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Open Heisenberg chain under boundary fields: A magnonic logic gate
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We study the spin transport in the quantum Heisenberg spin chain subject to boundary magnetic fields and
driven out of equilibrium by Lindblad dissipators. An exact solution is given in terms of matrix product states,
which allows us to calculate exactly the spin current for any chain size. It is found that the system undergoes a
discontinuous spin-valve-like quantum phase transition from ballistic to subdiffusive spin current, depending on
the value of the boundary fields. Thus, the chain behaves as an extremely sensitive magnonic logic gate operating
with the boundary fields as the base element.
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I. INTRODUCTION

One of the fundamental issues in condensed-matter physics
is the determination of macroscopic parameters from the
underlying microscopic properties. For systems in equilib-
rium, the Gibbsian approach gives an elegant solution since it
depends only on the underlying microscopic energy spectrum.
However, even if substantial progress has recently been
made in understanding nonequilibrium systems, in particular
through the so-called fluctuation theorems [1–5], no such
approach is available for systems in a nonequilibrium steady
state (NESS), characterized by the existence of steady currents.
This forces one to resort to a full dynamical calculation in
order to extract steady-state parameters. Such difficulty is
inherent in nonequilibrium systems, dating back to Drude’s
calculation of the electrical conductivity of metals in 1900
[6]. As another example, we note the recent discussions
concerning the microscopic derivation of Fourier’s law in
insulating crystals [7–11].

A more thorough understanding of the NESS is also essen-
tial for the development of several applications in phononics
[12–14], spintronics [15–18], and magnonics [19,20]. We
point, in particular, to two recent remarkable papers by
Chumak et al. [20] and Oltscher et al. [18]. In Ref. [20] the
authors report on a magnonic logic gate, where the magnon
current is adjusted by controlling the number of magnon
scattering processes induced by an auxiliary magnon injector
(the base). In a different setting the authors in Ref. [18] study
the transport of spin-polarized current in a two-dimensional
electron gas. They observe the existence of a ballistic spin
flow, in stark disagreement with classical predictions.

The transport properties reported in Refs. [18,20] both
involve the presence of a NESS. Moreover, they share in
common the fact that they cannot be explained by classical
theories, thus requiring a full quantum treatment. On the the-
oretical side, these quantum NESSs are usually implemented
on one-dimensional lattice spin systems coupled to external
reservoirs [14,21–30]. The effect of the reservoirs is quite
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often described by a nonunitary Lindblad dynamical equation
[31,32]. However, these models, being quantum many-body
problems, can seldom be solved exactly, and from a numerical
point of view they can usually be solved only for small lattices.

The purpose of this paper is to study the transport properties
in the NESS of the one-dimensional Heisenberg chain coupled
to two Lindblad reservoirs at each end that is also subject to
magnetic fields at its boundaries. Remarkably, the steady state
of this model is exactly expressible in terms of a matrix product
state [26,27] involving operators satisfying the SU(2) algebra
(in the case of an XXZ chain this generalizes to the quantum
Uq[SU(2)] algebra [27]). This provides a method to compute
the steady-state spin current J for any chain size [28]. We will
show that depending on the strength of the applied magnetic
field, J may undergo a discontinuous spin-valve-like quantum
phase transition from ballistic to subdiffusive [J ∼ 1/N2;
see Fig. 3(d) below]. As we shall discuss, the origin of this
transition is related to the entrapment of magnons inside the
chain caused by the boundary fields, which, in turn, increase
the number of magnon scattering events. We argue that our
system may be used as an extremely sensitive magnonic logic
gate operating with an external magnetic field as the base
element.

II. DESCRIPTION OF THE MODEL

We consider the isotropic Heisenberg spin-1/2 chain with
N sites described by the Hamiltonian

H = 1

2

N−1∑
i=1

(
σx

i σ x
i+1 + σ

y

i σ
y

i+1 + σ z
i σ z

i+1

) + h
(
σ z

1 − σv
N

)
,

(1)
where the σ ’s are the usual Pauli matrices. The last term
describes the Zeeman interaction experienced by the boundary
spins with a field pointing in the z direction on the first site
and in the −nv = (sin θ,0, − cos θ ) direction on the last site.
Note that with this parametrization the boundary fields point
in opposite directions when θ = 0.

The chain is coupled to two reservoirs at each end such
that its density matrix ρ is governed by the Lindblad master
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FIG. 1. (Color online) Schematic drawing of the dissipators
DL,R(ρ) (black solid arrows) and the boundary fields h (red dashed
arrows) acting on the first and last spins of the chain. In (a) the fields
are in the same direction as the dissipators (h > 0), and in (b) the
fields act in directions opposite to the dissipators (h < 0).

equation [32],

dρ

dt
= −i[H,ρ] + DL(ρ) + DR(ρ), (2)

where the left and right dissipators DL(R) are given by

Dα(ρ) =
∑
r=±

2Kα
r ρKα

r
† − {

Kα
r
†
Kα

r ,ρ
}
, (3)

with KL
± = √

γ (1 ± f )σ±
1 and KR

± = √
γ (1 ∓ f )σv

N
± and

where σv
N

± are the ladder operators in the nv direction.
Explicitly, one has σv

N
− = (cos θσ x

N − iσ
y

N + sin θσ z
N )/2 for

the lowering operator and the adjoint expression for the raising
one.

The forcing term f ∈ [0,1] describes the polarization of the
spin reservoirs and is related to a reservoir inverse temperature
β by f = tanh(β). At f = 1 (zero temperature) the left bath
corresponds to a perfect magnon source, pumping magnons
into the system at a rate γ , while the right dissipator is
a perfect drain, absorbing magnons at the same rate. We
shall concentrate mostly on f = 1, although f < 1 will be
discussed briefly. Note that when h > 0 (<0) the boundary
fields point in the same (opposite) direction as the dissipators
(Fig. 1).

III. OUTLINE OF THE MATRIX PRODUCT
STATE SOLUTION

The unique NESS attained by the system at long times is
the solution of Eq. (2) with dρ/dt = 0:

i[H,ρ] = DL(ρ) + DR(ρ) . (4)

At f = 1 the exact solution was found in Ref. [27] in terms
of a matrix product state (MPS), as we now outline. The first
step is to note that since ρ is a Hermitian positive semidefinite
operator, we may use the following parametrization:

ρ = SS†

tr(SS†)
. (5)

For a Heisenberg chain made of N spin-1/2 sites, the operator
S lives in the Hilbert space H = C2N .

We now use the ansatz that S can be described by a matrix
product state:

S = 〈φ|	⊗N |ψ〉, (6)

where 	 is a 2 × 2 matrix with operator-valued entries

	 =
(

Sz S+
S− −Sz

)
= Szσ

z + S+σ+ + S−σ− . (7)

The operators Sa live in an auxiliary space A so that 	⊗N ∈
H ⊗ A. After contracting with |φ〉 and |ψ〉 we recover S ∈ H.
From the bulk structure of the Hamiltonian (1), it can be shown
that if Eq. (6) is to be a solution, then the operators Sa must
obey the SU(2) algebra:

[Sz,S±] = ±S±, (8)

[S+,S−] = 2Sz . (9)

The proper representation of the algebra to be explicitly used
in the MPS solution is specified by a complex representation
parameter p which is fixed by substituting Eqs. (6) and (5) into
the steady-state equation (4) and solving the resulting equa-
tions. It turns out that it is fixed by a lowest-weight condition:
〈φ|Sz = p〈φ|, where 〈φ| ≡ 〈0| is a lowest-weight state of the
representation. Explicitly, in terms of a semi-infinite set of
states {|n〉}∞n=0 one has the irreducible representations

Sz =
∞∑

n=0

(p − n)|n〉〈n|, (10)

S+ =
∞∑

n=0

(n + 1)|n〉〈n + 1|, (11)

S− =
∞∑

n=0

(2p − n)|n + 1〉〈n| . (12)

Notice that for half-integer values of p these representations
reduce to the usual finite-dimensional representations of
SU(2). In the present case, the representation parameter turns
out to be

p = i

2(γ − ih)
, (13)

which fixes the associated infinite-dimensional representation
of SU(2). The right state |ψ〉 over which 	⊗N is evaluated is
given by the coherent state

|ψ〉 =
∞∑

n=0

ψn

(
2p

n

)
|n〉, ψ = − tan(θ/2) . (14)

Including these results in Eqs. (6) and (5) gives a complete
solution for the density matrix of the steady state.

From this general solution it is possible to compute the
expectation value of any local observable [28], the most
important of which is the spin current Ji leaving site i toward
site i + 1. It is defined from the continuity equation

d
〈
σ z

i

〉
dt

= Ji−1 − Ji,
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where

Ji = 〈
σx

i σ
y

i+1 − σ
y

i σ x
i+1

〉
.

These equations are valid for i = 2, . . . ,N − 1. Slightly
different equations apply to the boundaries. In the steady state
d〈σ z

i 〉/dt = 0, which gives

J1 = J2 = · · · = JN := J.

The expectation value of an arbitrary observable A may be
computed as

〈A〉 = tr(Aρ) = tr(S†AS)

tr(S†S)
.

Our strategy will be to first trace over the Hilbert space
and write everything in terms of expectation values on the
auxiliary space. But note that S and S† will each contain
an auxiliary space. So when we write SS†, we must double
our auxiliary space. That is, we write

SS† = 〈0,0|	(p)	T(p∗)|ψ,ψ∗〉,
where 	(p) and 	T(p∗) act on different auxiliary spaces.
Moreover, |ψ∗〉 is defined as |ψ〉 in Eq. (14), but with p∗
instead of p. Similarly, 	T(p∗) is defined in a way similar to
Eq. (7):

	T(p∗) := Tzσ
z + T+σ− + T−σ+,

where the operators Ta are defined with p∗ instead of p.
Moreover, they commute with Sa since they act on different
auxiliary spaces.

Next define

Ba = tr[σa	(p)	T(p∗)], a ∈ {0,x,y,z} . (15)

Explicitly, we have

B0 = 2SzTz + S+T+ + S−T−, (16)

Bx = (S− − S+)Tz + Sz(T− − T+), (17)

By = i[Sz(T− + T+) − (S− + S+)Tz], (18)

Bz = S+T+ − S−T−. (19)

The spin current may then be written as

Ji = 1

Z(N )
〈0,0|Bi−1

0 [Bx,By]BN−i−1
0 |ψ,ψ∗〉,

where Z(N ) is the normalization constant,

Z(N ) = tr(ρ) = 〈0,0|BN
0 |ψ,ψ∗〉. (20)

The explicit computation of Z(N ) requires constructing the
matrix

(B0)k,� = 2|p − k|2δk,� + �2δk,�−1 + |2p − �|2δk,�+1.

We then have

Z(N ) =
N∑

k=0

(
BN

0

)
0,k

tan2k(θ/2)

∣∣∣∣
(

2p

k

)∣∣∣∣
2

.

In particular, when θ = 0, one has simply Z(N ) = (BN
0 )0,0.

It can be further shown that

[Bx,By] = 2i(Tz − Sz)B0

and that Tz − Sz commutes with B0. This reflects the transla-
tional symmetry of Ji in the steady state. Hence, making use
of Eq. (10), we arrive at

J = 2γ

γ 2 + h2

Z(N − 1)

Z(N )
. (21)

This is the required formula for the steady-state magnetization
flux. In the present model J is a function of only N , h, γ , and
θ . Equation (21) must be computed for each N . Even though
this may be done exactly, the formulas become extremely
cumbersome for large sizes. On the other hand, computing
J numerically is now a trivial task.

Also of interest is the magnon density 〈ni〉 = (1 + 〈σ z
i 〉)/2.

A calculation similar to that above leads to

〈
σ z

i

〉 = 〈0,0|Bi−1
0 BzB

N−i
0 |ψ,ψ∗〉

Z(N )
. (22)

IV. RESULTS

We now discuss the behavior of J as a function of N , h, γ ,
and θ . The focus will be on the case f = 1, for which the MPS
solution is valid. However, the case f < 1 will be discussed
briefly.

We begin with θ = 0 and h = 0. The spin current as a
function of N and γ is presented in Fig. 2. In order to interpret
these results, recall that magnons are constantly being pumped
at the left source, then propagate through the lattice, and are
eventually collected in the right drain. The spin current is
then simply proportional to the number of magnons being
collected at the right drain. This number depends on two
things: (i) the number of magnons being injected per unit
time in the left source, which is proportional to γ , and (ii)
the magnon scattering events during the trip to the right drain.
In standard electrical conduction (e.g., in Drude’s model), the
electrons scatter with lattice imperfections or phonons. Since
the number of scattering agents scales proportionally to N ,
we then have a diffusive current J ∼ 1/N . In our case the
magnons do not scatter with lattice imperfections. They either
travel through unimpeded, or they participate in four-magnon
scattering events (where two magnons scatter, producing two
new magnons in the process [33]). When γ is sufficiently

FIG. 2. (Color online) Spin current J for f = 1, θ = 0, and h =
0. (a) J vs γ for different sizes N . (b) J vs N for different values of
γ . The dotted black line has a slope of −2.

174422-3



GABRIEL T. LANDI AND DRAGI KAREVSKI PHYSICAL REVIEW B 91, 174422 (2015)

FIG. 3. (Color online) Spin current J as a function of the bound-
ary fields h with f = 1 and θ = 0. (a) N2J vs h for γ = 1 and
different values of N . (b) J/γ vs h for N = 100 and different values
of γ around γ ∗ = 1/N = 0.01. (c) and (d) J/γ vs h for γ = 10−5

and different values of N . The dashed lines in (d) correspond to
Eq. (24).

small, the density of magnons in the chain is very small, thus
making these events very rare. In this case J will increase
with γ and will also be independent of N , i.e., ballistic. This
is clearly observed in Fig. 2(a), where we see that the curves
for different N overlap when γ is small. Conversely, in the
high γ limit the number of magnons, and hence the number of
scattering events, will be significant. In this regime it is found
[28] that J is subdiffusive, behaving as J ∼ 1/N2. The reason
for this is that by doubling the size of the chain, we quadruple
the number of four-magnon scattering events. As shown in
Ref. [28], the transition between the ballistic and subdiffusive
regimes occurs at

γ ∗ � 1

N
. (23)

A clear example of this transition is seen in the curve for
γ = 10−2 in Fig. 2(b), where the regime changes abruptly
from J ∼ 1 to J ∼ N−2 exactly at N = 100.

Next we discuss the behavior for nonvanishing boundary
fields, h = 0, still keeping θ = 0. In Fig. 3(a) we present N2J

vs h for γ = 1 (subdiffusive, high magnon density). As can be
seen, even for moderately small sizes, the curves start to scale
very well according to J ∼ 1/N2. In this scaling region we
have found that the current is very well described by

J � π2

γN2

1

1 + 2h
γ 2N

+ h2

γ 2

, (24)

which is illustrated by the dashed line in Fig. 3(a). Note also
that J is asymmetric with respect to h; that is, the spin current
is rectified [14].

FIG. 4. (Color online) Spin current J vs h when f < 1, com-
puted using the exact diagonalization of Eq. (2) for N = 6.
(a) γ = 10−5. (b) γ = 1. The dotted black lines correspond to the
MPS solution when f = 1.

The changes which occur as we reduce γ below γ ∗ are
illustrated in Fig. 3(b), where we plot J/γ vs h for N = 100
and different values of γ . As can be seen, there is a drastic
behavioral transition from a bell-shaped structure at γ > γ ∗
to a plateau at γ < γ ∗. This plateau is illustrated in more detail
in Figs. 3(c) and 3(d) for γ = 10−5 and different sizes. As can
be seen, the plateau region is asymmetric with respect to h and
independent of size. It corresponds to the ballistic behavior
of the spin current. As the field is increased, however, one
eventually observes an abrupt transition to a much lower spin
current. For positive fields the transition is continuous, whereas
for negative fields it is discontinuous (strictly speaking, it is
only discontinuous in the thermodynamic limit). The critical
field where the plateau transition occurs is found from the
simulations to be h∗ � −5/N . We also call attention to the
fact that outside the plateau region, J is again well described
by Eq. (24), as illustrated by the dashed lines in Fig. 3(d). This
indicates that for large fields the behavior is again subdiffusive.

The results presented so far were obtained from the exact
MPS steady state, which is valid only at f = 1 (zero tem-
perature). However, the rich behavior of the current observed
for f = 1 also survives at finite temperatures, i.e., for f < 1.
This can be seen in Fig. 4, where we report the current J vs f

as obtained from the exact numerical diagonalization [14] of
Eq. (2) for N = 6. The current as seen from the numerics shows
basically the same features as in the MPS case: a bell-shaped
behavior at high γ and a sharp plateau at low γ (for this small

FIG. 5. (Color online) Small size effects in the spin current.
(a) J/γ vs Nh for γ = 10−5 and different values of N . (b) J/γ

vs Nh for N = 15 and different values of γ .
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FIG. 6. (Color online) J vs h for N = 500 and different values
of θ (as defined in Fig. 1). (a) γ = 10−4 and (b) γ = 1.

size the plateau is not yet completely formed). In Fig. 4 we
also plot the MPS solution when f = 1 to illustrate the perfect
agreement between both methods.

The gradual formation of the plateau as the size of the
system increases in illustrated in Fig. 5(a). In Fig. 5(b) we
show the changes which occur as one changes γ when N = 15.
As can be seen in both images and in Fig. 3(c), when N

is small, the current presents a series of irregular and sharp
resonances when h < 0, at positions which vary with N (such
peaks have been observed recently in Ref. [34]). It is important
to note, however, that these peaks appear only for γ � 1/N2

and therefore become vanishingly small for any moderately
large size. This can be seen, for instance, by comparing the
curves with γ = 10−4 and γ = 10−2 in Fig. 5(b). Both are
practically identical, except for the peaks, which are present
only when γ = 10−4. Note also that it follows from Eq. (21)
that J is bounded, so these cannot be δ peaks.

We consider now the case with a general twisting angle
θ ∈ [0,π ]. Figure 6(a) shows J vs h for different values of θ

with fixed size N = 500 and γ = 10−4. As expected, J → 0
as θ → π . However, remarkably, even for values of θ close
to the undriven situation θ = π , one still observes high values
of J for negative values of h, in a plateau region that shrinks
as θ → π . Thus, by monitoring the twisting angle θ , one can
fine-tune the high-current plateau width. For completeness, we
also show the behavior for large γ in Fig. 6(b).

V. DISCUSSION AND CONCLUSIONS

The remarkable and sharp transitions observed in the
spin current, from ballistic (inside) to subdiffusive (outside
the plateau), as the magnitude |h| of the boundary fields is

FIG. 7. (Color online) Magnon density profile 〈ni〉 = (1 +
〈σ z

i 〉)/2 for different values of h, with N = 500, γ = 10−5, and θ = 0.
(a) h < 0 near the plateau transition [see Fig. 3(d)]. (b) h > 0.

increased suggest that sufficiently high fields act as scattering
barriers, impeding magnons from flowing through the system,
from source to drain. This can also be seen by looking at the
magnon density profile 〈ni〉 = (1 + 〈σ z

i 〉)/2 plotted in Fig. 7
for N = 500, γ = 10−5, and θ = 0. The red solid curve in
Fig. 7(a) corresponds to the profile in the plateau (ballistic)
region of Fig. 3(d). In this case, the distribution is flat, with
〈ni〉 � 1/2, characteristic of a maximal current state. On the
other hand, outside the plateau the profile is sine shaped,
characteristic of the subdiffusive regime [26]. The transition
between the two profiles is discontinuous for h < 0 [Fig. 7(a)]
and continuous for h > 0 [Fig. 7(b)]. Hence, we conclude that
the density of magnons inside the chain may also be adjusted
by changing the boundary field h. Chumak et al. [20] used
a similar idea to construct their magnonic logic gate. But in
their case an additional source of magnons was responsible
for changing the magnon current and the magnon density.
Consequentially, the transition between the on and off states
was in their case quite smooth. Here we see an extremely abrupt
transition, thus being potentially more suited for a logic gate.

In what concerns an experimental realization of the present
idea, it is important to note that even though we studied a
very specific situation, the underlying physical principles of
our results are very general, based only on the entrapment of
magnons by magnetic fields. Hence, similar results should be
obtained in different field configurations which maintain the
same principles. Most magnonic circuits are constructed using
yttrium iron garnet (YIG), [19,35], which is well described by
the Heisenberg model, albeit with a different spin value. The
Lindblad generators then represent microstrip antennas which
are used to generate and collect magnons [19,20]. Even though
the Lindblad dissipators have been extensively used in the past
to study open quantum systems, we are unaware of any papers
mentioning this specific application of them as describing the
injection and collection of magnons.

The energy and time units of the problem are set by the
constant J , which should appear in the first term of Eq.
(1) but which we have throughout set as unity. According
to Ref. [35], J ∼ 10−22 J. The pumping rate γ (measured in
magnons per second) should operate below the critical value
γ ∗, which, in the correct units, reads γ ∗ = J /�N ∼ 1012/N

Hz. This gives the optimal value of γ below which the flux
should be ballistic. Letting h = μBB, where μB is the Bohr
magnetron, we find that the critical magnetic field B∗ where
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the plateau transition occurs is, in correct units, |B∗|(T) �
J /μBN � 10/N . Hence, for any reasonable values of N ,
very small magnetic fields may suffice to induce the plateau
transition.

In summary we have studied the quantum Heisenberg chain
driven by two Lindblad baths and subject to two magnetic
fields acting on each boundary. An exact solution was given
in terms of matrix product states, which enables one to
calculate local observables for any chain size. The system
is seen to undergo a discontinuous transition from ballistic to

subdiffusive spin current as a function of the field intensity.
Thus, the system may function as an extremely sensitive
magnonic logic gate using the boundary fields as the base.
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