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Fluctuations of the heat exchanged between two quantum spin chains
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The statistics of the heat exchanged between two quantum XX spin chains prepared at different temperatures
is studied within the assumption of weak coupling. This provides simple formulas for the average heat and its
corresponding characteristic function, from which the probability distribution may be computed numerically.
These formulas are valid for arbitrary sizes and therefore allow us to analyze the role of the thermodynamic
limit in this nonequilibrium setting. It is found that all thermodynamic quantities are extremely sensitive to the
quantum phase transition of the XX chain.
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I. INTRODUCTION

When studying the thermodynamic properties of small out
of equilibrium systems (quantum or classical), it is found that
quantities such as heat flux, work, and entropy production
may widely fluctuate in the course of time or between each
realization of an experiment. Over the past two decades,
researchers have discovered that the probability distributions
governing these fluctuations obey certain symmetry relations
which touch upon the nature of irreversibility and the arrow
of time [1,2]. These relations are now generally known as
fluctuation theorems [3–27]. Historically, they were initially
developed for classical systems obeying either Hamiltonian or
stochastic dynamics [3–13]. Their validity was also extensively
verified experimentally [28–31]. Conversely, their develop-
ment for quantum systems is much more recent [14–27],
particularly their experimental verification [32].

The probability distributions or characteristic functions of
thermodynamic quantities are the central objects in this theory.
Hence, in order to gain additional insight into this problem,
it is important to compute them in specific models, which are
tractable either theoretically [33–42] or experimentally [2,28–
32]. In particular, heat fluctuations in quantum systems have
recently been the subject of a large number of studies [43–58],
and the purpose of our work is to discuss this problem on an
exactly solvable case, namely, the quantum XX spin chain.

The setup considered here is the common thermalization
of two bodies, which were separately prepared in equilibrium
at different temperatures T1 and T2 and then put in contact
through a diabatic wall (no work is performed during the
entire process) [59]. According to the second law of ther-
modynamics, in the formulation of Clausius, when the two
bodies are macroscopic, heat should flow from the hotter
to the colder body until thermal equilibrium is reached at a
common temperature T ∗. If the two bodies are equal, the total
heat exchanged between them during this process should be
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given by

Q = U (T2) − U (T1)
2

, (1)

where U (T ) is the internal energy of the body. This is the basic
prediction of thermodynamics.

However, the situation is quite different if the two systems
are not macroscopically large. Due to wide fluctuations, the
observed values of the heat exchanged during the process
(empirically defined as the energy difference between the
initial and the final state) may fluctuate substantially with
respect to the thermodynamical prediction. In extreme cases it
is in principle possible to observe a heat flow in the opposite
direction, from the colder system to the hotter. Let us denote by
P (Q) the probability that a certain amount of heat Q entered
system 1 after a time t [a proposal to experimentally measure
P (Q) was recently given in Ref. [55]]. In Refs. [11,14] it was
shown that P (Q) obeys the following fluctuation theorem:

P (Q)
P (−Q)

= e!β Q, (2)

where !β = 1
T1

− 1
T2

. This relation was derived under the
assumption of weak coupling; i.e., when the interaction energy
between the two systems is negligibly small compared to the
“bulk” individual energies. It implies in particular that the en-
ergy which enters system 1 is, to a good approximation, the
same as the energy which left system 2.

Equation (2) may be physically interpreted as saying that
it is exponentially more likely that heat will flow in the
right direction. Of course, if we assume that energy is an
extensive quantity, for macroscopic bodies the probability of
heat flowing in the opposite direction becomes negligible.
From Eq. (2) it also follows that Q obeys a nonequilibrium
equality:

⟨e−!βQ⟩t = 1. (3)

Using Jensen’s inequality and assuming that T2 > T1, this
leads to

⟨Q⟩t ! 0, (4)
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such that the second law is recovered as an average statement
valid also for microscopic bodies. Another interesting fact
about Eq. (2) is that it holds whether or not the two systems
actually thermalize. In fact, since the two bodies are isolated
from the rest of the universe, the time evolution is unitary, and
depending on the system in question, it is possible that the
heat will oscillate indefinitely, back and forth between the two
bodies.

The distribution of heat is currently of importance in
quantum thermodynamics due to its intimate relation to
Landauer’s principle and its consequences for quantum infor-
mation [27,60]. But, as with other distributions in quantum
thermodynamics, it is not readily computable for many-
body problems. In this paper we will study the two-body
thermalization setup for the integrable case of two finite
quantum XX spin chains connected by an XX coupling.
This model is exactly diagonalizable in terms of fermionic
operators. Notwithstanding, computing the distribution P (Q)
for arbitrary sizes remains a difficult task due to the enormous
number of transitions inherent to the many-body problem (in a
sense, it amounts to a bookkeeping problem). Instead we shall
adopt a different route and exploit the fact that, if the size of
the two chains is moderately large, the coupling between them
will be comparatively much smaller such that we may treat
the interaction potential perturbatively (this approximation is
scrutinized in detail in Appendix A).

It is shown that with this approximation the characteristic
function of Q becomes a simple product of terms, from
which the probability P (Q) may be computed numerically
very easily for any desired sizes. Moreover, the average
heat ⟨Q⟩t is found to be described by a simple formula
with a clear physical interpretation. It will be shown that
all thermodynamic quantities are extremely sensitive to the
quantum phase transition that the XX chain undergoes as
a function of the magnetic field [61]. For completeness, in
Appendix B we also study the distribution of the work that must
be performed by an external agent in turning on the interaction
at time t = 0, a problem which was recently investigated for
small system sizes in Ref. [62].

II. FORMAL FRAMEWORK

We begin with two systems with Hamiltonians H1 and H2
which, for simplicity, have the same energy spectrum:

H1|n1⟩ = En1 |n1⟩, (5)

H2|n2⟩ = En2 |n2⟩. (6)

The two systems have been prepared in thermal equilibrium
at different temperatures, T1 and T2, so that the initial density
matrix of the composite system is given as a product state

ρth = e−β1H1

Z1
⊗ e−β2H2

Z2
, (7)

where β1,2 = 1/T1,2 (the Boltzmann constant is set to kB = 1)
and Z1,2 are the corresponding partition functions.

At t = 0− we then unplug the systems from their reservoirs
and measure the observables H1 and H2, obtaining the state

|n⟩ = |n1,n2⟩ with probability

pn = ⟨n|ρth|n⟩ = e−β1En1

Z1

e−β2En2

Z2
. (8)

Immediately after this measurement, at t = 0+, we turn on
an interaction V between the two systems (i.e., we perform a
quantum quench) such that the total Hamiltonian passes from

H0 = H1 + H2 (9)

at t = 0− to

H = H1 + H2 + V (10)

at t = 0+[63]. Next we allow the composite system to evolve
unitarily with Hamiltonian H up to a certain time t , when
we measure the observables H1 and H2 one more time.
Suppose that the state obtained from this measurement is
|m⟩ = |m1,m2⟩. Then the total change in the energy of each
subsystem is, by definition,

Q1 = Em1 − En1 , (11)

Q2 = Em2 − En2 . (12)

The quantities Q1,2 are random variables described by
probability distributions P1(Q) and P2(Q). A formal expres-
sion for these distributions may be obtained by noting that
|⟨m|e−iH t |n⟩|2 is the conditional probability that the system is
found in the state |m⟩ at time t , given that it was initially at |n⟩
at time 0. We therefore have

P1(Q) =
∑

n,m

|⟨m|e−iH t |n⟩|2pn δ[q − (Em1 − En1 )] (13)

and a similar definition for P2(Q). It is much more convenient,
however, to work with the characteristic function F1(r) =
⟨eirQ1⟩t . From Eq. (13) it can be shown that

F1(r) ≡ ⟨eirQ1⟩t = tr{eiHteirH1e−iH t e−irH1ρth}
= tr{eirH1(t)e−irH1ρth}, (14)

where we defined the Heisenberg representation of an operator
A as A(t) = eiHtAe−iH t . We therefore see that the character-
istic function is a time-ordered correlation function evaluated
at the initial (thermal) state [19]. Under weak coupling, when
the fluctuation theorem (2) is valid, it follows by definition that
F1(i!β) = 1.

The average heat may be obtained by the definition

⟨Q1,2⟩t =
∫

dQ QP1,2(Q) (15)

or by expanding F1(r) in a power series in r . In either case one
obtains

⟨Q1⟩ = tr[(H1(t) − H1)ρth], (16)

again with a similar formula for ⟨Q2⟩. From this formula it
appears to be possible to associate the random variable Q1
with the quantum mechanical operator δH1(t) = H1(t) − H1.
However, such an association is incorrect since to access Q1
requires two energy measurements [19,37,64,65]. This reflects
the fact that Q1 is not a property of the system, but rather
the outcome of a process. This fact also becomes evident
when computing higher moments of Q1. Due to the fact that
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[H1(t),H1] ̸= 0, it follows that higher moments of Q1 cannot
be associated with higher moments of δH1(t).

Notice that since the evolution is unitary, with total
Hamiltonian H (t) = H = H1 + H2 + V , we have

⟨Q1⟩t + ⟨Q2⟩t = ⟨V ⟩0 − ⟨V ⟩t . (17)

The term −⟨V ⟩t is the average work that must be performed in
turning off the interaction at time t [57]. Thus, the right-hand
side of this expression is the total work performed by the
external agent in turning the interaction on and off. We
therefore see that in general it is not correct to interpret
Q1 and Q2 as the heat which entered each system, since
part of the change may be due to the work performed
by the external agent. This will be true only in the weak
coupling limit, where V ≪ H1,2. In this case the right-hand
side of Eq. (17) is negligible, and we may therefore define
⟨Q⟩t := ⟨Q1⟩t ≃ −⟨Q2⟩t . Hence, in the weak coupling limit
it is correct to attribute the changes in the energy of system 1
as being due to the heat which flowed from system 2.

It is also worth emphasizing that the definition of heat is
not tied to the fact that the initial state is thermal. Any energy
entering system 1 from system 2, in the assumption of weak
coupling, is correctly defined as heat. The only difference is
that, if the initial states are not thermal, certain thermodynamic
properties and the fluctuation theorem (2) will not necessarily
hold.

III. THE MODEL

We now apply these concepts to a model consisting of two
identical XX quantum spin chains of size L coupled together
through an XX coupling. The total Hamiltonian is H = H1 +
H2 + V , where the Hamiltonians of the individual chains H1
and H2 and the interaction potential V are given in terms of
the usual Pauli algebra by

H1 = h

2

L∑

i=1

σ z
i − J

2

L−1∑

i=1

(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1

)
, (18)

H2 = h

2

2L∑

i=L+1

σ z
i − J

2

2L−1∑

i=L+1

(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1

)
, (19)

V = g0

2

(
σ x

Lσ x
L+1 + σ

y
Lσ

y
L+1

)
. (20)

The standard fermionization of H is accomplished through
the Jordan-Wigner mapping

cn =

⎡

⎣
n−1∏

j=1

(
−σ z

j

)
⎤

⎦σ−
n , (21)

where σ±
n = (σ x

n ± iσ
y
n )/2 and n = 1, . . . ,2L. The Fermi

operators cn satisfy the canonical anticommutation relations

{cn,c
†
m} = δn,m . (22)

In terms of these operators Eqs. (18)–(20) become

H1 = h

L∑

n=1

c†ncn − J

L−1∑

n=1

(c†ncn+1 + c
†
n+1cn), (23)

H2 = h

2L∑

n=L+1

c†ncn − J

2L−1∑

n=L+1

(c†ncn+1 + c
†
n+1cn), (24)

V = g0(c†LcL+1 + c
†
L+1cL), (25)

where in H1 and H2 we omitted an irrelevant constant term
Lh/2.

The Hamiltonians H1 and H2 may be individually diago-
nalized by a Bogoliubov transformation, introducing the new
set of fermionic operators

ak =
L∑

n=1

xn,kcn, bk =
L∑

n=1

xn,kcn+L, (26)

where

xn,k =
√

2
L + 1

sin(nk) (27)

with n = 1, . . . ,L and k(L + 1) = π,2π, . . . ,Lπ . We then
obtain

H1 =
∑

k

λka
†
kak , H2 =

∑

k

λkb
†
kbk, (28)

where the single-particle energy spectrum is given by

λk = h − 2J cos k. (29)

This dispersion relation shows a gap for h > hc ≡ 2J indi-
cating the appearance of a quantum phase transition between
a gapless superfluid phase for h < 2J and a gapped Mott-
insulating phase for h > 2J [61,66].

In terms of the a and b Fermi operators the interaction
energy V in Eq. (25) can be recast as

V =
∑

k,q

Gk,q(a†
kbq + b†qak) (30)

with

Gk,q = g sin(Lk) sin(q), (31)

where

g = 2g0

L + 1
. (32)

At t > 0, the total Hamiltonian is therefore given by

H =
∑

k

λk(a†
kak + b

†
kbk) +

∑

k,q

Gk,q(a†
kbq + b†qak). (33)

The problem has thus been reduced to a quadratic Hamiltonian
with two different types of fermions (representing the two
chains). The last term in this formula describes scattering pro-
cesses occurring at the junction sites. Each process represents
the annihilation of a b-fermion in chain 2 with momentum q
and the creation of an a-fermion in chain 1 with momentum k,
and vice versa, each event occurring with amplitude Gk,q . This
event decreases the energy of chain 2 by λq while increasing
the energy of chain one by λk . Hence, the total energy of the two
chains, H0 = H1 + H2, changes by λk − λq and is therefore
not a conserved quantity. This can also be seen directly from
the fact that

[H1 + H2,H ] =
∑

k ̸=q

(λk − λq)Gk,q[a+
k bq − b+

q ak]. (34)
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Alternatively, we may say that in each scattering process
some energy is retained in, or extracted from, the interaction
potential V . The only transitions in which the energy of the
individual chains is conserved are those where k = q.

However, notice also that Gk,q scales as g0/L, which will
therefore be small if either g0 is small or L is large. Hence,
as the size of the chains increase, the energy retained in V
during these transitions diminishes when compared with the
typical energies of the system. This is precisely the idea of
weak coupling and is in agreement with our perception that
V is a boundary interaction and is thus much smaller than the
bulk Hamiltonians H1,2.

The next step is to find the time propagator U (t) = e−iH t .
This may be done exactly since H is quadratic in Fermi
operators. However, the exact resulting formulas are extremely
cumbersome to work with. Instead, motivated by the fact that
the interaction term is small, we will derive an approximate
formula for U (t) that will hold when either g0 is small and/or
L is large.

Moving to the interaction picture, the potential VI (t) =
eiH0tV e−iH0t becomes

VI (t) =
∑

k,q

Gk,q{a†
kbqe

i(λk−λq )t + b†qake
−i(λk−λq )t }. (35)

It can be seen that the terms with k ̸= q are rapidly oscillatory
and average to zero at long times. Hence, they may be neglected
provided Gk,q is small and provided that the time scales
of interest are larger than the typical separation λk − λq of
the energy levels. Both requirements are true in this case.
The former because Gk,q ∝ 1/L and the latter because, as
will be seen below, the typical time scales of interest for the
thermodynamic quantities are of order L, whereas the smallest
energy difference λk − λq is of order 1/L. We therefore
conclude that when g is small, the Hamiltonian in Eq. (33)
may well be replaced in the long-time limit by the approximate
expression

H =
∑

k

Hk =
∑

k

{λk(a†
kak + b

†
kbk) + Gk(a†

kbk + b
†
kak)}

(36)

taking into account only the diagonal transition rates Gk =
Gk,k . In Appendix A the accurateness of this approximation
is tested by comparing it with the numerically exact results
obtained by the exact diagonalization of Eq. (33). It is shown
that the agreement is extremely good, even for moderately
large L, and improves with increasing L and/or decreasing g0.

The initial thermal state is a tensor product state that may
be factored as a product of L terms, each associated to the
mode k:

ρth =
∏

k

ρth,k, ρth,k = e−β1λka
†
kak−β2λkb

†
kbk

Zk

with normalization factor

Zk = (1 + e−β1λk )(1 + e−β2λk ).

Similarly the Hamiltonian in Eq. (36) factors into a sum
of L commuting terms. Thus, the entire dynamics factors
into L independent subspaces where the ak of chain 1 are
only coupled to the mode bk of chain 2. Each subspace has

dimension 4 and is spanned by the vectors |0,0⟩, |k,0⟩ =
a
†
k|0,0⟩, |0,k⟩ = b

†
k|0,0⟩ and |k,k⟩ = a

†
kb

†
k|0,0⟩ (this is similar

to the situation treated in Ref. [67]). In this basis, apart from a
phase factor e−iλk t that we may omit, the dynamics is generated
by

e−iHkt=

⎡

⎢⎢⎢⎣

eiλk t 0 0 0
0 cos(Gkt) −i sin(Gkt) 0
0 −i sin(Gkt) cos(Gkt) 0

0 0 0 e−iλk t

⎤

⎥⎥⎥⎦
. (37)

As a consequence, the reduced density matrix associated to
the mode k at time t , ρk(t) = e−iHktρth,ke

iHkt , has a block
diagonal structure which is nontrivial only in the sector
{|k,0⟩,|0,k⟩}:

ρk(t)=

⎛

⎜⎜⎜⎝

h1
kh

2
k 0 0 0

0 n1
kh

2
k + fk(t) g∗

k (t) 0

0 gk(t) n2
kh

1
k − fk(t) 0

0 0 0 n1
kn

2
k

⎞

⎟⎟⎟⎠
, (38)

where

nα
k = 1

eλk/Tα + 1
, hα

k = 1 − nα
k α = 1,2 (39)

are the initial occupation numbers of particles and holes and
where

fk(t) =
(
n2

k − n1
k

)
sin2(Gkt), (40)

gk(t) = i
(
n2

k − n1
k

)
sin(2Gkt). (41)

We see from Eqs. (38), (40), and (41) that the modes oscillate
between the left and right sides with a mode-dependent period
t∗k = π

|Gk | ≃ πL
2g0 sin2 k

, such that the fastest oscillations occur
with a typical period of order L, while the slowest with a
typical period of order L3.

The occupation numbers and correlations of the a and b
fermions are readily computed from Eq. (38):

⟨a†
kak⟩t = n1

k + fk(t), (42)

⟨b†kbk⟩t = n2
k − fk(t), (43)

⟨a†
kbk⟩t = igk(t). (44)

The total number of excitations with momentum k is therefore
conserved, as expected.

Finally, it is worth mentioning that the long-time average
of the reduced density matrix,

ρ̄k(t) ≡ lim
T →∞

1
T

∫ t+T

t

ρk(t) dt,

reduces to a stationary state where the left and right states
|k,0⟩, |0,k⟩ have equal weights n1

k (1−n2
k )+n2

k (1−n1
k )

2 .

IV. THERMODYNAMIC PROPERTIES

A. General out-of-equilibrium properties

Now that we have the time evolution operator we may
study any thermodynamic quantity of interest. We will focus
our discussion on the heat Q1 entering the first subsystem. Due
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to the weak coupling assumption, this will be equal to −Q2.
For this reason, we will henceforth omit any suffixes 1 in the
formulas developed in Sec. II.

All operators appearing in the characteristic function,
Eq. (14), factor into products of L commuting operators.
Hence, F (r) may be written as

F (r) =
∏

k

F (k,r). (45)

This means that the total heat Q may be written as a sum of
independent (not identically distributed) random variables Qk:

Q =
∑

k

Qk (46)

such that F (k,r) = ⟨eirQk ⟩. Each Qk physically represents the
heat exchanged between each pair of normal modes ak and bk ,
and it is defined as positive when energy enters chain 1.

The functions F (k,r) may be readily computed using
Eq. (38). They read

F (k,r) = p0
k + eiλkrp+

k + e−iλkrp−
k , (47)

where

p+
k = n2

k

(
1 − n1

k

)
sin2(Gkt), (48)

p−
k = n1

k

(
1 − n2

k

)
sin2(Gkt), (49)

p0
k = 1 − p+

k − p−
k . (50)

Taking the inverse Fourier transform we find that this corre-
sponds to a discrete process with density

πk(Q) = p0
kδ(Q) + p+

k δ(Q − λk) + p−
k δ(Q + λk). (51)

When chain 1 gains an excitation from chain 2, Qk =
λk , which occurs with probability p+

k . The inverse process
corresponds to Qk = −λk and occurs with probability p−

k .
Finally, there is also the probability that no excitations are
exchanged, which is p0

k .
The probabilities p±

k in Eqs. (48) and (49) obey the
fluctuation theorem (2):

p+
k

p−
k

= e!βλk ,

where !β = β1 − β2. This result is expected since the approx-
imations that led us to Eq. (36) were based on the assumption
of weak coupling. The fluctuation theorem is also manifested
in Eq. (47) by the fact that F (r = i!β) = 1 [see also Eq. (3)].
When T1 = T2 the characteristic function becomes real, and
therefore P (Q) becomes even in Q. In this case heat is equally
likely to flow in either direction. Conversely, when T2 ̸= T1,
the distribution will be asymmetric.

B. Average heat

1. Analytical results

The average heat Qk associated to mode k may be readily
computed from Eq. (51):

⟨Qk⟩t = λk(p+
k − p−

k ) = λk

(
n2

k − n1
k

)
sin2(Gkt). (52)

The total heat is then simply a sum over all allowed values of
k:

⟨Q⟩t =
∑

k

λk(p+
k − p−

k ) =
∑

k

λk

(
n2

k − n1
k

)
sin2(Gkt). (53)

In the thermodynamic limit we may replace the sum by
an integral and work with the heat density defined as qt ≡
limL→∞⟨Q⟩t /L. We then find

qt = 1
π

∫ π

0
dk λk

(
n2

k − n1
k

)
sin2(gt sin2 k). (54)

We see that the relevant time scale of the thermodynamic
quantities is 1/g. When gt is sufficiently large, the sin term
will oscillate extremely fast as k is varied from 0 to π . We
may then approximate sin2(gt sin2 k) ∼ 1/2, which leads to
the time-averaged heat density

q̄ ≡ lim
t→∞

lim
τ→∞

1
τ

∫ t+τ

t

qt dt

= 1
2π

∫ π

0
dk λk

(
n2

k − n1
k

)
= u(T2) − u(T1)

2
, (55)

where u(T ) is the equilibrium energy density at temperature
T of a single XX chain. This is nothing but the classical
thermodynamical result (1).

These results are valid for arbitrary initial temperatures T1
and T2. Specializing further to the case close to equilibrium,
with T1 = T and T2 = T + !T where !T ≪ T , we obtain

qt = !T

π

∫ π

0
dk ck(T ) sin2(gt sin2 k), (56)

where

ck(T ) = λk

∂nk

∂T
=

(
λk

T

)2
eλk/T

(eλk/T + 1)2
(57)

is the heat capacity of mode k of a single XX chain at a
temperature T . The time average heat density reduces to

q̄ = !T

2π

∫ π

0
dk ck(T ) = !T

2
c(T ), (58)

which is precisely the thermodynamic heat density, with c(T )
being the specific heat of the XX chain.

The above calculations therefore show that in the ther-
modynamic limit one recovers the expectations of classical
thermodynamics in the long-time limit. In order to gain
additional insight into the properties of the average heat,
we now analyze the asymptotic behavior at high and low
temperatures.

2. Asymptotic analysis

At high temperatures, T ≫ λk , we may expand the occupa-
tion numbers n1

k and n2
k in Eq. (39) in a power series in λk/T .

This allows us to write the average heat density (54) as

qt ≃ !β

8
[h2 + 2J 2 − I (gt)], (59)

where I (gt) may be expressed in terms of Bessel functions
Jn(x) as

I (u) = 2J 2J1(u) sin u + (2J 2 + h2)J0(u) cos u. (60)
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FIG. 1. Average heat qt/q̄ as a function of time, computed using
Eq. (59) with J = 1, T1 = 10, T2 = 12, and several values of h.

This result shows that at high temperatures the average heat
relaxes algebraically to the long-time density

q̄ ≃ !β

8
[h2 + 2J 2]

with a leading behavior (gt)−1/2. Equation (59) is illustrated
in Fig. 1 for different values of h. Here and henceforth, in
all numerical analyses, we set J = 1, thereby redefining the
energy scale. As can be seen, the heat gradually tends to
its long-time value, either monotonically or in an oscillatory
fashion. The magnitude of the oscillations increases with
increasing field h. Note that since we are at high temperatures,
the quantum phase transition at h = 2J = 2 is imperceptible.

Next we turn to low temperatures, where the effects of
the quantum phase transitions become manifest. In this case
we will restrict our analysis to the case where T1 = T and
T2 = T + !T . The average heat is given in Eq. (56). Below
the critical point, when h < 2J , we change variables to u =
λ/T = (h − 2J cos k)/T and exploit the fact that T is small
to write Eq. (56) as

qt ≃ T !T

π
√

(2J )2 − h2

∫ (h+2J )/T

(h−2J )/T

du
u2eu

(eu + 1)2
sin2(αt + γt u),

where

αt = gt sin2 kF = gt

[

1 −
(

h

2J

)2
]

, γt = gt
2hT

(2J )2

(kF is the Fermi momentum of the system). Extending the
limits of integration to ±∞ allows us to obtain the closed
formula:

qt = πT !T

6
√

(2J )2 − h2

(
1 − 3 cos(2αt )

sinh(2πγt )3
{sinh(4πγt )

−πγt [3 + cosh(4πγt )]}
)

, (61)

which is valid for h < 2J . When gt → ∞ we obtain

q̄ = πT !T

6
√

(2J )2 − h2
. (62)

Equation (61) shows the existence of two time scales. One
is related to the slow relaxation toward equilibrium and is
governed by the factor γt , whereas the other is responsible

FIG. 2. Average heat in the thermodynamic limit at low tempera-
tures and below the quantum critical point, computed using Eq. (61)
with T = 0.01 and (a) h = 0.5, (b) h = 1.0, (c) h = 1.5, and (d)
h = 1.95.

for an oscillatory behavior governed by αt . These results are
illustrated in Fig. 2 for different values of h. As can be seen,
the period of the oscillations become longer as h approaches
2J . At the critical point we have αt → 0 and the oscillations
disappear entirely.

Next we turn to the low-temperature behavior above the
critical point, h > 2J . To obtain an approximate formula in
this case we adopt a different strategy and exploit the fact that
in this case only excitations close to the ground state k = 0
will contribute. We may then expand cos k and sin k in a power
series in k and extend the upper limit of integration of Eq. (56)

to +∞. Letting x =
√

J
T
k, we then obtain

qt ≃ !T

π

√
T

J
e−η

∫ ∞

0
dx(η + x2)2e−x2

sin2(θt x
2/2),

where

η = h − 2J

T
, θt = 2Jγt

h
= 2gtT

J
.

The resulting integral may be split into a series of Gaussian
integrals, leading to the result

qt = !T

16
√

π

√
T

J
e−η

{
3 + 4η + 4η2 − 3

cos( 5
2 tan−1 θt )

(
1 + θ2

t

)5/4

−4η
cos

( 3
2 tan−1 θt

)

(
1 + θ2

t

)3/4 − 4η2 cos
( 1

2 tan−1 θt

)

(
1 + θ2

t

)1/4

}
. (63)

The exchanged heat is therefore found to decay exponentially
with η = (h − 2J )/T . This is a direct consequence of the
quantum phase transition: the opening of a gap between the
ground state and first excited state of each chain dramatically
reduces the probability of exchanging excitations at low
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FIG. 3. Long-time average heat density as a function of h, with
T = 0.1, computed using Eqs. (62) and (64) (red lines) compared
with the exact numerical solution of Eq. (58) (black circles). The red
dot at h = hc = 2 corresponds to Eq. (65).

temperatures. The trigonometric quantities in Eq. (63) may
all be written as algebraic combinations of θt . Hence, above
the critical points the oscillations of qt vanish entirely, giving
place to a monotonically increasing behavior, from q0 = 0
toward the long-time density

q̄ = !T

16
√

π

√
T

J
e−η(3 + 4η + 4η2). (64)

The long-time heat q̄, below [Eq. (62)] and above [Eq. (64)]
the quantum critical points, are illustrated in Fig. 3, which
also presents a comparison with the numerical solution of
Eq. (58). Below the critical point it increases algebraically with
h, whereas above the critical point it decreases exponentially.
Exactly at the critical point, h = 2J , a more detailed analysis
of q̄ is required. In this case we obtain

q̄ = !T

π

√
T

4J

∫ ∞

0
du

u4eu2

(eu2 + 1)2

= !T

π

√
T

4J

3
√

π

8

(
1 − 1√

2

)
ζ (3/2), (65)

where ζ (x) is the Riemann zeta function.

3. Finite-size effects

Thus far we have focused on the average heat density in the
thermodynamic limit. We now consider how finite-size effects
affect the heat flow. For finite sizes the average heat may be
computed using Eq. (66) or, in the close-to-equilibrium case,

⟨Q⟩t = !T
∑

k

ck(T ) sin2(gt sin2 k), (66)

which is the analog of Eq. (56) for finite sizes.
Results for different sizes and a variety of combinations

of T and h are shown in Fig. 4. As can be seen, the curves
for different sizes scale very well up to a certain point in
time, after which strong finite-size effects begin to take place,
leading to violent oscillations. The instant where these effects
begin to take place scale as L2, in contrast to the time scale
1/g, which scales proportionally to L. Hence, as the size of

FIG. 4. ⟨Q⟩/L!T vs gt for several values of L and different
combinations of h and T , namely, (a) T = 2, h = 0, (b) T = 0.2, h =
0, and (c) T = 0.2, h = 1.8. The horizontal dashed lines correspond
to Eq. (58).

the system increases, these finite size effects are washed away
and eventually vanish entirely in the thermodynamic limit.
It is worth mentioning that these finite size effects are not
a consequence of any of the approximations used to get to
Eq. (66). This is explicitly illustrated in Appendix A, where
these results are compared with the exact diagonalization of
the system.

C. Statistics of heat

As we have seen, the heat Q is a sum of statistically
independent random variables. It then follows from the central
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limit theorem that in the thermodynamic limit the probability
distribution P (Q) will be normally distributed. The mean of
the distribution is ⟨Q⟩t , which was studied in detail in the
previous section. The variance of the distribution will also
be simply the sum of the variances of each individual Qk .
Proceeding similarly to Eq. (52), we then get

var(Q) =
∑

k

var(Qk),

where

var(Qk) = λ2
k(p+

k + p−
k ) − ⟨Qk⟩2

t .

Hence, the heat distribution in the thermodynamic limit is
completely determined. For this reason, we will concentrate
here on the probability distribution for finite sizes and
investigate the role of finite-size effects.

The distribution P (Q) is the inverse Fourier transform of
the characteristic function F (r) in Eq. (45):

P (Q) = 1
2π

∫ ∞

−∞
F (r)e−irQ dr. (67)

Analytically, it is only possible to carry out this computation
in certain limiting cases. But numerically the procedure is
trivial for any size desired. Here we discuss three ways of
accomplishing this.

The most straightforward method to find P (Q) is to note
that Q is a sum of the independent discrete random variables
Qk described by the probability density in Eq. (51). Thus, one
may generate random realizations of each Qk and add them to
construct the histogram of P (Q).

The second method is to expand the product in Eq. (47) and
compute the Fourier transform of each term independently.
Since the product will be a sum of complex exponentials in r ,
we will have an equation of the form

P (Q) =
∑

α

/(α)δ(Q − α), (68)

where the quantities α represent all possible combinations of
the form ±λk1 ± λk2 ± · · · , and /(α) are the corresponding
probabilities. Equation (68) may be used to compute P (Q) for
moderate sizes, up to L = 20.

Finally, the third way to find P (Q) is to evaluate Eq. (67)
using the fast Fourier transform (FFT) algorithm. This method
scales as O(L log L) and is therefore extremely efficient
and applicable to any size desired. Unlike the other two
methods, however, the FFT is coarse grained and is therefore
recommended only for larger sizes.

We begin by comparing P (Q) computed from Eq. (68) with
the exact result, obtained by diagonalizing the full Hamiltonian
H in Eq. (33). This serves as a test of the accuracy of
the approximations employed in this paper. The results are
shown in Fig. 5 for L = 4 and two different values of h.
In these calculations we must once again make explicit use
of the constant g0, which we set at g0 = 0.1 in order to
ensure that the coupling is indeed small. As can be seen, the
agreement between both methods is extremely good, strongly
corroborating our main approximation in Eq. (36). Further
comparisons with the exact solution are made in Appendix A.

In Fig. 6 we show the distribution P (Q) computed using
the FFT method for several sizes. In Figs. 6(a) and 6(d) we

FIG. 5. Comparison between the exact heat distribution, com-
puted from a full diagonalization of the Hamiltonian (10), and the
perturbative solution computed from Eq. (68), for L = 4, T1 = 2,
T2 = 3, g0 = 0.1, and gt = 15. (a) h = 0 and (b) h = 10.

also compare the FFT calculations with the other two methods,
and, as can be seen, the agreement is found to be very good.

We see in Fig. 6 that P (Q) gradually transforms from a
sharply peaked distribution to a Gaussian. According to the
fluctuation theorem in Eq. (2), the probability of observing a
heat flux in the wrong direction should decrease exponentially
with the magnitude of Q. But since Q is an extensive quantity,
this probability should diminish with increasing size. This

FIG. 6. The distribution of heat P (Q) for several sizes with h =
7.5, T = 2, !T = 1, and gt = 15, computed using the FFT method.
(a) L = 13, (b) L = 30, (c) L = 60, (d) L = 100, (e) L = 200, and
(f) L = 400. In (a) we also present in red a comparison with Eq. (68),
and in (d) we present a comparison with the random realizations.
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effect can be seen in Fig. 6, particularly when comparing
images (e) and (f).

In the thermodynamic limit the distribution P (Q) will be
Gaussian. But for finite L the shape of the distribution depends
sensibly on the parameters of the system, particularly on the
magnetic field h. Large fields reduce the number of allowed
transitions between the energy levels and therefore lead to
a more peaked distribution. Interestingly, there are certain
situations where the shape of the distribution also changes
dramatically with time, for a fixed set of parameters. This is
illustrated in Fig. 7 [68]. During most instants of time the
distribution has a simple Gaussian shape. However, at certain
intervals, its shape changes completely to a highly peaked
structure.

As a last topic we turn to the violent finite size oscillations
present in the average heat in Fig. 4. These oscillations are
not readily visible in P (Q). They manifest themselves as
small probability fluxes traveling through P (Q) in the form
of ripples. The best way to visualize them is to consider the
particular situation of very low temperatures and high fields. In
this case it is overwhelmingly more likely that no heat flows at
all. However, there also exists a small but nonzero probability
that a single excitation be exchanged between the two chains.
We will therefore have two bands of probability, one spanning
the range Q = λk and the other spanning the range Q = −λk .
This can be seen in Figs. 6(a) and 6(b). In this case these
probabilities will be given by p+

k and p−
k in Eqs. (48) and (49),

respectively.
In Fig. 8 we plot the probabilities p+

k for several instants of
time when L = 400 [69]. As can be seen, as time progresses,
P (Q) becomes increasingly more oscillatory, with an accumu-
lation of probability in the left. However, as the unstable region
approaches, the shape of the distribution changes from a well
ordered oscillatory function to a disordered shape. Finally,
when the violent oscillations start, certain gaps open in the
probability distribution, which then propagate from one region
to the other in the form of ripples.

V. CONCLUSIONS

We considered the statistics of the heat exchanged between
two quantum spin chains of arbitrary size. These problems
are usually quite complicated to study analytically, even
for systems which may be diagonalized exactly. The reason
is that the distribution of heat requires knowledge of all
possible transitions between the energy levels of a many-
particle system. Consequently, much of the effort in this
area has been focused on small systems [30,57,58]. The case
of many-body systems was studied by Corbieri et al. [50]
for ferromagnets using the time-dependent Landau-Ginzburg
formalism. Classical chains of oscillators were studied by
Lahiri and Jayannavar [51], and quantum oscillator chains
were considered by Agarwalla et al. [53].

The purpose of this paper was to introduce a framework to
allow the investigation of systems of arbitrary size by naturally
imposing the physical condition of a weak-coupling between
the two systems. Such a condition is very reasonable from an
experimental point of view and allows for heat to be properly
defined. We use the definition where work is interpreted as
changing a parameter in the Hamiltonian. All other changes in

FIG. 7. P (Q) at several instants of time, for L = 100, h = 0,
T = 0.5, and !T = 0.01. (a) gt = 1, (b) gt = 2, (c) gt = 3, (d)
gt = 3.25, (e) gt = 3.5, (f) gt = 3.75, (g) gt = 4, and (h) gt = 4.5.
The inset shows the average heat as a function of time, and the red
dot indicates the corresponding instant.

the energy of the system must be attributed to heat. In strong
coupling this distinction is not clear, but for weak coupling it
is.

When weak coupling is imposed, the problem factors
into L independent systems. Consequently, the characteristic
function factors as a product, which allows one to compute all
expectation values of interest and the probability of heat itself.
Using this framework we have shown how the distribution of
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FIG. 8. Probabilities of a single excitation [Eq. (48)] for L = 400,
h = 10 and T = 0.2. (a) gt = 5, (b) gt = 30, (c) gt = 100, (d) gt =
300, (e) gt = 400, (f) gt = 450, (g) gt = 500, and (h) gt = 550. The
inset shows the average heat as a function of time.

heat and the average heat change as one passes from small to
large sizes. It was found that finite size effects play a vital role
in the problem, manifesting themselves as highly delta-peaked
structures for the distribution and violent oscillations for the
average heat. Conversely, in the thermodynamic limit one
recovers a Gaussian distribution for the heat values together
with a well-behaved time dependence for the average heat. In
our view, the methodology employed here may also be readily
extended to other many-body problems of similar structure

(see Appendix B). Therefore, it may be of use to scientists
working with quantum thermodynamics and nonequilibrium
statistical mechanics.
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APPENDIX A: NUMERICALLY EXACT CALCULATION
OF EXPECTATION VALUES

In this appendix we discuss a numerically exact method
to compute expectation values, which may be used to test the
accuracy of the weak-coupling approximation used in deriving
Eq. (36). First define η = (a,b) as being a list containing all
fermionic operators of chains 1 and 2. Then define the 2L × 2L
covariance matrix

θi,j = ⟨η†
i ηj ⟩. (A1)

From the von Neumann equation it can be shown that

dθ

dt
= i[R,θ ], (A2)

FIG. 9. Comparison between the approximate solution for the
average heat [Eq. (56)] and the numerically exact solution computed
using Eq. (A4) for h = 0, T = 2, g0 = 0.05 and different values of
L: (a) L = 100, (b) L = 200, and (c) L = 400.
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FIG. 10. Comparison between Eq. (40) for an arbitrary k =
27π/(L + 1), and the numerically exact solution computed using
Eq. (A4), for (a) L = 65, (b) L = 100, and (c) L = 200. The other
parameters are the same as in Fig. 9.

where

R =
(

0 G
GT 0

)
(A3)

with 0 = diag(λk) and G being the matrix with entries
Gk,q given in Eq. (31). The initial conditions of Eq. (A2)
correspond to the two chains being separately prepared in
thermal equilibrium at temperatures T1 and T2; that is, θ (0) =
diag(n1

k,n
2
k) [cf. Eq. (39)]. The formal solution of Eq. (A2) is

then

θ (t) = eiRtθ (0)e−iRt . (A4)

We may use Eq. (A4) to compute the average heat or any
other expectation value and compare it with our approximate
solution. A direct comparison with the average heat in Eq. (56)
is given in Fig. 9 for several sizes. It can be seen that the
agreement in the “well-behaved” region is already very good
for L = 100 and clearly improves with increasing size. In the
unstable region the agreement is not as good, but the general
features are unchanged. This agreement is not restrictive only
to the average heat. The time dependence of all individual
modes are also well approximated. In Fig. 10 we compare
the numerically exact solution for ⟨a†

kak⟩ with Eq. (40) and
find once again that, as the size increases, the general time
dependence indeed converge to our approximate results.

APPENDIX B: THE STATISTICS OF WORK

In Ref. [62] the authors studied the statistics of the
work that must be performed in suddenly turning on the
interaction between two XX chains. However, they used an
exact diagonalization procedure and therefore studied only
chains of small sizes. Since the setup is identical to the one
here, we may apply the same formalism to this problem. For
simplicity I will henceforth assume both temperatures are
equal.

As with heat, computing the probability of work requires
two measurements, one of H0 and the other of H = H0 +
V [23]. Let H |f ⟩ = Ef |f ⟩. The corresponding distribution of
work is then [19]

P (W ) =
∑

n,f

|⟨f |n⟩|2 pn δ{W − [Ef − (En1 + En2 )]}, (B1)

and the characteristic function is [23]

M(u) = ⟨eiuW ⟩ = tr{eiuH e−iu(H1+H2)ρth}. (B2)

This function obeys the Jarzynski equality [7].
Using the results of Sec. III we find that M(u) may also be

written as a product:

M(u) =
∏

k

M(k,u) =
∏

k

{1 + 2nk(1 − nk)[cos(Gku) − 1]}.

(B3)

FIG. 11. Work distribution for (a) T = 2 and (b) T = 0.2, with
L = 200, g0 = 0.1 and several values of h, as indicated in each image.
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FIG. 12. The probability that no work is performed as a function
of h for different temperatures with L = 400 and g0 = 0.1.

So, as before, we may speak of the work Wk performed
in turning on the coupling between the modes ak and bk .
This work may take on the values ±Gk and 0. Moreover

the probabilities of positive and negative work are equal and
have the value nk(1 − nk). Consequently, the average work
performed is zero, a fact which can also be inferred simply
from the symmetry of the interaction V .

The total work is a sum of independent contributions and
may therefore have any value consisting of combinations of
the Gk . The maximum work possible is thus

∑

k

|Gk| = g0,

which is independent of L.
Results for the work distribution, computed using the FFT

method for L = 200, are shown in Fig. 11. As can be seen,
the distribution for high temperatures is already at a Gaussian
shape. However, at low temperatures the strong effect of the
quantum phase transition causes the distribution to display a
series of sharp peaks, which are strongly suppressed when the
field increases. In Fig. 12 we also present the probability that
no work is performed. It can be seen quite clearly that at the
critical field hc = 2 there is a sharp transition toward a state
where P (W = 0) ≃ 1.
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