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a b s t r a c t

The dipolar interaction is known to substantially affect the properties of magnetic nanoparticles. This is
particularly important when the particles are kept in a fluid suspension or packed within nano-carriers.
In addition to its usual long-range nature, in these cases the dipolar interaction may also induce the
formation of clusters of particles, thereby strongly modifying their magnetic anisotropies. In this paper
we show how AC susceptibility may be used to obtain information regarding the influence of the dipolar
interaction in a sample. We develop a model which includes both aspects of the dipolar interaction and
may be fitted directly to the susceptibility data. The usual long-range nature of the interaction is im-
plemented using a mean-field approximation, whereas the particle-particle aggregation is modeled
using a distribution of anisotropy constants. The model is then applied to two samples studied at dif-
ferent concentrations. One consists of spherical magnetite nanoparticles dispersed in oil and the other of
cubic magnetite nanoparticles embedded on polymeric nanospheres. We also introduce a simple tech-
nique to address the presence of the dipolar interaction in a given sample, based on the height of the AC
susceptibility peaks for different driving frequencies.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Magnetic nanoparticles (MNPs) have been an active topic of
research for over half a century. Initially, much of this interest was
related to the magnetic recording industry, but in the past few
decades there has been a shift toward biomedical applications [1].
Examples include the use of MNPs for drug delivery [2], stem cell
labeling [3,4], contrast agents for nuclear magnetic resonance [5]
and magnetic hyperthermia [6–15]. The latter, in particular, is a
cancer treatment technique that has already entered clinical trials
[15] and is now considered the most promising application of
MNPs. Great progress has also been made in our theoretical un-
derstanding of MNPs, particularly through Brown's Fokker-Planck
equation [16,17], which allows one to make valuable predictions
about several dynamic properties [18–24].

Most of our theoretical understanding about MNPs concerns
non-interacting samples. However, MNPs are also strongly influ-
enced by the dipolar interaction [25–50]. Indeed, recent papers
[10–12,42,43,50] have shown that the dipolar interaction has a
strong influence in magnetic hyperthermia treatments. This means
that the heating properties of particles diluted in a fluid will be
very different from those of particles packed inside cells or nano-
carriers, such as magnetoliposomes [12,51,52]. Hence, when tai-
loring a sample for a specific treatment, one must also take into
account the spatial arrangement of the nanoparticles. Recently,
several theoretical models [10,25,42,43] and simulations methods
[50] have been developed to deal with the dipolar interaction and
aid in the design of samples for specific treatments.

However, in samples where the particles have some degree of
mobility, as is true for many samples used for hyperthermia, the
dipolar interaction may also induce the formation of aggregates
(sometimes observed in the form of elongated chains [10,53]). The
strong interaction between particles within a cluster cause them to
rotate in order to align their easy axes, therefore modifying their
effective magnetic anisotropy [10,54]. Despite its importance, this
effect is seldom taken into account when developing theoretical
models.

The modifications in the effective magnetic anisotropy of a gi-
ven MNP will depend on the size and shape of the aggregate that it
resides in, and also on the position and relative orientation of that
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MNP within the cluster. Consequently, this effect may be modeled
by considering a distribution of anisotropy constants, in addition
to the distribution of volumes. The distribution of anisotropies
already has an intrinsic, concentration-independent, contribution
due to fluctuations in the crystallinity, shape and surface rough-
ness. The contribution from particle–particle interactions should
therefore enter as an additional effect, which may be small for
diluted samples, but may very well be dominant when the particle
aggregation is high.

Experimentally accessing and quantifying the degree of ag-
gregation, however, is by no means trivial. This problem has
generated much interest lately, with recent proposals involving
the use of Lorentz microscopy [55] and small angle X ray scatter-
ing [56]. The purpose of this paper is to show that AC susceptibility
also yields important information concerning the state of ag-
gregation in a sample.

The most common analysis of AC susceptibility curves is the
Arrhenius plot, which looks at the temperature Tmax where the
imaginary part χ″ is a maximum. A plot of Tmax as a function of the
frequency f of the AC field usually yields a straight line [cf. Eq. (5)
to be discussed below], from which one may extract information
about the average anisotropy energy barrier and the typical pre-
cession time τ0 (whose values may be used to estimate the mag-
nitude of the dipolar interaction [29]). Since one uses only the
maximum of the imaginary curve, this analysis clearly underuses
the data since from each χ″ vs. T dataset, just a single point is
taken. Moreover, the effects of the particle size distribution only
enter indirectly in the average anisotropy barrier. A more robust
approach was introduced by Jonsson et. al. [57], who developed a
model for χ″ that be fitted to the entire dataset, taking into ac-
count the size distribution.

In this paper we show how to expand on the model of Ref. [57]
to include both aspects of the dipolar interaction. This is done
using a mean-field approximation [42] to model the long-range
effect, together with a anisotropy distribution to model the par-
ticle aggregation. This approach allows us to extract information
which reflects the different levels of particle aggregation within
the sample. We apply this model to two samples, a commercial
magnetite-based ferrofluid dispersed in oil, and a sample con-
taining PLGA [the poly(D,L-lactide-co-glycolic) acid copolymer]
nanospheres with cubic nanoparticles trapped on their surface.

We also introduce a new very simple tool to access the quali-
tative importance of the dipolar interaction in a given sample. It is
based on analyzing the maximum height χ″max of the χ″ vs. T curves
as a function of the frequency f. When the dipolar interaction is
negligible in a sample, χ″max should not increase with f. Conversely,
we show that the presence of a dipolar interaction causes χ″max to
increase with f. Hence, this serves as a signature of the dipolar
interaction. Through a simple visual analysis of the imaginary AC
susceptibility curves it is possible to see if the dipolar interaction is
relevant in that given sample or not.
2. Theory

2.1. AC susceptibility for ideal monodisperse samples

We begin by reviewing the theory of AC susceptibility. The
relaxation time of a single-domain magnetic nanoparticle with
volume V and uniaxial anisotropy constant K is given approxi-
mately by the Néel formula [58]:

τ τ≃ ( )σe 10

where τ ∼ −10 s0
9 and
σ θ= =
( )T

KV
k T 2B

The quantity θ = KV k/ B, which will be used throughout the text,
represents the height of the energy barrier in temperature units.
For more information, see supplemental information.

In AC susceptibility experiments one measures the response of
a sample to an alternating magnetic field ω( ) =H t H tcos0 , of fre-
quency ω π=f /2 and very low amplitude H0. From linear response
theory (see Ref. [17] or the supplemental information) one finds
that the real and imaginary part of the susceptibility are given by
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where χ0 is the static susceptibility. As will be discussed in Section
2.3, it is convenient to measure the response in terms of the
magnetic moment instead of the magnetization. Consequently, the
correct formula for χ0 is

χ =
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B
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In Fig. 1(a) we show examples of Eq. (3) for θ = 400 K, τ = −10 s0
9

and different frequencies f. The discrepancy between these curves
and data usually reported in the literature is partly due to the fact
that the size distribution is not yet included.

Experimental curves of χ″ vs. T are usually analyzed by looking
at the temperature where χ″ is a maximum, Tmax. According to Eq.
(3) the maximum occurs at ωτ = 1, which implies the equation

π τ θ− ( ) = ( ) +
( )

f
T

ln 2 ln
50

max

Hence, a plot of π− ( )fln 2 vs. T1/ max should yield a straight line, from
which it is possible to extract τ0 and θ. This analysis, usually re-
ferred to as an Arrhenius plot, clearly underuses the available in-
formation, since from the entire data set only a single point is used
(the maximum). Moreover, it is also very sensitive to experimental
uncertainties.

2.2. Samples with a size distribution

Next we include the effects of a size distribution. Let P(D) de-
note the probability that a particle randomly drawn from the
sample has diameter D (experimentally, P(D) may be obtained
from TEM measurements). It is customary to model P(D) by a
lognormal distribution

π δ
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with parameters D0 and δD. The parameter D0 in Eq. (6) is the

median of P(D) and not the average diameter, which reads δD e0
/2D

2
.

Moreover, δD is a dimensionless parameter related to the standard

deviation (SD) by = −δ δD e eSD 10
/2D D

2 2
. Defining the root-mean-

square deviation as the ratio between the standard deviation and
the mean diameter, we therefore get

δ= − ≃ ( )δer. m. s. 1 7D
D
2

Hence, δD is a measure of the root-mean-square deviation. Samples
with δ ≲ 0.1D (10%) are usually considered monodisperse in the
MNP synthesis literature.

From the distribution of diameters P(D), we may also look at
the distribution of volumes P(V). For this purpose, the lognormal
distribution turns out to be quite useful since, if D is lognormal, so
will aDk, with parameters aD k

0 and δ| |k D. This means that the



Fig. 1. Influence of the size distribution in χ″( )T f, curves for non-interacting samples. (a) Example curves of χ″ vs. T for ideal monodisperse samples computed from Eq. (3)
with θ = 400 K, τ = −10 s0

9 and different values of f. (b)–(d) Same, but for polidisperse samples, computed from the numerical solution of the integral in Eq. (10), with
θ = 400 K0 and three different values of δD.

Table 1
How the maximum of the imaginary part, χ″max , behaves with the frequency f.

Monodisperse Polidisperse

Non-interacting Decreases Constant
Interacting Inconclusive Increases
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distribution of volumes P(V) will also be given by a lognormal
distribution, which for spherical particles will have parameters

= πV D0 6 0
3 and δ δ= 3V D (for non-spherical particles only V0 must to

be modified). This property is unique of the lognormal
distribution.

Assuming that the anisotropy constant K is the same for all
particles, the energy barrier θ = KV k/ B will, for the same reason,
also be given by a lognormal distribution

θ
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2
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with parameters
θ δ δ δ= = =
( )θ

KV
k

, 3
9B

V D0
0

The situation where K is not constant will be discussed in Section
2.5.

2.3. AC susceptibility for samples with a size distribution

We now average Eq. (3) over the size distribution P(V), or what
is equivalent, θ( )P . In doing so, one must keep in mind that the
signal picked up by a magnetometer is always proportional to the
magnetic moment, never the magnetization. Hence, if one wishes
to use P(V) or θ( )P , the average must be made over the magnetic
moment. This determines the form of the static susceptibility χ0
used in Eq. (4). For more information on this subtle point, see Ref.
[59] and the supplemental information.

To perform the average it is more convenient to use θ( )P . From
the definitions θ = KV k/ B and θ = KV k/ B0 0 we find that
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Numerical solutions of this integral are plotted in Figs. 1(b)–(d) for



Fig. 2. Effect of the mean-field modification, Eq. (14), in the AC susceptibility curves. The simulation parameters are shown in the caption of each figure. The other
parameters are the same as in Fig. 1.

Fig. 3. (a) TEM micrograph of the commercial ferrofluid EMG909 from Ferrotec Co. (b) Corresponding size distribution and lognormal fit. Best fit parameters are shown in
the figure.

G.T. Landi et al. / Journal of Magnetism and Magnetic Materials 421 (2017) 138–151 141
several values of δD. In these figures it is possible to see the gradual
effect which an increasing size dispersion has on the general shape
of the curves.

Eq. (10) is exact, but cumbersome to work with. A more con-
venient approximate formula was obtained in Ref. [57] by noting
that the function ωτ

ωτ+ ( )1 2
is sharply peaked around σ π τ* = − ( )fln 2 0 .

This leads to the following approximate expression for χ″
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2 is a positive constant and

θ σ π τ* = * = − ( ) ( )T T fln 2 120

The reason why θ0
2 was not included in c is because it is the only

term which depends on K and below, in Section 2.4, we will
consider samples which have a distribution of K values.
Differentiating Eq. (11) with respect to θ σ* = *T we find that the

maximum of χ″ occurs at θ δθe0
2
. This implies the relation
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which shows that even for polidisperse samples an Arrhenius plot
will still give a straight line. However, the slope of the line is given

by θ δθe0
2
. For typical samples we have δ ∼ 0.25D , which leads to

δ δ= ∼θ 3 0.75D and thence ∼δθe 1.75
2

. This shows that the Ar-
rhenius plot overestimates the anisotropy constant K by a factor
which can be almost of the order of 2 in certain cases.

We finish this section by noting that, in general, χ″ is a function
of both f and T. However, under the approximations that led to Eq.
(11), it turns out that χ″ will only depend on the particular com-
bination θ σ π τ* = * = − ( )T T fln 2 0 . This means that if we plot each χ″
curve as a function of θ* instead of T, the data for different



Fig. 4. Real (left) and imaginary (right) AC susceptibility data for several frequencies for the studied samples: (a,b) Sample A, 0.005%V/V, (c,d) Sample B, 0.540%V/V, and (e,f)
Sample C, 3.600%V/V.
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frequencies should all collapse into a single curve, provided τ0 is
correctly chosen. Hence, this method may be used to determine τ0
and, since it uses the entire χ″( )f T, data set, it turns out to be
much more precise than the Arrhenius plot. Examples of this are
given below for our data in Figs. 4 and 9 or, e.g., in Refs. [33,57].
The collapsed data will be described by Eq. (11), which depends
only on δθ , θ0 and c. But δ δ=θ 3 D is already known from TEM, so
that the only two fit parameters are c and θ0. Using Eq. (9)



Fig. 5. (a) Log-log plot of the maximum of each χ″ curve as a function of the frequency f for the three samples. Each curve was normalized for visual purposes in order to
start at the same point. The solid lines correspond to linear fits of Eq. (22) with exponents α shown in the figure. (b) Data collapse for samples A, B and C, obtained by plotting
χ″ as a function of θ*, defined in Eq. (18).
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together with the value of V0 obtained from TEM one may extract
the anisotropy constant K.

2.4. Variation of χ″max with frequency

The usual Arrhenius analysis of AC susceptibility data focuses
on the temperature Tmax where χ″ is a maximum. We now argue
that valuable information concerning the dipolar interaction is
contained in the height χ″max of each χ″ vs. T maxima. In Fig. 1 we
see two possible behaviors: For monodisperse samples, χ″max de-
creases with f, whereas for polidisperse samples, χ″max tends to
become roughly constant, independent of f. These are the only two
possibilities predicted by models of non-interacting single-domain
particles.

However, in real samples it is also customary to find situations
where χ″maxincreases with f. We argue that this is a signature of a
strong dipolar interaction. It therefore serves as a simple test to
estimate the relevance of this interaction in a given sample (this
effect was briefly commented in Ref. [60]). If χ″max increases with f,
the dipolar contribution certainly has a significant effect. For
monodisperse samples this increase in χ″max competes with the
natural tendency to decrease, so some care must be taken when
interpreting the results (this competition was observed in nu-
merical simulations in Ref. [61]). Table 1 summarizes the different
possible behaviors. Please note that this rule is only valid for the
imaginary part χ″. It does not hold for the real part χ′.

Our claim is corroborated by extensive experimental evidence
in the literature. The most clear examples are Refs. [33,62–64,60],
which study samples with different concentrations. In all cases the
results are unambiguous: for diluted samples χ″max is either con-
stant or diminishes with f, whereas for concentrated samples χ″max
increases with f. Additional examples may also be found in Refs.
[65–74] and in Figs. 4 and 9 below.

In order to better understand the frequency dependence of χ″max
with f, we will now consider how Eq. (11) may be modified to
include models of the dipolar interaction. A model which has been
used extensively in the past is the Vogel-Fulcher law [25], whereby
the energy barrier parameter s is modified to account for the di-
polar interaction according to σ θ= ( − )T T/VF VF , where TVF provides
a measure of the strength of the dipolar interaction. The Vogel-
Fulcher interaction gives good predictions when analyzed in terms
of Arrhenius plots, but predicts zero susceptibility below TVF,
something which is in clear disagreement with experiment.

Recently, one of the authors of this paper has worked out a
mean-field model to describe the dipolar interaction which ex-
plicitly circumvents this difficulty [42]. The main result of this
model is that, for sufficiently weak dipolar coupling, the aniso-
tropy parameter should be modified according to

σ θ γ θ= +
( )
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is a dimensionless positive parameter representing the strength of
the dipolar interaction. In this formula N is the number of particles
in the sample, μ0 is the vacuum permeability, μ〈 〉2 is the average
magnetic moment squared in the sample and R is the random
variable representing the distance between particles in the
sample.

To study how this modification affects the AC curves we insert
Eq. (14) in Eq. (10) and compute the integral numerically. The
results are shown in Fig. 2 for parameters similar to those in Fig. 1.
The tendency of the dipolar interaction to increase χ″max is clearly
evident in this figure.

The mean-field approximation (14) is also more convenient
than the Vogel-Fulcher model if one wishes to simplify the integral
formula (10) as we did when deriving Eq. (11). If we retrace the
same steps using instead σMF from Eq. (14), we find that

χ ψ γ θ
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−
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and



Fig. 6. Fit of Eq. (20) to the AC susceptibility data of samples A, B and C. Left panel: nK¼1. Right panel: nK¼2. Best fit results for the left panel are shown in each image and for
the right panel in Table 2.

G.T. Landi et al. / Journal of Magnetism and Magnetic Materials 421 (2017) 138–151144
θ
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T
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2
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We therefore see that in the mean-field model an explicit de-
pendence of χ″max on f appears through the function ψ γ( )f , . It
predicts a roughly logarithmically increase with f.



Table 2
Best fit values of Eq. (20) for samples A, B and C when nK¼2.

Sample A Sample B Sample C

θ i0, (K) qi θ i0, (K) qi θ i0, (K) qi

67 0.026 89 0.039 137 0.04
387 0.974 438 0.961 625 0.96

Fig. 7. Arrhenius plots [Eq. (13)] for samples A, B and C. The best fit parameters are
shown in the figure.

G.T. Landi et al. / Journal of Magnetism and Magnetic Materials 421 (2017) 138–151 145
Both previous models hold for weakly interacting systems. In
the case of strong interactions, the Dorman-Bessais-Fiorani (DBF)
model [29,75] predicts instead that the relaxation time of the
system should be modified according to

τ τ σ= +
( )

−
⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎫
⎬
⎭

e
n a M

K
exp 1

19

n s
0

1 1
2

1

where n1 is the number of nearest neighbors and a1 is the volume
concentration of particles in the sample. This model therefore
predicts that τ0 should be effectively reduced by a factor −e n1. This
is in accordance with the unphysically low τ0 values which are
sometimes obtained using Arrhenius plots.

Lastly, it must be mentioned that more recent theoretical
models [76,77] have also been considered. Unfortunately, despite
their success in explaining other physical properties, they were
found not to provide additional contribution to our particular
analysis of the AC susceptibility.

2.5. Distribution of anisotropy constants

As discussed in Section 1, in addition to the usual contribution
from the dipolar interaction, we must also consider the distribu-
tion of anisotropy constants caused by the formation of aggregates.
The particles in a sample are either in free suspension in the fluid
or reside in clusters of different sizes [53]. Depending on the size
of the cluster and the position of the particle within that cluster, it
may experience a different modification to its anisotropy constant
K [10,54]. We therefore see that, in addition to the distribution of
volumes in a given sample, we should also expect to have a very
complex distribution of K values.

To include this effect, we must perform a second average of Eq.
(16) over a distribution of K. This distribution is certainly con-
tinuous, but we have no information about it to be able to propose
an analytical formula. Hence, we will for simplicity assume that
the distribution of anisotropy constants is discrete. That is, we will
assume that in the sample there is a fraction q1 of particles which
have an anisotropy constant K1, a fraction q2 with constant K2, etc.
This rough approximation should serve as a seed for future work,
when the distribution of anisotropies in interacting systems is
better understood.

In order to obtain a tractable equation, we will also assume that
γ defined in Eq. (15) is the same for all K, an approximation which
is justified due to the smallness of γ. We then obtain, instead of Eq.
(16),
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where nK is the total number of distinct K values we wish to
consider and

θ =
( )

K V
k 21i
i

B
0,

0

with V0 being known from TEM. Eq. (20) can be fitted to the col-
lapsed data, with parameters c, qi and θ i0, (the value of δθ is fixed
from TEM).
3. Experiments

We now apply Eq. (20) to two distinct samples. In Section 3.1
we study a commercial ferrofluid containing spherical magnetite
nanoparticles of roughly 6.4 nm in diameter and in Section 3.2 we
study a sample of cubic magnetite nanoparticles with about 13 nm
loaded on the surface of polymeric nanospheres. Both samples are
studied under different dilutions.

3.1. Magnetite nanoparticles in a ferrofluid

We begin with the commercial ferrofluid EMG909 from Fer-
rotec Co, consisting of roughly spherical magnetite particles dis-
persed in oil (isoparaffin). A typical TEM micrograph is shown in
Fig. 3 together with the size distribution histogram and lognormal
fit. The best fit parameters were =D 6.4 nm0 and δ = 0.26D . Thus,
the mean diameter is 6.6 nm and the dispersion of the energy
barrier distribution is δ δ= =θ 3 0.78D .

We have performed AC susceptibility measurements for three
dilutions, named samples A, B and C, with volume concentrations
of 0.005%, 0.540% and 3.600%. The measurements were performed
in an MPMS-7T system from Quantum Design under a field am-
plitude of 2.0 Oe (0.16 kA/m). The samples were placed into quartz
tubes sealed with a dental composite resin, and no correction due
do the diamagnetic contribution of the oil and the sample holder
was necessary, since the ferromagnetic signal of MNPs dominated
even for the more diluted sample. The raw data for the real and
imaginary susceptibilities are shown in Fig. 4 for the three sam-
ples. As can be seen, the maximum height χ″max increases sub-
stantially with f, indicating the presence of the dipolar interaction,
even in the most diluted sample.

In Fig. 5(a) we present a log-log plot of the maximum height,
χ″max, of each χ″ vs. T curve as a function of the frequency f. The
approximate linearity of the data in a log-log plot suggests that
χ″max scales with f following a power law

χ″ ∼ ( )αf 22max

for some exponent α. The values of α obtained from a linear fit
were 0.083, 0.064 and 0.052 for samples A, B and C respectively.
This behavior is quite different from that predicted by the mean-
field model [Eq. (17)], whereby χ″max should depend only loga-
rithmically on f. This discrepancy is attributed to the fact that the
mean-field model should hold only for weakly-interacting parti-
cles. In Fig. 5 we also see some deviations from the power law
behavior, specially for samples B and C. This shows that such a



Fig. 8. (a) TEM micrograph of cubic magnetite nanoparticles. (b) Distribution of face diagonals D and corresponding lognormal fit. The best fit parameters are shown in the
figure. (c) TEM micrograph showing an example of the nanoparticles loaded on the PLGA nanospheres. The nanospheres were negatively stained to improve contrast [12].
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scaling form should be considered only as a rough first approx-
imation to a much more complex behavior.

Next, we perform a data collapse of the χ″ data. To do so, we
first normalize all curves to have the same height since this aspect
has already been analyzed in Eq. (22). Using the expression of θ*
for interacting samples, given in Eq. (18), the collapse yields
τ = × −2 10 s0

9 and γ = 0.01, 0.01 and 0.0115 for samples A, B and C
respectively. The collapsed data is shown in Fig. 5(b). If we use
instead the non-interacting formula in Eq. (12), we obtain
τ = × −2 10 s0

10 . Hence, we see that by neglecting the dipolar in-
teraction we underestimate τ0 by one order of magnitude. Ac-
cording to Eq. (19) the presence of the dipolar interaction should
modify τ0 by a factor −e n1, where n1 is the average number of
nearest neighbors. Thus, we may estimate this value by analyzing
the ratio between our two estimates of τ0, the one with the dipolar
interaction and the one without it. As a result we get ≃n 2.31 .

From the collapsed data set we may proceed to use Eq. (20) and
study the aggregation of particles within the sample. From TEM
we already know that δ δ= =θ 3 0.78D so the only free parameters
are θ i0, , qi and c. The results for nK¼1 are shown in the left panel of
Fig. 6 and the best fit values of θ0 are presented in each image. A
clear disagreement between the fitted curve and the experimental
data can be observed. The situation is particularly worse at low
temperatures, where the signal from smaller particles is expected
to be stronger.

Next we attempt to fit Eq. (20) using nK¼2. The results are
shown in the right panel of Fig. 6 and the best fit parameters are
presented in Table 2. As can be seen, in this case the agreement
with the experimental data is remarkably good. From Table 2 we
see that both θ0,1 and θ0,2 increase with concentration, indicating
that the dipolar interaction shifts the energy barrier distribution of
the particles to higher values. In Table 2 we also report the frac-
tions qi, showing that the majority of the particles have a high
anisotropy. Notwithstanding, since Eq. (20) depends on θ1/ i0,

2 , the
small fraction q1 still gives a significant contribution to the AC
susceptibility curve, specially at low temperatures.

From the values reported in Table 2 for θ0,1 and θ0,2 wemay then
compute the anisotropy constants from the relations θ = K V k/i i B0, 0 .

For this sample ≃ ( ) = ( )k V/ 1000 erg/ K cm 0.1 kJ/ K mB 0
3 3 . Hence, we



Fig. 9. Real (left) and imaginary (right) AC susceptibility data for the polymeric nanopsheres: (a,b) sample L, dispersed in water, 0.001%V/V, and (c,d) sample S, lyophilized,
concentration 0.783%V/V.

Fig. 10. (a) Maximum height χ″max as a function of f (normalized by the first frequency point). (b) Arrhenius plot with best fit parameters τ = × −2.5 10 s0
11 and θ = 2070 K0

for sample L and τ = × −8.6 10 s0
16 and θ = 4260 K0 for sample S.
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Fig. 11. Data collapse for samples L and S, obtained by plotting χ″ as a function of
θ*, defined in Eq. (18). From the collapse we find τ = × −4 10 s0

10 and γ = 0.6 and
0.9 for samples L and S respectively.
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conclude that the particles reside in two main types of aggregates:
ones with anisotropy constants between 6 and 14 kJ/m3 and others
with anisotropy constants between 38 and 63 kJ/m3.

We therefore observe a roughly 5-fold increase in the effective
anisotropy constants between the two populations. It is also ob-
served that the Ki for a given population increases with con-
centration (A to C). If we assume that an increase in concentration
implies the formation of larger clusters, then this result would
suggest that larger clusters display higher Ki values. Also, if we
assume that larger particles may have a tendency to form larger
clusters, it is not illogical to assign the higher Ki values to the
biggest particles. However, this result must be taken with care,
since it is not illogical either to assign the higher Ki values to the
smallest particles, whose surface anisotropy can be high and
dominant.

For completeness, we present in Fig. 7 an Arrhenius plot [cf. Eq.
(13)] for the three samples. The corresponding best-fit parameters
are shown in the figure. As can be seen, the Arrhenius plot fits the
experimental data with a straight line, although it also predicts
different values of τ0 for each dilution, which does not have a
physical meaning. Moreover, the values of θ0 are somewhat similar
to those obtained using nK¼1 in the left part of Fig. 6.

3.2. Magnetite nanoparticles embedded in nanospheres

Next we consider the case of PLGA [the poly(D,L-lactide-co-
glycolic) acid copolymer] nanospheres, loaded with cubic mag-
netite nanoparticles on their surface. Magnetite nanocubes were
first obtained by thermal decomposition of iron-based organic
precursors, with a seeded growth method modified from the ori-
ginal one of Sun et al. [78] and using oleic acid and oleylamine as
surfactants. Afterwards, a solution containing the nanocubes and
PLGA was used as the organic phase in a procedure combining
miniemulsion and solvent evaporation [79] to obtain PLGA nano-
spheres loaded with nanocubes. More details of the synthesis and
additional characterizations can be found in Ref. [12].

Fig. 8 shows a typical TEM image of the particles together with
the size distribution histogram and the lognormal fit. The best fit
parameters were =D 13.1 nm0 and δ = 0.11D , showing that the size
distribution is very narrow. Indeed, referring to Eq. (7), we see that
these nano-cubes may be considered as monodisperse [12]. It is
worth mentioning that all results developed in Section 2 also hold
for cubic particles, provided we now use =V D /20 0

3 3/2 where D0 is
the face diagonal of the cubes.

In Fig. 8(c) we also show an example of the PLGA nanospheres
loaded with MNPs. This TEM image was obtained using a negative
staining procedure (as described in Ref. [12]) for better visibility of
the nanospheres, and shows how the confinement of the nano-
particles on the polymeric nanospheres allows maintaining 2-di-
mensional aggregates on their surface. This superficial distribution
can be easily inferred from TEM images, since nanocubes appear
with high contrast, non-overlapped and it is even possible to ob-
serve nanocubes protruding from the nanospheres.

We prepared two samples with the same polymeric nano-
spheres, one where they were dispersed in water and the other
with them lyophilized to form a powder. We shall refer to them as
samples L and S respectively. In these samples, the nanocube ar-
rangements are preserved, but the inter-sphere distance is chan-
ged (shorter in S). The volume concentration of magnetic material
is 0.001% and 0.783% respectively for samples L and S.

AC susceptibility data was acquired with an MPMS-XL SQUID
magnetometer from Quantum design under a field amplitude of
2.74 Oe (0.22 kA/m). In Fig. 9 we present the raw susceptibility
data for both samples and several frequencies. As can be seen, for
both samples there is a sensitive dependence of χ″max with the
height, indicating the presence of a sizable dipolar contribution.
We begin, as before, by analyzing the dependence of χ″max with
f. The results are shown in Fig. 10(a) where we again observe an
approximate power law behavior [cf. Eq. (22)], with exponents
α = 0.019 and 0.013 for samples L and S respectively.

We also perform an Arrhenius plot shown in Fig. 10(b). The
linear fit yields τ = × −2.5 10 s0

11 and θ ≃ 2000 K0 for sample L and
τ = × −8.6 10 s0

16 and θ ≃ 4200 K0 for sample S. We therefore see a
clear discrepancy in the τ0 values, which should be the same since
both samples are composed by the exact same particles. Moreover,
we see that for sample S the value of τ0 is clearly unphysical. This
is again a manifestation of the influence of the dipolar interaction
in estimating τ0.

This problem with τ0 can be resolved by performing the data
collapse using Eq. (18). In this case we find τ = × −4 10 s0

10 and
γ = 0.6 and 0.9 for samples L and S respectively. The collapse curve
is shown in Fig. 11. If we use instead Eq. (12) to perform the col-
lapse, we find τ = × −5 10 s0

16 , which is similar to that obtained in
the Arrhenius analysis. The number of nearest neighbors may
again be estimated by comparing the τ0 values obtained by the
two different models and using Eq. (19). As a result, we find

≃n 13.81 . Despite being overestimated, this result indicates that
the DBF model correlates qualitatively with the groups of nano-
cubes found in the nanospheres [cf. Fig. 8(c)].

We now fit Eq. (20) to the collapsed data in Fig. 11 using
δ δ= =θ 3 0.33D , as obtained from TEM. The fits were performed
using nK¼1, 2 and 3 and the results are shown in Fig. 12, for
sample L in the left panel and sample S in the right panel. The
corresponding best fit parameters are summarized in Table 3. As
can be seen, there is a strong disagreement between the best fitted
function and the experimental data when nK¼1 [images (a) and
(d)]. The same is true for nK¼2, despite a visible improvement. It is
only for nK¼3 that the fitted curve begins to resemble the real
data. For nK¼3 the results are better for sample L than sample S, in
agreement with our intuition that for sample S the distribution of
K values should be much more complex due to the increase of
inter-sphere interactions. Increasing nK above 3 does not improve
the results in any way. The values of K may be computed using θ i0,
from Table 3 are roughly 15, 32 and 64 kJ/m3.

Concerning the results for nK¼3, shown in Table 3, we see that
when going from sample L to sample S the energy barriers remain
roughly unaltered and only the population of each cluster change.
This is in agreement with the fact that both samples have the same
nanoparticle arrangement.

The existence of at least three populations in these samples can
be assigned to the different arrangements acquired by the particles
on the nanospheres surface, either in single chains, or in 2D ar-
rangements involving a diverse number of particles [cf. Fig. 8(c)].



Fig. 12. Fit of Eq. (20) to the susceptibility data of samples L (left panel) and S (right panel). (a) and (d) nK¼1; (b) and (e) nK¼2; (c) and (f) nK¼3. The best fit parameters are
summarized in Table 3.
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Table 3
Best fit values of Eq. (20) for samples L and S, with different values of nK.

nK Sample L Sample S

θ i0, (K) qi θ i0, (K) qi

1 3000 1 3470 1
2 1540 0.25 1610 0.17

3440 0.75 3710 0.83
3 920 0.064 820 0.0258

1830 0.261 1760 0.166
3590 0.675 3750 0.8082
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Such arrangements can present different magnetic configurations
[80], giving rise to different Ki values.
4. Discussion and conclusions

The purpose of this paper was to show how AC susceptibility
may be used to extract information concerning the presence of the
dipolar interaction in a sample. As we have argued, in samples
where the particles are left in fluid suspension or packed inside
nano-carriers, the dipolar interaction manifests itself in two se-
parate ways. The first is the direct dipolar effect, which can be
modeled, for instance, using the Vogel-Fulcher, mean-field or DBF
models, as discussed in Section 2.4. In addition, the dipolar in-
teraction also manifests itself by inducing the formation of clusters
of particles within the sample. Once in a cluster, the effective
anisotropy of a particle will be strongly modified due to its
proximity with the other particles.

Practically all models and papers discussing the dipolar inter-
action focus only on the first aspect. Our intention was to em-
phasize the role of the second aspect as well, specially for samples
which are of importance for biological applications. We have in-
troduced the idea that this effect can be modeled by including, in
addition to the volume distribution usually obtained from TEM, a
distribution of anisotropy constants. It was also the purpose of this
paper to draw attention to the dependence of χ″max with f. This, as
we have shown, provides a very simple visual tool to estimate the
relevance of the dipolar interaction when analyzing a given
sample.

To summarize the procedure adopted here, from a visual ana-
lysis χ″max vs. f one estimates the importance of the dipolar inter-
action in that sample. Then, using a data collapse with Eq. (18) one
can estimate τ0 and obtain the mean-field interaction constants γ
defined in Eq. (15) and the mean number of nearest-neighbors n1
using Eq. (19). Finally, by fitting the collapsed data using Eq. (20)
one is able to probe the complexity of the dipolar landscape and
estimate the anisotropy constant distribution in the sample.
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