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Role of dipolar interaction in magnetic hyperthermia

Gabriel T. Landi*

Instituto de Fı́sica da Universidade de São Paulo, 05314-970 São Paulo, Brazil
(Received 18 June 2013; revised manuscript received 1 November 2013; published 6 January 2014)

The dynamic properties of magnetic nanoparticles are known to be substantially influenced by the dipole-dipole
interaction. In this paper we study how this affects the efficiency of magnetic hyperthermia experiments. In
particular we ask whether it is possible to use the dipolar interaction as a mechanism to increase the heat released
by the nanoparticles, thus improving the application. The investigation is carried out via numerical simulations
based on a mean-field model developed to include the dipolar interaction in the Fokker-Planck equation describing
the time evolution of the system. Both the linear and nonlinear regimes (related to the amplitude of the external
magnetic field) are studied in detail. It is shown that even moderate changes in the particle concentration may
have substantial effects on the magnetization dynamics of the system, being capable of increasing or decreasing
the heat released by orders of magnitude, depending on the values of other system parameters. It is found that the
dipolar interaction can be used to increase the dissipation of magnetically soft particles, but should be avoided in
the case of hard particles.
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I. INTRODUCTION

The physics of small magnetic particles is extremely rich
and has been studied in great detail over the past decades.
Most notably, these materials present a phenomenon known
as superparamagnetism,1,2 whereby each particle behaves as
a classical paramagnet (albeit with an enormous magnetic
moment). Another peculiarity is the strong dependence on
the thermal fluctuations. This is understood by noting that
each particle is also influenced by local anisotropy potentials,
which are usually bistable in nature, the barrier separating the
energy minima being roughly proportional to Kv, where K is
the anisotropy constant and v is the volume. It thus follows that,
due to their reduced dimensions, the ratio σ = Kv/kT may be
of the order of unity, meaning that the thermal fluctuations are
capable of exciting frequent transitions between the energy
minima. Hence, small magnetic particles are characterized
by an intricate competition between the external magnetic
field, the internal anisotropy potential, and the thermal
fluctuations.

A variety of applications have been proposed which,
directly or indirectly, exploit this interdependence. One,
which has advanced substantially in recent years, is magnetic
hyperthermia.3–6 It uses the heat released by the particles
under the influence of a high-frequency magnetic field, H =
H0 cos ωt , to locally heat up (and thus kill) cancer cells. The
efficacy of this application is usually measured using the
specific absorption rate (SAR), which is the power released
by the particles in the form of heat. One may argue7 that a
promising route to maximize the SAR is precisely by exploit-
ing the aforementioned interdependence with temperature. As
an example, note that for small-field amplitudes we have from
the linear response theory that

SAR ∼ ωτ

1 + (ωτ )2
,

where τ ∼ eσ is the relaxation time. Hence, to optimize
the experiment one should attempt to set the frequency
to satisfy ωτ ∼ 1. Microscopically, this is interpreted as
follows. Most of the heat dissipated stems from irreversible
jumps of the magnetization between the barrier separating the

energy minima. Hence, maximizing the SAR is tantamount
to maximizing the number of such jumps. The height of the
barrier, however, is also relevant. For low σ the barrier is
shallow and the jumps occur frequently, irrespective of the
smallness of the field amplitude. The energy released in each
jump, however, is small. Conversely, for large σ the number of
jumps is small but the energy released in each one is large.
The condition ωτ ∼ 1 is thus seen as the optimum point
between both regimes and determines the value σopt which
maximizes the SAR. In conclusion, by adjusting the external
field’s parameters with intrinsic properties of the particles and
the environment, it is possible to increase the efficiency of the
experiment by orders of magnitude.

There is another property present in most systems which,
to my knowledge, has never been exploited in the above sense,
namely the dipole-dipole interaction between the particles.
The practical relevance of this effect has been demonstrated
by several experiments8–14 and numerical simulations.15–22 By
itself, it is already of fundamental importance; for instance, the
exact way with which it affects the dynamics of the system is
still an open question.23 In addition, however, and in view of the
arguments just given, it is reasonable to ask whether the dipolar
interaction may also be exploited to optimize the SAR. It is the
purpose of this paper to give a partial answer to this question.
This will be accomplished by numerical simulations of the
SAR using a mean-field model developed in Ref. 24. This
approach, as will be shown, is computationally very efficient,
thus having the advantage of allowing an ample investigation
of the influence of all important parameters. This is, in my view,
of substantial scientific relevance given that both experimental
and simulation (e.g., Monte Carlo) studies are always limited
by a finite number of samples.

II. MEAN-FIELD MODEL

Recently, I have worked out a mean-field model for the
dipolar interaction24 which predicts an increase in the effective
magnetic anisotropy barrier.25 Let σ = Kv/kT be again this
barrier in an infinitely diluted system. Then, the modified
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barrier according to this model is

σeff = σ + γ σ 2p2, (1)

where p2 is the average of a Legendre polynomial (p2 ∼ 0.9)
and

γ = N

10

( 〈μ2〉μ0

4πKv

)2 〈
1

R6

〉
. (2)

Here N is the total number of particles in the system, μ0 is the
permeability of vacuum, μ is the magnetic moment, and R is
the interparticle distance; 〈μ2〉 and 〈1/R6〉 are the statistical
averages of these quantities. This result show an extremely
strong dependence of σeff on the interparticle distance: slight
increases in the concentration may lead to substantial increases
in the anisotropy barrier. This is even more salient in the
high-barrier regime (σ � 1) due to the quadratic dependence
in the last term of Eq. (1). It is worth noting that one of
the premises of this model is that the particles are assumed
to be randomly distributed in space and, in the process of
constructing the mean-field approximation, the actual form
of the sample does not enter (this is clearly an artificiality
in the model since the shape of the sample is known to be
important).

In this paper I propose to use this model to investigate
the role of the dipolar interaction in the dynamic properties
of magnetic nanoparticles, and how this affects the SAR
in hyperthermia experiments. This will be accomplished
numerically, by introducing a modified effective potential in
the Fokker-Planck equation that describes the stochastic time
evolution of the system. It will be shown that both in the linear
and the nonlinear regimes, the dipolar interaction may have a
profound influence on the SAR and other properties, even for
quite diluted systems. By tuning the particle concentration, it
will be shown that the SAR can be enhanced by up to two
orders of magnitude. Conversely, in other situations it may be
hindered by similar, if not worse, amounts.

The calculations will assume that the external magnetic
field is collinear with the anisotropy easy axis. As has been
shown,26 this approximation is entirely reasonable, at least
with regards to the qualitative behavior of the system. The
variable of interest is thus z = cos θ , the angle that the
magnetization vector makes with the easy axis. The effective
free energy, as developed in Ref. 24, is given by

− Ueff

kBT
= 2σhz + (σ + γ σ 2p2)z2, (3)

where p� = 〈P�(z)〉 is the expectation of a Legendre polyno-
mial of degree � in z (the fact that the free energy depends
on the expectation of z, and not only on z itself, is due to the
mean-field nature of the model).

Equation (3) is actually the first term in an expansion in
the parameter γ , which measures the strength of the dipolar
interaction. We are therefore assuming explicitly that the
interaction is weak in order to truncate at first order. Based
on estimates made in Ref. 26 (see also Sec. IV), this is a
reasonable approximation. One of the main results of the model
developed in Ref. 26 is that the first correction is proportional
to z2 and hence acts to increase the effective anisotropy barrier.
Consequently, this correction does not predict any phase
transitions. The second order correction, however, contains

a term proportional to z3 and a term proportional to z. The
latter, as was shown in Ref. 26, does induce a phase transition
to a ferromagnetic state. Hence, in the present analysis we
are ignoring higher order corrections that can induce phase
transitions and working within first order in the intensity of
the dipolar interaction.

The field h = h0 cos ωt is given in reduced units: h =
μH/(2Kv). The effective field stemming from the free energy
(3) is

heff = − 1

kBT

∂Ueff

∂z
= 2σh + 2(σ + γ σ 2p2)z. (4)

This field enters in the Fokker-Planck equation for the time
evolution of f (z,t), the probability density of z; viz.,24,26–29

2τN

∂f

∂t
= ∂

∂z

{
(1 − z2)

[
∂f

∂z
− f (z,t)he(z,t)

]}
, (5)

where τN = μ(1 + α2)/(2γ0αkBT ) is the Néel relaxation time
(α is the magnetization damping and γ0 is the electron’s
gyromagnetic ratio).

The Fokker-Planck equation may be used to obtain an
equation for the time evolution of p� = 〈P�(z)〉. As shown
in Ref. 24, this is given by

2τN

dp�

dt
= �(� + 1)

2� + 1
(A1 + A2) − �(� + 1)p�, (6)

where

A1 = 2σh(p�−1 − p�+1),

A2 = 2(σ + γ σ 2p2)

[
� − 1

2� − 1
p�−2 + 2� + 1

(2� − 1)(2� + 3)
p�

− � + 2

2� + 3
p�+2

]
.

This constitutes an infinite hierarchy of differential-
recurrence relations for the p�. Unlike in the infinitely diluted
case (γ = 0), this system is nonlinear due to the product with
p2 appearing in A2. Organizing the equations we may write,
using the sum convention,

dpi

dt
= ai + aijpj + aijkpjpk.

The last term is zero when γ = 0, thus recovering the linear
hierarchy of the infinitely diluted case. Alternatively we may
define p = (p1,p2, . . . ,pn), where n is some large enough
truncation value; then

d p
dt

= F( p),

where F is a vector-valued function of p. This system of
ordinary differential equations is solved numerically26 for
a large enough value of n (to ensure convergence). After
discarding several periods of the external field, we obtain
a steady-state hysteresis loop (the variable of interest is
p1 = 〈z〉). The SAR is computed from the area A of this
loop by numerical quadrature: SAR = (ω/2π )A. The free
parameters are σ , γ , h0, and ω but, for simplicity,30 we fix
ωτN = 10−4.
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FIG. 1. (Color online) Hysteresis loops in the linear regime, h0 =
0.005. From (a) to (f), different values of σ , as denoted. Black solid,
γ = 0; blue dashed, γ = 0.01; red dotted, γ = 0.05.

III. NUMERICAL RESULTS

In Figs. 1 and 2 we present hysteresis loops for the linear
(h0 = 0.005) and nonlinear (h0 = 0.5) regimes, respectively.
In each figure we show curves for γ = 0, 0.01, and 0.05. It
is very important to highlight that, for instance, a fivefold
increase in γ means, according to Eq. (2), a mere 30%
decrease in the interparticle distance. Let us start with the
infinitely diluted case (black solid curves). For low values
of σ we first observe the “high temperature” regime where
the loops resemble paramagnetic systems, with a small area.
Then, upon increasing σ , we see that the area of the loops
reach a maximum (when σ = 14) which then falls for even
larger σ . This is a manifestation of the effect discussed in
the beginning of the paper about the maximum occurring at
ωτ ∼ 1.

Next we turn to the case γ �= 0. The main point to be
seen in Fig. 1 is that the dipolar interaction may both increase
and decrease the hysteresis loop area, depending on the value
of σ . Up to σ = 10 one observes an increase in the area
upon increasing γ , which is modest at first but pronounced

FIG. 2. (Color online) Hysteresis loops in the nonlinear regime,
h0 = 0.5. All other details are similar to Fig. 1.

for σ = 10. Conversely, when σ � 12 it is possible to
see first an increase when γ = 0.01 (blue dashed curves)
followed by a substantial drop when γ = 0.05 (red dotted
curves).

In the nonlinear regime (Fig. 2) a similar behavior is
observed. The curves now tend to behave more like bulk
hysteresis loops. When γ = 0, the area continues to increase
all the way up to σ = 16. By introducing the dipolar interac-
tion, however, this changes dramatically. Now up to σ = 14,
increasing γ enhances the area substantially. Then, for σ = 16,
an abrupt diminution of the loop height is observed. These
results indicate, as mentioned in the beginning of the paper,
that the effect of the dipolar interaction can be extremely strong
leading to abrupt variations even for small changes in the
parameters.

The dependence of the SAR with the anisotropy barrier σ

is shown in Fig. 3 for both the linear and nonlinear regimes.
Starting once again with the linear regime, the SAR is seen
to present an accentuated peak. As γ increases this peak is
shifted to the left and narrowed further, its maximum height
also diminishing. The behavior in the nonlinear regime is
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FIG. 3. (Color online) The SAR as a function of σ for different
values of γ in the linear regime [h0 = 0.005; panel (a)] and nonlinear
regime [h0 = 0.5; panel (b)]. Black solid, γ = 0; blue dashed, γ =
0.01; red dotted, γ = 0.05.

entirely different. When γ = 0 there is no peak, but rather
a broad curve that extends well into much higher values of
σ . Profound changes are then observed due to the dipolar
interaction. The curve now gradually approaches a more finely
peaked behavior and is substantially shifted to smaller values
of σ .

Finally, in Fig. 4 we present the SAR as a function of
γ . Upon noticing the logarithmic scale in the ordinate, it
is possible to fathom the remarkable effect that γ (i.e., the
dipolar interaction) has in the SAR. It may, for some values
of σ , increase the SAR by up to two orders of magnitude
while, for other values, decrease it by more than four orders
of magnitude. Let us highlight some of the more interesting
behaviors. We start with the curve for σ = 10 in Fig. 4(a)
(stars). It first increases by a factor of 10 and then decreases
as γ is increased further. Another remarkable example is the
curve for σ = 14 in the nonlinear regime [Fig. 4(b), open
squares]. It increases gradually up to γ = 0.06 and then
abruptly falls by almost 3 orders of magnitude as γ goes from
0.06 to 0.1. This corresponds to a mere 10% further increase in
the concentration. Finally, it is interesting to note the behavior
of the soft particles, σ = 6 [Figs. 4(a) and 4(b), filled circles]. It
shows a gradual increase in the SAR with increasing γ . Thus,
whereas for γ = 0 this condition would not be suitable for
hyperthermia due to its low SAR, upon introducing the dipolar
interaction it becomes comparable with other conditions and
thus appropriate for the application.

FIG. 4. The SAR as a function of γ for different values of σ in
the linear [h0 = 0.005; panel (a)] and nonlinear regime [h0 = 0.5;
panel (b)]. Filled circles, σ = 6; filled squares, σ = 8; stars, σ = 10;
open circles, σ = 12; open squares, σ = 14.

IV. DISCUSSION AND CONCLUSIONS

From the analysis of the previous result we conclude that
the ranges of σ in which the SAR increases or decreases is
roughly related to the position σopt that maximizes ωτ ∼ 1.
This is the peak of the black solid curve in Fig. 3(a). Since,
upon increasing γ , we observe a shift to the left, we expect an
increase in the SAR upon increasing γ when σ < σopt, with
the converse being expected in the complementary interval.
The reason is as follows. When σ < σopt we are in the
low-barrier regime where the jumps are frequent but the
energy released in each jump is small. Increasing the dipolar
interaction increases the anisotropy barrier and thus takes the
system closer to the optimum condition σopt ∼ ωτ . Conversely,
when σ > σopt we are in the high-barrier regime where the
external field already has a substantial difficulty in promoting
the jumps. Thus, increasing the dipolar interaction merely
increases the height even more, further hampering the efficacy
of the process. This analysis is only approximate but does
provide useful physical insight. It is, however, more fitting of
the linear regime where the external field is unable to bend the
anisotropy potential. The nonlinearity introduced by this bend-
ing makes the analysis more difficult but it may be conjecture
that, notwithstanding, the main conclusions remain roughly
true.

It is certainly expected that effects such as the size
distribution should play a role in analyzing these results.
However, experience shows that their influence is more in
the effect of smoothing some of the more abrupt features
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of monodisperse systems, rather than completely destroying
them.

Let us briefly compare our results with the literature on
interacting magnetic nanoparticles. In Ref. 16 the dipolar
interaction is investigated via simulations of the stochastic
Landau-Lifshitz equation. The authors found a decrease in the
SAR with particle concentration. However, by analyzing their
parameters we see that their simulations are for the regime
where ωτ � 1; this is the blocked regime where σ � σopt.
Their results are therefore in complete agreement with ours.
See, for instance, the curve with σ = 14 in Fig. 4. In Ref. 15,
Mehdaoui et al. observe, both experimentally and theoreti-
cally, an increase in the hyperthermia efficiency due to the
dipolar interactions when the magnetic particles are soft. This
correspond to ωτ � 1, which again agrees with our results
(cf. the curve for σ = 6 in Fig. 4). Finally, it is worth comment-
ing that Martinez-Boubeta et al.,14 who experimentally studied
interacting core-shell particles, reached the same qualitative
conclusions about the dipolar interaction, namely that for soft
particles, upon increasing the concentration, the SAR first
increases up to a point where the dipolar interaction becomes
comparable with the anisotropy field, after which it starts to
decrease with concentration.

To finish, let us make a rough estimate of γ , Eq. (2). We
may take μ ∼ 104μB , R ∼ 30 nm, Kv ∼ 5kBT , T = 300 K,
and N ∼ 105. This yields γ ∼ 0.02, well within the bounds
studied in this paper.

In conclusion we have analyzed the role of the dipolar
interaction in the specific absorption rate (heat released by
the particles) in the context of magnetic hyperthermia. The
analysis was performed using a mean-field model derived in
Ref. 24. It predicts a strong influence of the dipolar interaction
on the SAR, being capable of both increasing and decreasing
it, depending on the other system parameters, σ , h0, and
ω. The main result of this paper is that magnetically soft
particles, which usually have a low SAR, can profit from
the dipolar interaction which increases the energy barrier and
thus improves the SAR. On the other hand, magnetically hard
particles are seen to be further hampered by increasing the
dipolar interaction due to a larger freezing of the magnetic
spins. These results follow directly from the fact that the
dipolar interaction acts to increase the effective anisotropy
barrier. Their strength, however, could only be realized by the
numerical simulations performed and, as was observed, can be
extremely strong depending on the other system parameters. It
is hoped that, exploiting these results, one may use the dipolar
interaction beneficially, as a mechanism to increase the SAR
in hyperthermia experiments.
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