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Effect of diffusion in one-dimensional discontinuous absorbing phase transitions
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It is known that diffusion provokes substantial changes in continuous absorbing phase transitions. Conversely,
its effect on discontinuous transitions is much less understood. In order to shed light in this direction, we study
the inclusion of diffusion in the simplest one-dimensional model with a discontinuous absorbing phase transition,
namely, the long-range contact process (σ -CP). Particles interact as in the usual CP, but the transition rate depends
on the length � of inactive sites according to 1 + a�−σ , where a and σ are control parameters. The inclusion
of diffusion in this model has been investigated by numerical simulations and mean-field calculations. Results
show that there exists three distinct regimes. For sufficiently low and large σ ’s the transition is, respectively,
always discontinuous or continuous, independently of the strength of the diffusion. On the other hand, in an
intermediate range of σ ’s, the diffusion causes a suppression of the phase coexistence leading to a continuous
transition belonging to the directed percolation universality class.
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I. INTRODUCTION

Discontinuous absorbing phase transitions in low di-
mensions have attracted a great deal of interest in recent
years [1–7]. Much of this effort has been based on the
fundamental problem of determining the necessary ingredients
for their occurrence. Generically, discontinuous transitions
require an effective mechanism that suppresses the formation
of absorbing minority islands (within the active phase) induced
by fluctuations. Although they may occur in larger dimensions,
there is strong evidence that in one dimension short-range
interactions cannot stabilize compact clusters [4]. In contrast,
a long-range counterpart of the contact process (CP), named
σ -CP [5], has revealed such occurrence, even in one dimen-
sion. In the σ -CP, particles are created and annihilated like
in the usual short-range CP [1], but the creation rate depends
on the length � of the island of inactive sites according to the
expression 1 + a�−σ . For small σ the interactions are effec-
tively long range leading to a discontinuous transition [5]. This
can be understood by noting that the long-range interaction
introduces a collective behavior that is able to suppress the
formation of minority islands. On the other hand, when σ is
large the phase transition becomes continuous and belongs to
the directed percolation (DP) universality class, in similarity
with the usual CP. Hence there exists a tricritical point σt where
the transition changes from discontinuous to continuous.

It is known that the presence of certain dynamics, such
as disorder and diffusion, may drastically change the critical
behavior and the classification of the phase transition. As in
the equilibrium case, disorder may induce distinct universality
classes and Griffiths phases [1,8–10]. Particle diffusion, on the
other hand, can also be responsible for substantial changes,
including not only the emergence of distinct universality
classes [9] but also the appearance of novel structures in
the phase diagrams [11]. However, much of the effort on
understanding the role of these ingredients has focused on
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continuous transitions, with the situation for discontinuous
transitions being much less understood [12].

In order to shed some light in this direction, we analyze
the role of diffusion in the σ -CP model, which is perhaps
the simplest one-dimensional system presenting a discontinu-
ous absorbing transition. This has been accomplished using
numerical simulations performed in both the constant rate
(ordinary) [1] and the constant particle number (conserved) en-
sembles [13–16]. The simulations were performed for several
values of the diffusion rate and several values of σ . We have
found that the tricritical point σt (which signals the crossover
from continuous to discontinuous transition) decreases as the
diffusion increases. This leads to three distinct scenarios. For
sufficiently small and large values of σ , the diffusion does not
change the phase transition, remaining always discontinuous
and continuous, respectively. On the other hand, in an inter-
mediate range of σ ’s, the diffusion causes a suppression of the
phase coexistence leading to a continuous transition belonging
to the DP universality class. The problem is also studied using
mean-field theory in the pair approximation. As we show, how-
ever, mean-field calculations do not agree with the numerical
results: they predict that σt should increase with D and not the
inverse. The reasons for this discrepancy are discussed.

This paper is organized as follows: In Sec. II we present the
model and in Sec. III the mean-field results. Numerical results
are presented in Sec. IV and in Sec. V we draw the conclusions.

II. MODEL

The one-dimensional diffusive σ -CP [5] is defined as
follows. To each site i of a one-dimensional lattice we
associate an occupation variable ηi that takes the values
0 or 1 according to whether the site is empty or occupied. The
dynamics involves three processes: spontaneous annihilation
of a single particle (schematically represented by 1 → 0),
catalytic creation of a particle (0 → 1), and particle hoppings
to a nearest-neighbor empty site (01 → 10 or 10 → 01). The
transition rate wi is given by the following expression:

wi = DwD
i,i+1 + (1 − D)

(
αwa

i + wc
i

)
, (1)
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where D and α are the diffusion and annihilation rates,
respectively, and wD

i,i+1, wa
i , and wc

i represent the diffu-
sion, annihilation, and creation processes, respectively. Their
expressions are given by wD

i,i+1 = ηiη̄i+1 + η̄iηi+1 (where
η̄i = 1 − ηi), wa

i = ηi , and

wc
i = 1

2

∞∑
�=1

(1 + a�−σ ){ηi−1η̄i η̄i+1 · · · η̄i+�−1ηi+�

+ ηi+1η̄i η̄i−1 · · · η̄i−�+1ηi−�}, (2)

where a and σ are parameters. When a = 0 one recovers the
original short-range CP [1,17]. As in that case, single particles
are created only in empty sites surrounded by at least one
particle. However, in the σ -CP the creation rate depends on the
length � between the particles surrounding the empty chosen
site.

For large values of α, the system is constrained into the
absorbing state, in which no particles are allowed to be created.
Decreasing the parameter α, a phase transition to an active
state takes place, whose location and classification depends
on the parameters a, σ , and D. In order to compare with
previous results [5,6,16], we take the value a = 2. In this case,
when D = 0 the crossover regime occurs at σt = 1.0(1); i.e.,
the transition is continuous for σ > 1 (belonging to the DP
universality class) and discontinuous for 0 < σ < 1.

III. MEAN-FIELD RESULTS

Here we present a mean-field analysis of the σ -CP
with diffusion. Let f (η) be an arbitrary function of the
vector η = (η1,η2, . . .) and define ηi = (η1,η2, . . . ,η̄i , . . .) and
ηi,j = (η1,η2, . . . ,η̄i , . . . ,η̄j , . . .). From the underlying master
equation it can be shown that the equation governing the time
evolution of 〈f 〉 is

df

dt
=

N∑
i=1

{
D

〈
[f (ηi,i+1) − f (η)]ωD

i,i+1

〉

+ (1 − D)
〈
[f (ηi) − f (η)]

[
ωc

i + αωa
i

]〉}
, (3)

where the first and second terms take into account the particle
diffusion and the creation and annihilation subprocesses,
respectively.

From Eq. (3) we derive relations from the mean-field
approach in the pair approximation. This second-order ap-
proximation is required since, in the simple mean field, the
diffusion term drops out entirely. Hence, we approximate the
probability pertaining to a string of sites by

P (η1,η2,η3, . . . ,η�) � P (η1,η2)P (η2,η3) · · · P (η�−1,η�)

P (η2)P (η3) · · ·P (η�−1)
.

(4)

Since two equations are required, we chose the system density
ρ = P (1) = 〈ηi〉 and the two-site probability z = P (01) =
〈η̄iηi+1〉. Making use of the translation symmetry of the
problem it is possible to show that Eq. (3) for f = ηi becomes

dρ

dt
= (1 − D)

{
z − αρ + az2

1 − ρ − z
Liσ

(
1 − ρ − z

1 − ρ

)}
,

(5)

FIG. 1. Mean-field results. (a) and (b) ρ vs α for a = 2, D = 0.15,
and σ = 1.5 and 2.4. The dashed curve in (a) correspond to the
unstable solution. (c) Phase diagram showing the value σt (D) where
the transition changes from continuous to discontinuous. For D > 0.5
the transition is always discontinuous.

where Liσ is the polylog function defined as

Liσ (x) =
∞∑

�=1

x�

�σ
.

Similarly Eq. (3) for f = η̄iηi+1 yields

dz

dt
= (1 − D)

{
α(ρ − 2z) − (1 + a)z2

1 − ρ

}

+ 2D

{
z − z2

ρ(1 − ρ)

}
. (6)

The steady-state behavior is obtained by setting dρ/dt =
dz/dt = 0 in Eqs. (5) and (6), which yields a system of
algebraic equations for ρ and z [18].

In resemblance with the van der Waals loop, which sig-
nals a discontinuous transition studied under mean-field-like
approaches, the phase transitions can be identified by the
existence of a spinodal behavior. The coexistence point is
estimated by the maximum value of α, whose absence signals
a continuous phase transition.

In Figs. 1(a) and 1(b) we exemplify mean-field results
for a = 2, D = 0.15, and distinct σ ’s. The transition is
seen to be discontinuous for σ = 1.5 and continuous for
σ = 2.4. The complete phase diagram is shown in Fig. 1(c)
along with the tricritical line σt (D) that separates continuous
from discontinuous transitions. We see that σt increases
monotonically with D until D = 0.5. Above this point the
transition is always discontinuous. This monotonic increase
of σt (D) with D, as will be seen below, is in disagreement
with the numerical simulations. The reasons for this will be
discussed in Sec. V.
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IV. NUMERICAL RESULTS

We now present the numerical simulations of the diffusive
σ -CP model. For completeness, and in order to obtain a global
picture, we perform simulations in both the constant particle
number ensemble and the constant rate ensemble.

A. Constant particle number ensemble

In the constant particle number (conserved) ensemble, the
total particle number n is held fixed and both creation and
annihilation processes are replaced by just one jump process.
Letting wij be the transition rate denoting the jump from a
particle at i to an empty site j , we have that

wij = wa
i w

c
j . (7)

This jump process can be viewed as the annihilation of a
particle in site i and the creation in site j . In Refs. [14,15,19,20]
it has been shown that the mean annihilation rate ᾱ is given by

ᾱ =
〈
wc

j

〉
c〈

wa
i

〉
c

, (8)

where 〈· · · 〉c denotes the average of a given quantity in this
ensemble. Note that the above expression for the average
ᾱ is equivalent to the expression 〈ωc

j 〉 = α〈wa
j 〉 obtained for

the constant rate ensemble in the steady regime.
An advantage of using the conserved ensemble is that, in

this version the σ -CP does not have, strictly speaking, an
absorbing state (in contrast to the constant rate ensemble),
except the trivial case n = 0. Another advantage is that both
the transition point and the classification of the transition
are readily obtained by performing numerical simulations for
distinct n’s in the subcritical regime. According to Broker and
Grassberger [21] and afterwards [13,16,20], the addition of
particles placed in an infinite lattice drives the system toward
the transition point α0 according to the expression [13,16,21]

ᾱ − α0 ∼ n−1. (9)

Thus, we may locate the transition point by linearly extrap-
olating 1/n (note that n is held fixed but the system density
ρ → 0).

The classification of the phase transition is obtained by
measuring the particle displacements for different n. Letting
R be the mean distance between the particles located at the
extremities of the system, we have that [1,16,20]

R ∼ n1/dF , (10)

where dF is the fractal dimension. For one-dimensional
systems belonging to the DP universality class, the clusters
are fractals with fractal dimension dF = 0.747 92 . . . [22],
whereas at the phase coexistence it is the proper Euclidean
dimension d = 1, consistent with the emergence of a compact
cluster. Hence, the order of the transition may be inferred by
analyzing the slope of ln R vs ln n.

The actual numerical simulation in the conserved ensemble
is realized as follows. With probability D a randomly chosen
particle hops to its nearest-neighbor site (provided it is empty),
whereas with probability 1 − D the jumping process is chosen
instead. In this case an occupied site is chosen at random. If
its neighbor is empty, we occupy it with probability p� =
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FIG. 2. Log-log plot of the maximum distance R vs the particle
number n for distinct values of σ and for D = 0.1 (a), 0.5 (b), and
0.95 (c). The upper and lower straight lines have slopes 1/dF =
1.337 . . . and 1, respectively [cf. Eq. (10)]. In (d) we plot the cluster
density ρcl vs D, at the phase coexistence, for distinct values of σ .

(1 + a�−σ )/(1 + a), where � is the length of the island of
inactive sites in which the active site is located. The constant
factor 1/(1 + a) is used in order to guarantee that p� � 1. The
particle that occupies the empty site is also chosen at random,
thus conserving the total particle number n.

In Fig. 2 we show results for D = 0.1, 0.5, and 0.95
and distinct values of σ . For D = 0.1 [Fig. 2(a)] the phase
transition is discontinuous for 0 < σ < 0.9 and continuous
for σ � 0.9. This is close to the case D = 0, in which the
crossover occurs at σt = 1.0(1) [5,16]. The cases D = 0.5
and 0.95 exhibit a similar behavior. However, the effect of
diffusion is now more pronounced with the crossover occurring
at σt = 0.75(5) and 0.45(5), respectively. Inspection of the
cluster density ρcl = n/R (at the phase coexistence) shown in
Fig. 2(d) reveals that the particle clusters become less compact
as D increases.

The values of the tricritical line σt (D) are summarized in
Fig. 3, where the monotonically decreasing behavior is clearly
observed. This is in stark disagreement with the mean-field
predictions of Fig. 1(c), in which σt (D) grows with D. The
reasons for this discrepancy will be discussed below.

All these results are found to be similar to those obtained
in Ref. [6], in which distinct interaction rules have been
considered in order to study the phase coexistence by “weak-
ening” the long-range interaction. [23]. Thus, the above results
suggest that the diffusion also “weakens“ the long-range
interaction, in similarity to Ref. [6]. As a consequence, in
a high diffusion regime, the phase coexistence yields only
for sufficiently lower σ ’s. Since the tricritical line σt (D) is a
decreasing function of D, when σ > 1 the role of the diffusion
is irrelevant with respect to the change in the order of the
transition. In other words, the diffusion does not shift the
phase transition, remaining continuous for all values of σ > 1.
This can be understood by recalling that, when σ is large, the
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FIG. 3. The tricritical line σt (D) obtained from numerical simu-
lations (cf. Fig. 2).

long-range factor 1 + a�−σ , responsible for the occurrence of
a phase coexistence, decays rapidly with �, becoming closer to
the short-range value 1. Since in this case the phase transition
is continuous for all diffusion rates [3], the conclusion follows.

B. Constant rate ensemble

In order to confirm the above conclusions, we have
also performed numerical simulations in the constant rate
ensemble. Unlike the conserved ensemble, the creation and
annihilation rates are the control parameters, whereas the
particle density is a fluctuating quantity. To locate the transition
point α0 and classify the transition, we perform spreading
simulations starting from an initial configuration with a single
particle at the origin. The proper quantities to evaluate are the
survival probability Ps(t), the mean particle number N (t), and
the mean square displacement R2(t). At the transition point
they follow power-law behaviors given by

Ps(t) ∼ t−δ, N (t) ∼ tη, R2(t) ∼ t2/z, (11)

where δ, η, and z are associated dynamic critical exponents.
For continuous transitions belonging to the DP universality
class these exponents present the well-known values

δ = 0.159 464(6), η = 0.313 686(8), z = 1.580 745(10).
(12)

Instead, at the one-dimensional phase coexistence (despite the
order-parameter gap) their values read [9,10]

δ = 1/2, η = 0, z = 1. (13)

Hence, the order of the phase transition can be obtained from
the values of these critical exponents.

This analysis is also useful since it allows one to draw a
comparison with results obtained from the conserved ensem-
ble, whose above dynamic exponents and fractal dimension
dF are related through the expression dF = 2(η + δ)/z. Away
from the critical point, all quantities deviate from power-law
behaviors, reaching a regime of endless activity for α < α0

and exponential decay toward extinction for α > α0. The
continuous transitions have also been confirmed by studying
the time decay of the system density ρ starting from a fully
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FIG. 4. (Color online) The time evolution of Ps(t) and N (t) in the
constant rate ensemble for distinct values of α and D = 0.1. (a) and
(b) σ = 0.25; (c) and (d) σ = 0.8; (e) and (f) σ = 1.2. The slopes of
the black straight lines are given by Eq. (13) for (a)–(d) and Eq. (12)
for (e) and (f). The inset in image (f) shows the decay of the density
ρ and the black line has slope θ = 0.159 464(6).

occupied initial configuration. At the critical point it behaves
as ρ(t) ∼ t−θ , where for the CP θ = δ = 0.159 464(6). In
contrast, in the active and absorbing phases, ρ(t) converges
to a well-defined value ρ̄ �= 0 and vanishes exponentially,
respectively. For the evaluation of ρ, we have considered
L = 20 000 and averages have been evaluated over 30 000
initial configurations.

The main results for the constant rate ensemble are shown
in Figs. 4–6 for D = 0.1, 0.5, and 0.95, respectively. In
each figure we plot both Ps(t) and N (t) for three distinct
values of σ ; namely, 0.25, 0.8, and 1.2. In all cases, the
above quantities have been calculated over 30 000 initial
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FIG. 5. (Color online) Same as Fig. 4 but for D = 0.5. The slopes
of the black straight lines are given by Eq. (13) for (a) and (b) and
Eq. (12) for (c)–(f). The insets show the time decay of ρ for distinct
α’s and the black lines have slope θ = 0.159 464(6).
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FIG. 6. (Color online) Same as Fig. 5 but for D = 0.95. The
slopes of the black straight lines are given by Eq. (13) for (a) and
(b) and Eq. (12) for (c)–(f). The insets show the time decay of ρ for
distinct α’s and the black lines have slope θ = 0.159 464(6).

configurations. In Fig. 4 we show the main results for D = 0.1.
When σ = 0.25 and 0.8 [Figs. 4(a)–4(d)], we observe an
algebraic behavior with the exponents δ = 1/2 and η = 0
of Eq. (13) [see also Eq. (11)]. This signifies, in agreement
with Fig. 2, a discontinuous transition. On the other hand, for
σ = 1.2 [Figs. 4(e) and 4(f)] the power-law regime has the
DP exponents of Eq. (12), indicating a continuous transition.
The time decay of ρ, shown in the inset of Fig. 4(d), confirms
the algebraic behavior with the DP exponent. The analysis
is repeated in Figs. 5 and 6 for D = 0.5 and 0.95. In both
cases the phase transition is discontinuous for σ = 0.25 and
continuous for σ = 0.8 and 1.2, in agreement with results from
the conserved ensemble and thus confirming that σt decreases
by raising D. Analysis of the time decay of ρ reinforces this
result. The middle curves in the inset present algebraic decays
consistent with the DP values θ = 0.159 464(6) at α’s very
close to the α0. In fact, these estimates are somewhat larger
than α0, due to finite size effects.

Hence, we conclude that the results of the constant rate
ensemble are in complete agreement with those of the
conserved ensemble. In contrast with mean-field results, the
value σt , where the order of the transition changes, diminishes
with increasing diffusion.

V. DISCUSSION AND CONCLUSION

In this paper we have investigated the role of diffusion in
the simplest model presenting a discontinuous phase transition

with an absorbing state. It is a counterpart of the usual contact
process, in which the particle creation rate depends on the
length � of inactive islands surrounding the creation site
according to 1 + a�−σ . In the absence of diffusion, a tricritical
point σt separates discontinuous from continuous transition.
For a = 2 this point occurs at σt = 1.0(1).

We investigated, by means of numerical simulation and
mean-field calculations, the effect of diffusion on the phase
coexistence regimes and crossover σt . Results for distinct
values of σ and diffusion rates showed that the crossover σt is
monotonically reduced as the diffusion increases, similarly to
the interactions introduced to weaken the long-range feature
studied in Ref. [6]. This suggests that by increasing the
diffusion toward the limit D → 1, only sufficient small σ are
able to stabilize compact clusters. In fact, results for D = 0.99
(cf. Fig. 3) show that for sufficiently low σ (σ � 0.2), the
transition is still discontinuous, but the value σt ∼ 0.3 signals
the emergence of a continuous transition. Hence, our results
reveal a novel role played by the diffusion in phase transitions,
being responsible for weakening the compact displacement
among the particles. Notwithstanding, we emphasize that
further studies of discontinuous absorbing transitions in the
presence of diffusion are necessary in order to yield a complete
picture of the problem.

Finally, we turn to the marked disagreement between the
mean-field results and the numerical simulations, regarding
the dependence of σt on D. As we have seen, in the mean-field
approximation σt was found to be a monotonically increasing
function of D, whereas in the numerical simulations the
exact opposite behavior was observed. Moreover, in the
mean field we have found that above D = 0.5 the transition
should be discontinuous for any value of σ . We attribute this
disagreement to the correlations neglected by the mean-field
theory, which become more important in low dimensions (as
in the present case). In fact a similar disagreement between
mean-field and numerical simulations in a one-dimensional
discontinuous transition has been recently investigated in
Ref. [24]. Another possibility concerns the restrictions of the
lattice particle occupations (only one particle can occupy a
given site) that, together with the present lattice topology,
could prevent the particle clustering induced by increasing the
diffusion. In other words, a lattice model allowing multiple
occupation of each site may lead to results compatible with
mean-field predictions. We remark that, notwithstanding, all
these points deserve further investigations.
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