¼ 0:02. (a) Applied field h¼ 0 and, from right to left, x ¼ 3& 10%4,
1& 10%3, and 1& 10%2. (b) Fixed x ¼ 1& 10%3 and, from bottom to top,
h ¼ 0, 1& 10%3, 5& 10%3, and 1& 10%2. Dashed lines illustrate the critical
temperatures rcrit.
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since the even powers vary continuously at the transition, f is
in fact close to q33, the average over the full distribution. If we
use q333 ’ q33q3 ’ fp1, we obtain the equation

xr3 1% ð3% 5fÞ2

84

( )

f ¼ 1: (52)

The second term is much smaller than the first and may be
regarded as a correction. Neglecting it yields

r ’ 1=ðxfÞ1=3: (53)

In principle f ¼ fðrÞ. However, this dependence is weak and
using f ' 0:8 suffices for a first approximation. This is illus-
trated in Fig. 2, where we show the critical temperature rcrit

as a function of x for fixed c ¼ 0:02. These results were
computed exactly by numerically solving Eq. (45). As can
be seen, they show a good agreement with Eq. (53) when
f ¼ 0:8.

VII. DYNAMICS

To introduce the mean-field approximation into the dy-
namics, we assume that the effective magnetic field he acting
on the particle is the gradient of the effective free energy,
Eq. (14). To illustrate the procedure, we will restrict the dis-
cussion to the axially symmetric system, where the effective
energy is given by Eq. (44). In this case, we find

he ¼ %b
@Ueff

@z
¼ k1ðp1; p3Þ þ 2k2ðp2Þzþ 3k3ðp3Þz2; (54)

where the coefficients k are given by Eqs. (41)–(43). This
field will then enter the Fokker-Planck equation for the dis-
tribution f ðz; tÞ

2sN
@f

@t
¼ @

@z
ð1% z2Þ @f

@z
% f ðz; tÞheðzÞ

. /, -
; (55)

where sN ¼ blð1þ a2Þ=ð2c0aÞ is the N!eel relaxation time,
with a being the magnetic damping and c0 is the electron’s
gyromagnetic ratio. Now, let g(z) be an arbitrary function of
z. It can be shown9 that its average satisfies

2sN
dhgi
dt
¼ ð1% z2ÞheðzÞ

@g

@z

( )
þ hD2gi; (56)

where D2 is the angular part of the Laplacian in spherical
coordinates. The common choice is gðzÞ ¼ P‘ðzÞ, so that
hgðzÞi ¼ p‘ and D2P‘ðzÞ ¼ %‘ð‘þ 1ÞP‘ðzÞ. Using the rela-
tions ð1% z2ÞP‘ ¼ ‘ðP‘%1 % zP‘Þ and

ð2‘þ 1ÞzP‘ ¼ ð‘þ 1ÞP‘þ1 þ ‘P‘%1; (57)

we may write Eq. (56) as

2sN
dp‘
dt
¼ ‘ð‘þ 1Þ

2‘þ 1
hheðzÞ½P‘%1ðzÞ % P‘þ1ðzÞ)i% ‘ð‘þ 1Þp‘:

(58)

Substituting Eq. (54) for heðzÞ this may be further trans-
formed to read

2sN
dp‘
dt
¼ ‘ð‘þ 1Þ

2‘þ 1
ðA1 þA2 þA3Þ % ‘ð‘þ 1Þp‘: (59)

The functions A are determined by repeated use of Eq. (57)

A1¼k1ðp‘%1%p‘þ1Þ;

A2¼2k2ðp2Þ
‘%1

2‘%1
p‘%2þ

2‘þ1

ð2‘%1Þð2‘þ3Þ
p‘%

‘þ2

2‘þ3
p‘þ2

. /
;

A3 ¼ 3k3ðp3Þ
ð‘% 1Þð‘% 2Þ
ð2‘% 1Þð2‘% 3Þ

p‘%3 þ
‘2 þ ‘% 3

ð2‘þ 3Þð2‘% 3Þ
pl%1

.

% ‘2 þ ‘% 3

ð2‘% 1Þð2‘þ 5Þ
p‘þ1 %

ð‘þ 2Þð‘þ 3Þ
ð2‘þ 3Þð2‘þ 5Þ

p‘þ3

/
: (60)

The system of Eq. (59) constitutes an infinite hierarchy of
differential recurrence relations. Upon truncation at some num-
ber n, it can be cast in the form of a system of ordinary differ-
ential equations for the (column) vector p ¼ ðp1; p2;…; pnÞ. In
the limit of infinite dilution both c and x are zero and the
resulting system is linear

dp

dt
¼ Apþ b; (61)

where A is an n& n matrix and b ¼ ð2h=3; 4r=5; 0; 0;…Þ is
a vector of length n. Otherwise, since the coefficients k are
functions of p, we have instead a non-linear system

dp

dt
¼ FðpÞ; (62)

where FðpÞ is a vector-valued function of p. Alternatively,
using the sum convention we could write this component-
wise as

dpi

dt
¼ bi þ Aijpj þ Bijkpjpk:

The first two terms agree with the original terms in Eq. (61).
The last term is a rank 3 tensor and contains quadratic com-
binations of the pi.

FIG. 2. Critical temperature rcrit as a function of x. Points correspond to the
exact solution, manually obtained from Eq. (45) with c ¼ 0:02 and h ¼ 0,
whereas the dashed curve was computed from Eq. (53) with f ¼ 0:8.
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In the infinitely diluted system, Eq. (61), the relaxation
time is roughly proportional to the smallest non-vanishing
eigenvalue of A. The solution of Eq. (61) is a sum of decay-
ing exponentials and that corresponding to the smallest non-
vanishing eigenvalue is dominant at the long-time limit. As
for the non-linear problem in Eq. (62), the relaxation time is
estimated by a linearisation near the fixed point, which is
accomplished as follows. First compute the fixed point pð0Þ

which satisfies Fðpð0ÞÞ ¼ 0. This can either be done directly,
as the roots of a non-linear system of n equations, or using
Eq. (45). The latter is more efficient, since it only requires
the root of 3 equations (for p1, p2, and p3). Next, expanding
Eq. (62) around pð0Þ, we find

dp

dt
’ @F

@p

0000
p¼pð0Þ
ðp% pð0ÞÞ; (63)

where @F=@p is the Jacobian matrix, applied at the fixed
point pð0Þ. The relaxation time is then roughly proportional
to the reciprocal of the smallest eigenvalue !1 of this matrix

s ’ 2sN=!1: (64)

Fig. 3 shows the relaxation time as a function of r for
c ¼ 0.02 and different values of x. When x ¼ 0, one already
observes a substantial enhancement of the relaxation time
due to the first correction c. This is seen by comparison with
the dashed curve representing Brown’s formula for the relax-
ation time of an infinitely diluted system

s ¼ sN

ffiffiffi
p
p

2

er

r3=2
: (65)

Irrespective of this increase, however, the system shows
no phase transition as long as x ¼ 0, i.e., s remains finite for
all r. On the other hand, when x 6¼ 0, the relaxation time is
seen to diverge at the critical temperature rcrit (cf. Fig. 1).
This divergence was also predicted by D!ejardin in Ref. 42
which, in his model, is linked to the singularity present in
Eq. (50) when d! 1. The proposed values for c and x are
merely illustrative, and it is reasonable to expect that in real

systems this divergence would only take place at substan-
tially higher values of r. Nevertheless, the main point is that
for a given x, there exists a point rcrit, approximately given
by Eq. (53), for which the relaxation time diverges.

VIII. DISCUSSION AND CONCLUSIONS

In the present paper, a mean-field approximation was
presented to treat the effects of the dipolar interaction in sys-
tems of small magnetic particles. The main premise of the
approximation was to introduce a new term in the free
energy of a single reference particle, representing the aver-
age effect of the dipolar interaction due to the other particles
in a sample. This reduces the many-body problem to that
of a single-particle in a non-interacting ensemble. As a
result, all of the machinery previously developed for non-
interacting systems may be employed. In devising this new
energy term, the random spatial orientation of the particles
was used, commonly encountered in most real samples. It
was argued that the dipolar field plays the role of a random
field corresponding to a sum of independent identically dis-
tributed random variables. The result was an effective energy
expressed as a cumulant expansion of this random field,
which in the present case was carried up to fourth-order.
While this could be extended to higher order cumulants with
the same procedure, the calculations become increasingly
cumbersome.

The model is able to correctly predict that the first mani-
festation of the dipolar interaction, in diluted systems, is in
the form of an enhancement of the relaxation time. Further
increasing the particle concentration leads to an ordered
state, captured by the third order correction in the model.
The properties of these two phenomena were studied in Secs.
V and VI. Similar changes in the relaxation time were also
predicted by several other authors, who developed similar
mean-field approximations. In particular, the final result here
obtained can be seen as a generalisation of the Vogel-
Fulcher law, which may be viewed as a series expansion in
powers of b ¼ 1=kBT (see also Ref. 39). Moreover—to the
author’s knowledge at least—this is the first time where it is
possible to identify the parameter T0 appearing in the Vogel-
Fulcher law with fundamental parameters of the samples, as
in Eq. (49).

As for the phase transition, one may at first argue that it
is in contradiction with one of the premises of the model;
namely, that the magnetisation vectors of each particle are
statistically uncorrelated. However, it is important to bear in
mind that, as shown in Sec. III, this correlation would only
manifest itself as a fourth-order correction whereas, for the
description of the phase transition, it suffices to consider
corrections only up to third order. Notwithstanding, marked
differences are certainly expected between the properties
predicted by the present model and those of real and strongly
correlated systems, an ill to which most mean-field approxi-
mations suffer.

The procedure to introduce the mean-field approxima-
tion into the dynamics of the problem is standard: the effec-
tive field appearing in the Fokker-Planck equation, which is
the gradient of the free energy, is simply replaced by the

FIG. 3. Relaxation time, Eq. (64), as a function of r, with c ¼ 0:02 and the
following values of x: (1) x ¼ 0, (2) x ¼ 1& 10%3, and (3) x ¼ 2& 10%3.
The dashed curve is Brown’s original formula for the relaxation time,
Eq. (65), which represents an infinitely diluted system with c ¼ x ¼ 0.
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gradient of the new effective energy. There is, however, a
fundamental difference for the effective energy depends
itself on the statistical moments of the magnetisation. This
yields a non-linear Fokker-Planck equation which, upon
expansion in terms of statistical moments, results in a system
of non-linear ordinary differential equations. In the present
paper this was illustrated in the context of axially symmetric
potentials, which was then applied to study the relaxation
time in the presence of the dipolar interaction (Sec. VII).

In the general case of non-axially symmetric potentials,
a difficulty arises in the expansion of the Fokker-Planck
equation, which must now be carried out in terms of spheri-
cal harmonics. This is in principle feasible, but it is the
author’s impression that the result will be extremely cumber-
some given the large number of terms involved.

For the axially symmetric potential, the numerical
solution of the infinite hierarchy of differential recurrence
relations is no more difficult than in the infinitely diluted
case. It thus enables one to test the influence of the dipolar
interaction in a variety of situations, such as magnetic hyper-
thermia, field cooling/zero-field cooling, etc. A more detailed
investigation in this direction will be the subject of a future
publication.

It is interesting to compare the present model with that
of D!ejardin42 given that his formalism is entirely analogous
to that presented here. The only difference lies in how one
approaches the computation of the new term Udip in the
single-particle free energy. Whereas in the present model
this was based on the expansion of the dipolar field, inter-
preted as a random variable, in his model it was instead the
“magnetic charge” distribution of the material that was
expanded. Thus, both models are expected to be entirely
equivalent. The present approach was chosen much more
for a matter of convenience, since the expansion using the
random field is much easier to carry out for higher orders.
On the other hand, the interpretation of the dipolar field as a
random variable is embedded with a physical interpretation
which is admittedly of limited extent. Conversely,
D!ejardin’s approach carries a much deeper physical mean-
ing, with the expansion being derived directly from
Maxwell’s equations.

The results presented were given in terms of moments
such as hlki and h1=R3ki of the magnetic moment and the
distance from the reference particle, respectively. For model-
ling purposes, the actual values of these quantities are not
particularly relevant. On the other hand, when comparing
with experiments, this may be of relevance. The magnetic
moment is usually well described by the log-normal distribu-
tion [the diameter is log-normally distributed and powers of
a log-normally distributed random variable are also log-
normally distributed]. The same cannot be said of the distri-
bution of the inter-particle distances, for which no closed
formula has been agreed on.

To finish, let me discuss the connection between the
present results and the experimental protocol used in Ref. 21
to quantify the strength of the dipolar interaction. There, the
imaginary part v00ð"; TÞ of the AC susceptibility was meas-
ured as a function of temperature for several frequencies " of
the exciting field (with very small amplitude, '1 Oe). They

were then plotted as a function of Tlogð1="s0Þ. For non-
interacting systems the energy barrier is Eb ¼ Kv. From the
relation s ¼ s0expðKv=kBTÞ then follows that Eb=kB

¼ T logðs=s0Þ, where s ¼ 1=" is taken as the frequency of
the experiment. The value of s0 ' 10%9 s was adjusted, so
that the curves of v00 for different frequencies overlapped.
From these results the energy barrier distribution was com-
puted from45

f ðEbÞ ’
6K

pM2
s

v00ð"; TÞ
Ebð"; TÞ

:

Since Eb / v, it is customary to expect that this distribution
should be well adjusted by a log-normal distribution. As the
authors have shown, however, while this were true for
diluted samples, deviations were observed upon increasing
the particle concentration. Let us discuss how these changes
may be accounted for with the present model. It is simpler to
define an effective energy barrier

Eb ¼ rþ cr2:

Note that cr2 / v2 and not v4, as formula Eq. (22) may at
first imply: v is being interpreted as a random variable, which
does not appear in hl2i. We assume that r is a random vari-
able distributed, according to a log-normal distribution with
parameters "r and dr

f ðrÞ ¼ 1ffiffiffiffiffiffi
2p
p

rdr
exp % log2ðr="rÞ

2d2
r

( )

:

If all that is required are the changes in the average energy
barrier, hEbi, then we easily find

hEbi ¼ "red2
r=2 þ c"r2e2d2

r :

The full distribution of Eb is also easily computed and reads

f ðEbÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4cEb
p 1ffiffiffiffiffiffi

2p
p

jðEbÞdr
exp % log2ðjðEbÞ="rÞ

2d2
r

( )

;

where

jðEbÞ ¼ %
1

2c
ð1%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4cEb

p
Þ:

In conclusion, a mean-field approximation was devel-
oped to treat the dipolar interaction in systems of magnetic
nanoparticles randomly distributed in space. The agreement
with other mean-field theories and experimental results was
shown to be quite satisfactory. The generality with which it
was developed should open the way for a variety of impor-
tant investigations, regarding both equilibrium and dynami-
cal properties of the system.
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