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Understanding high-field amplitude electromagnetic heat loss phenomena is of great importance,
in particular, in the biomedical field, because the heat-delivery treatment plans might rely on ana-
lytical models that are only valid at low field amplitudes. Here, we develop a nonlinear response
model valid for single-domain nanoparticles of larger particle sizes and higher field amplitudes in
comparison to the linear response theory. A nonlinear magnetization expression and a generalized
heat loss power equation are obtained and compared with the exact solution of the stochastic
Landau-Lifshitz-Gilbert equation assuming the giant-spin hypothesis. The model is valid within the
hyperthermia therapeutic window and predicts a shift of optimum particle size and distinct heat
loss field amplitude exponents, which is often obtained experimentally using a phenomenological
allometric function. Experimental hyperthermia data with distinct ferrite-based nanoparticles and
third harmonic magnetization data support the nonlinear model, which also has implications for
magnetic particle imaging and magnetic thermometry. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4982357]

I. INTRODUCTION

The response of nanomaterials to alternating electro-
magnetic fields is of great importance in the biomedical field,
where new approaches to treat diseases are under develop-
ment. One of the most innovative and important applications
is related to heat delivery through the interaction of nanoma-
terials with electromagnetic fields. This heat delivery method
can be used to release drugs,1 activate biological pro-
cesses,2–4 and even treat tumors.5–9 Indeed, using Maxwell’s
equations and the first law of thermodynamics, one finds that
the heat loss per unit volume per cycle is given by

1

V

þ

cycle

dQ ¼
ð
~E " ~Jdt#

þ

cycle

~P " d~E #
þ

cycle

l0
~M " d~H; (1)

where V is the nanomaterial volume, Q is the heat loss, ~E is
the electric field, ~J is the free volumetric density current, ~P
is the electric polarization, l0 is the vacuum magnetic per-
meability, ~M is the magnetization, and ~H is the magnetic
field. The first term in equation (1) corresponds to the “free-
current” loss, whereas the last two describe dielectric and
magnetic losses.

The “free-current” loss term has an important impact on
the biomedical application, because it is related to a biologi-
cal constraint. This term states that the frequency (f) and
magnitude of the alternating magnetic fields need to be lower

than a critical value in order to inhibit possibly harmful ionic
currents in the patient’s body.7 For instance, for a frequency
of 100 kHz the maximum field amplitude is in the order of
20:8 kA=m (261 Oe) for a single air-core coil radius of
0:035 m (expected dimension for breast cancer applica-
tion10). Note that this value is higher than the one usually
reported (order of 4:9 kA=m) only because the estimation of
Atkinson used a coil radius of 0:150 m. Since the free current
loss is proportional to the square of the distance from the
coil axis, an estimation of the critical field for a given coil
radius (r) might be obtained from Hf < ð0:150=rÞ & 4:85
'105 kA=ðm' sÞ. Figure 1 shows the biological critical field
as a function of field frequency in the usual therapeutic
hyperthermia range using Atkinson’s criteria,7,10,11 which
indicates that the higher the frequency the lower is this field
(the parameters used to generate the curve are presented in
the figure captions).

On the other hand, the last terms of Eq. (1), which repre-
sent hysteretic losses, have been the subject of analytical
models within the Linear Response Theory (LRT) and were
used to estimate the optimal particle size and understand
particle-particle interaction effects and maximum heat gener-
ation for hyperthermia.12–15 Curiously, most LRT studies
from the literature do not discuss a fundamental limitation of
the model, namely, that it is only valid at the low particle
size range and low field amplitudes.

In Fig. 1, we show the range of validity of the LRT,
which, as can be seen, is far below the typical fields used for
hyperthermia studies. There are several suggestions for iden-
tifying this limit. For example, Carrey et al.16 found that the
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hysteresis area for a longitudinal case (field applied parallel
to the easy axis - see Fig. 5(g) of Ref. 16) deviates from the
LRT for n ( 0:2 (n ¼ l0MSVH=kBT—where MS is the satu-
ration magnetization, kB is the Boltzmann constant, and T is
the temperature), which suggests that this model can only be
applied for particles below a critical size. Alternatively,
Verde et al. suggested that deviations occur for fields
H < 0:02HK(HK is the anisotropy field and that for uniaxial
case is HK ¼ 2K=l0MS with K the anisotropy constant).17,18

It is important to emphasize that experimentally, it is possi-
ble to determine if one is still in the linear regime or not, by
verifying if the heating efficiency, also known as specific
loss power (SLP), which represents the power loss per mag-
netic material mass, scales quadratically with the field.
Throughout this manuscript, when discussing the theoretical
models, low magnetic fields mean values within the LRT
range. In addition, in Fig. 1 we also include an estimation of
the range of validity of the nonlinear response model
(NLRT) developed in this work, which will be shown later in
the manuscript to be H < 0:14HK . This corresponds to a
7-fold increase in the range of field validity in comparison to
the LRT definition used above. The result suggests that the
model may be useful for biomedical applications, in particu-
lar, for magnetic hyperthermia.

In the subject of heat loss, the term “nonlinear” has been
used in a variety of ways. For instance, nonlinear dielectric
effects have been related to the correlation of distinct relaxa-
tion times.19 In this case, a superposition of Debye processes
is used, which predict heat loss scaling with the square of
field amplitude. Conversely, for relaxor ferroelectric materi-
als, a nonlinear polarization term is included in the dynamic
response equation.20 Such an approach allowed the authors
to investigate the third harmonics of the relaxor. On the other
hand, in magnetic materials, nonlinear response is investi-
gated using the stochastic Landau-Lifshitz-Gilbert (SLLG)
equation.17,18,21,22 In this case, thermal fluctuations are
addressed using the Brown’s approach23 (based on the giant-

spin hypothesis that considers the particle as a uniform
single-domain in which all spins rotate coherently), which
allows one to use the Fokker-Planck equation that describes
the magnetic moment orientational distribution function.
One can then show that this leads to an infinite hierarchy of
equations, which can be solved numerically to find the mag-
netic moment response of the nanoparticle.24–27 The method
is valid for any field amplitude, but due to its mathematical
complexity, it does not yield simple analytical expressions
that could be useful in the applied field.

Indeed, the field and frequency-dependence of heat loss
in magnetic materials have been attracting the attention for a
long time due to technological applications.28 In general, the
loss in magnetic materials can show several contributions,
spanning from eddy currents (that scales with f 2H2), anoma-
lous eddy current contributions (due to complex domain wall
dynamics which scales with f 3=2H3=2) up to multidomain
magnetic hysteresis contribution. The latter term can be
explained using the Rayleigh correction to the magnetic per-
meability and reveals a power loss scaling with fH3. This
type of behavior had been reported before in magnetic nano-
particle hyperthermia experiments.29 The authors suggest that
this can be explained by the existence of large particles in the
sample.29 So, multidomain particles could be relevant to heat
generation through domain wall motion loss. However, for
most used magnetic fluid samples, multidomain particles are
not expected. For example, in magnetite nanoparticles the
single-domain limit is around 80 nm.30 Moreover, from the
theoretical point of view, Carrey et al. investigated the SLP
field exponent using numerical simulations of the SLLG
equation (see Fig. 7 of Ref. 16). The authors found theoreti-
cally that this exponent is size dependent and showed values
below or higher than 2. This type of behavior was found
experimentally by Verde et al.17 However, in both works, no
simple analytical expression was used to explain this behav-
ior. From the experimental point of view, after obtaining the
SLP data of the samples as a function of the applied alternat-
ing field, it is common to try to describe the heating effi-
ciency in terms of a field exponent, i.e., one might try to fit
the data with an allometric expression as SLP ¼ aH! , where
a is a constant and ! the field exponent. If this exponent is
equal to 2, one might argue that the sample is within the lin-
ear response regime. But, once more, this behavior cannot be
explained, only phenomenologically described.

Here, we show that through a modification of Bloch’s
equation, which is linear with respect to the magnetization,
one is able to obtain a heat loss expression valid beyond the
LRT. Indeed, different from other works from the literature,
we demonstrate that even the linear frequency term has
higher order field contributions. Also, our model introduces
a nonlinear frequency term which adequately describes the
magnetic response within the hyperthermia therapeutic
window. The validity of the model is explicitly tested by com-
paring it with numerical simulations of the SLLG approach. In
addition, we included experimental magnetic hyperthermia
data that support our theoretical findings. Twelve powder sam-
ples were studied, including cobalt-ferrite, copper-ferrite,
nickel-ferrite, maghemite, and manganese-ferrite (doped with
Zn or Co and also undoped) based nanoparticles. The analytical

FIG. 1. Calculated biological critical field according to Atkinson’s criteria
scaled for a coil radius of 0:035 m (expected for small tumors in breast10),
which results in a Hf < 20:78' 105 kA=ðm' sÞ. Human treatment
can only occur below this field. The LRT limit is calculated assuming
H < 0:02HK for a particle diameter of 15 nm, MS ¼ 270 emu=cm3; Kef ¼ 8
'104 erg=cm3, T ¼ 300 K; a ¼ 0:05, and q ¼ 5 g=cm3. The nonlinear
response critical field for our model (NLRT) corresponds to the solid line.

173901-2 Carri~ao et al. J. Appl. Phys. 121, 173901 (2017)



nonlinear response model is believed to be useful not only for
improving our understanding of magnetic losses but also
may impact other related areas, which could benefit from ana-
lytical expressions, as for example, magnetic particle imaging
(MPI)31,32 and magnetic nanothermometry (MNT).33,34

The article is organized as follows: In Section II, we
develop the proposed nonlinear response model (NLRT). In
Section III, we present the experimental procedure, i.e., the
synthesis and characterization of magnetic nanoparticles. In
Section IV, we discuss all the theoretical and experimental
results. Here, we focus on magnetic nanoparticle hyperther-
mia but also compare our model with the third-harmonic
magnetic particle imaging data from the literature. Finally,
in Section V we summarize our findings. In the Appendix,
we discuss several models from the literature. In particular,
we review the linear response theory (LRT), the nonlinear
Ferguson-Krishnan model (FK) (usually applied in magnetic
particle imaging), the perturbation method developed by
Raikher and Stepanov (RS model), and finally the stochastic
Landau-Lifshitz-Gilbert model (SLLG), which is expected to
be the exact solution of the magnetic response of the nano-
particle at alternating field conditions. All the models are
critically compared showing the necessity of developing a
simple nonlinear analytical model.

II. THEORETICAL MODEL

In this section, we present our nonlinear response model.
First, we include the magnetic anisotropy energy term in the
longitudinal case, which allows us to obtain any quasi-static
(QS) (equilibrium) susceptibility terms. Those expressions
will be named vQS;n, i.e., the nth-order quasi-static (QS) coef-
ficient obtained in the low-frequency limit (x! 0). In Sec.
II B, we introduce our dynamic model, where a new expres-
sion for the heat loss and the particle magnetization is
obtained. Section II C is related to the cubic harmonic calcu-
lation, which is an important parameter for magnetic particle
imaging application.

A. Quasi-static longitudinal case

For a uniaxial magnetic nanoparticle in the longitudinal
case, the average magnetization is obtained from

M

MS
¼ h cos hi ¼

ðp

0

cos her cos2 hþn cos h sin hdh
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0

er cos2 hþn cos h sin hdh
: (2)

For r > 0, one can show that the longitudinal magnetization
is35
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Expanding the longitudinal magnetization in a Taylor series:
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where erfðizÞ ¼ ð2i=
ffiffiffi
p
p
Þ
Ð z

0 eu2
du and vQS;3 < 0. Note that all

vQS;n are real. In the Appendix, we discuss how this case dif-

fers from the Langevin model. In particular, Fig. 5(b) shows
the ratio of the vQS;n=vLA;n up to the fifth-order (n¼ 5). The

longitudinal linear susceptibility (vQS;1) calculation demon-

strates that in the absence of (or very low) magnetic anisot-
ropy, the susceptibility approaches the expected Langevin
result. On the other hand, in the high anisotropy limit, the
linear ratio approaches 3, which indicates that the longitudi-
nal result tends to the Ising result, as expected in this case.
Other ratios are also shown in the Appendix. Therefore, we
can conclude that in general it is of great importance to
include the anisotropy term when investigating the magnetic
response of nanoparticles.

B. Nonlinear response model

As in the LRT model, let us assume that a magnetic par-
ticle is subjected to a harmonic field and that the projection
of the magnetization, M(t), in the field direction satisfies the
Bloch equation, i.e.

s
dM

dt

$ %
þM ¼ f tð Þ; (5)

where s is the relaxation time and f(t) is a function of the
alternating field. Hence, it will be periodic, i.e.,
f ðtÞ ¼ f ðtþ 2p=xÞ. Also, in general one might represent
f ðtÞ ¼ v1HðtÞ þ v3HðtÞ3 þ " " ", where vn is the nth-order
magnetic susceptibility. The LRT corresponds to considering
just the first term in f(t). The nonlinear response under
Bloch’s assumption may be computed as follows. In general,
f(t) is a function of H(t) so it may be expanded in a cosine
series as f ðtÞ ¼

P1
n¼1 cn cosðnxtÞ for certain coefficients cn,

which can be easily identified by expanding f(t) in terms of
cosðnxtÞ (another alternative way to obtain those coefficients
is using the integrating factor method directly to Bloch’s
equation). The steady-state solution of the Bloch equation is
therefore

M tð Þ ¼
X1

n¼1

cn
cos nxtþ nxsð Þsin nxt

1þ nxsð Þ2
: (6)

In this approach, the corresponding SLP is

SLP ¼ pf

q
H0

xs

1þ xsð Þ2
c1

¼ pf

q
xs
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v1H2
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3

4
v3H4
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8
v5H6
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:

(7)
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This means that all other terms are negligible in compar-
ison to c1ðH0Þ. This comes from the fact that in the heat loss
integral only the terms obtained from n¼ 1 are nonzero.
Note that the first term corresponds to the usual Debye
model, if one assumes that v1 ¼ vQS;1, i.e., that v1 is the
quasi-static limit linear coefficient. Also, it might be impor-
tant to mention that the existence of the higher order field
dependent terms indicates a correction not reported before in
the literature. As for instance, if one uses the magnetization
equation of the RS model, only the quadratic field term
appears. The same approach can also be used in the dielectric
loss case, for example, the electric field dependence dielec-
tric loss of glycerol (see the inset of Fig. 3 of Ref. 19).

According to Equation (6), the Bloch solution for the
magnetization M(t) up to cubic terms in the field is

M tð Þ ¼ v1H0 þ
3

4
v3H3

0

$ %
cos xtð Þ þ xs sin xtð Þ

1þ xsð Þ2

þ v3H3
0

4

cos 3xtð Þ þ 3xs sin 3xtð Þ
1þ 3xsð Þ2

; (8)

where vn are the nth-order magnetic susceptibility coeffi-
cients. From the above equation, it is clear that higher-order
terms are also relevant to the magnetization dynamics. As
for instance, this nonlinearity effect can be identified even
for the first harmonic contribution, which shows higher field
order terms.

In addition, if xs* 1 one may write the magnetization
(considering higher-order terms in f(t)) as MðtÞ ¼ v1

H0 cosðxtÞ þ v3H3
0 cos ðxtÞ3 þ " " ". For the sake of argument,

if one assumes that the nth-order susceptibility terms are
equal to the quasi-static terms (x! 0) and that the nanopar-
ticle is in the superparamagnetic regime, then MðtÞ=MS

¼ Lðn cosðxtÞÞ þOðxsÞ. Note that the first term of this
equation has been used systematically in both magnetic
particle imaging (MPI)31 and magnetic nanothermometry
(MNT).33,34 In MNT, the magnetization expression was
shown to be useful only in the low frequency range,33 which
is easily explained by our model due to the range of validity
of the latter expression. Moreover, in MPI the magnetization
is similar, but not identical to our model, and differs mainly
due to the term nxs and that the latter assumes quasi-static
susceptibility terms and superparamagnetic particle. As a
consequence, our model gives different higher-order har-
monic magnetization terms and might represent better the
experimental MPI data.36 Our model gives a similar expres-
sion to Ref. 36 for the heat loss if we assume that vn ¼ vQS;n.
However, this approximation does not represent correctly the
magnetization dynamics.

Further, Eq. (7) shows that the Bloch equation predicts
the same frequency dependence as the LRT, which will
result in elliptical-like hysteresis curves that are in disagree-
ment with experiment. The reason for this discrepancy is that
Bloch’s equation is linear, whereas the underlying physical
phenomenon is not (see the Appendix). One way to circum-
vent this is to assume that the coefficients vn depend explic-
itly on x. The exact form of this dependence is problem
specific, but it must be such that when x! 0, one recovers

the equilibrium nonlinear susceptibilities. The heuristic
improvement approach, also used by others,37 but in this
work not based on a rigorous mathematical approach, is able
to better represent the magnetization dynamics.

So, to correct for the aforementioned deficiency of the
Bloch approach, we replace vn with a frequency dependent
function and compare the approximation with exact results,
which are obtained for the longitudinal case using the SLLG
model.17,18,22,38 In this strategy, we wrote vn ¼ vQS;ngn,
where gn is a function of the frequency. The quasi-static sus-
ceptibility coefficients were obtained from the series expan-
sion of the quasi-static longitudinal solution.35 Also, from
our assumption, it is obvious that one should have
gnðxs! 0Þ ¼ 1. Moreover, for the first term we should
have g1 ¼ 1, which corresponds to the LRT result. For the
cubic term we found that

v3 ¼ vQS;3
3# xsð Þ2

3 1þ xsð Þ2
+ , : (9)

Similar to the RS model, the magnetization can be writ-
ten in the same functional form as Eq. (A11) in the
Appendix. However, now the real susceptibility terms are

v01 ¼
vQS;1

1þ xsð Þ2
þ 1

4
H2

0vQS;3
3# xsð Þ2

1þ xsð Þ2
+ ,2

; (10)

v03 ¼
1

12
vQS;3

3# xsð Þ2

1þ xsð Þ2
+ ,

1þ 3xsð Þ2
+ , ; (11)

while the imaginary terms are v001 ¼ xsv01 and v003 ¼ 3xsv03.
Those results indicate that the susceptibility terms are dis-
tinct from the RS model (see Eqs. (A9) and (A10) in the
Appendix), even though the quasi-static susceptibility coeffi-
cients give the same result. Also, the linear susceptibility
term shows a nonlinear field and frequency contribution,
which was absent in other models.

So, returning to the heat loss integral (Eq. (A4), in the
Appendix) and using the cubic magnetization (Eq. (8)) with
this correction (Eq. (9)), the new expression for SLP is now
given by

SLP ¼ l0p
f

q
H2

0

vQS;1xs

1þ xsð Þ2
þ 1

4
H2

0

vQS;3xs 3# xsð Þ2
+ ,
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+ ,2

2

64

3

75:

(12)

In addition, because we also investigate soft-magnetic
nanomaterials (low r), the empirical uniaxial relaxation time
expression, valid for any anisotropy value, has been
considered38

s ¼ s0 er # 1ð Þ 2#r þ 2r3=2

ffiffiffi
p
p

1þ rð Þ

" ##1

: (13)

It is important to notice that the proposed model takes
into account exclusively the N!eel relaxation process. This
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mechanism is the most relevant in powder samples, as the
ones studied in this article, in which the nanoparticles cannot
rotate. Note that, powder samples might be more closely
related to cancer treatment application, since during endocy-
tosis (nanoparticle internalization into cells) the nanopar-
ticles are found packed (aggregated) inside vesicles
(endosomes), which is a particle arrangement situation that
inhibits rotation. However, it is possible to develop a similar
model to describe the Brownian relaxation process (also
named viscous mechanism).39–41 But, because the g3 expres-
sion was obtained by comparison with SLLG, Eq. (9) would
not necessarily be valid anymore in such a situation. So, one
might not be able to use the present model just considering
the Brownian relaxation (instead of the Neel one). Although
the viscous mechanism is an important issue, especially
under flow conditions, this subject is beyond the objective of
the present article. Further, readers interested in this type of
analysis should check Refs. 39–42.

C. Cubic harmonic MPI signal

Besides magnetic hyperthermia, the present model might
be useful for magnetic particle imaging (MPI) too. MPI is a
nonionizing imaging technique, introduced in 2005 by Gleich
and Weizenecker,31 which is capable of imaging magnetic
tracers through the nonlinear magnetic response of magnetic
nanoparticles. In MPI, a DC plus an AC field are applied to the
magnetic material in such a way to create a free field point vol-
ume where the nanoparticles can respond to the ac field excita-
tion. The magnetic response signal can then be measured using
detector coils. The received voltage by the detector coil is

u ¼ #l0

ð

V

S0 xð Þ
@M x; tð Þ
@t

dV; (14)

S0 is the coil sensitivity (assumed to be l0S0 ¼ 2:25 mT=A)
and the integration is over the magnetic material. The MPI
third harmonic magnetization signal per unit volume emf3x0

is defined as the module of the Discrete Fourier Transform
given by

emf3x0
¼ l0S0jDFT u3½ ,j; (15)

where

DFT u3½ , ¼
XN#1

k¼0

f k½ ,e#i6p
N k: (16)

The function f ½k, is obtained using f t½ , ¼ @MðtÞ
@t and the time

discretization as t ¼ k
Nf0

, where f0 is the excitation field fre-
quency and N corresponds to the number of intervals discre-
tized within one period. In this work, N¼ 40. In the NLRT
model, the complete magnetization expression is unknown,
so we only use the terms up to the third harmonic. On the
other hand, for the FK model, one can expand the Langevin
expression up to any order.

III. EXPERIMENTAL PROCEDURE

Manganese-ferrite samples were synthesized by hydro-
thermal route and separated for the hyperthermia analysis

after characterization by x-ray diffraction (XRD) and vibrat-
ing sample magnetometer (VSM). All chemical reagents
(FeCl3:6H2O; MnCl2:4H2O, ZnCl2; CoCl2:6H2O), citric
acid trisodium salt—Na3C6H5O7, methylamine—CH3NH2,
and acetone—CH3COCH3) were purchased with analytical
quality and used without any further purification. In a typical
approach, Mn0:75½ðZn or CoÞ,0:25Fe2O4 magnetic nanopar-
ticles were prepared as follows: adequate amounts of
1:0 mol=l metal stock solutions were diluted with 40.0 ml of
distilled water to form a precursor solution containing
10.0 mmol of Fe3þ; 3:75 mmol of Mn2þ, and 1.25 mmol of
Zn2þ or Co2þ. Thus, 120 mmol of methylamine at 40%
(w/w) were quickly poured into the stock solution under
vigorous stirring for 10 min and then transferred into a 120 ml
Teflon-sealed autoclave and heated up to 160 -C for 6 h.
After cooling to room temperature, the precipitate was sepa-
rated by magnetic decantation, washed with H2O three times,
and re-dispersed in 50.0 ml of water. Then, 4:0 mmol of citric
acid trisodium salt was added into the solution which was
heated up to 80 -C for 60 min. After adjusting the pH of
slurry to 7.0 and washing with acetone three times, the pre-
cipitate was re-dispersed in 50:0 ml of water to form a mag-
netic sol, after evaporating residual acetone. Thus, a size-
sorting process was done by adding 1 g of NaCl to the as-
prepared magnetic sol.43 5 min afterwards under a permanent
magnet (NdFeB), addition of salt induced a phase transition
and formed an upper (bottom) sol phase with populations of
smaller (larger) nanoparticles. Once separated, precipitate of
each phase was washed twice with a mixture water/acetone
1:10 (volume/volume) and, after evaporating residual ace-
tone, nanoparticles were re-dispersed in water. This proce-
dure was repeated several times. Powders were obtained from
evaporation of sols at 55 -C for 8 h. Details about cobalt-
ferrite samples can be found in Ref. 18 and copper-ferrite and
nickel-ferrite samples can be found in Ref. 17.

After the size-sorting process, powder samples were
analyzed by XRD (Shimadzu 6000) to separate samples with
similar sizes. The previous analysis was performed using the
well-known Scherrer equation, which is given by
DXRD ¼ jk=b cos w, where j ¼ 0:89 is the Scherrer con-
stant, k ¼ 0:15406 nm is the X-ray wavelength, b is the line
broadening in radians obtained from the square root of the
difference between the square of the experimental width of
the most intense peak to the square of silicon width (calibra-
tion material), and w is the Bragg angle of the most intense
peak (311). This procedure allowed us to select three distinct
samples of similar sizes containing MnFe2O4, Mn0:75Zn0:25

Fe2O4, or Mn0:75Co0:25Fe2O4 nanoparticles. All the nanopar-
ticles were surface-coated with citric acid, which guarantees
stability at physiological conditions. The samples were also
characterized by VSM (ADE Magnetics, model EV9, room
temperature measurements, field up to 2T). Table I summa-
rizes the relevant characterization properties of the
nanoparticles.

Finally, magnetic hyperthermia data were obtained in
two systems, one homemade which operates at 500 kHz and
the other from nanoTherics. In particular, the latter system
operates in a broad frequency range, spanning from 110 up
to 980 kHz. The details about the homemade hyperthermia
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system have been described elsewhere.17,18 The calorimetric
method used to obtain the experimental SLP of the sample
used the equation

SLP ¼ C

mNP

dT

dt

& '

max
; (17)

where C is the heat capacity of the sample (here, assumed as
the heat capacity of the liquid carrier due to the low concen-
tration of particles), mNP is the mass of magnetic nanopar-
ticles in unit of grams (obtained from the analysis of the
magnetisation curves of the colloid samples), and T is the
temperature of the sample measured with a fibre optic ther-
mometer. Note that in the SLP calculation we use the value
of the maximum rate of temperature increase (½dT=dt,max), as
discussed previously by others.17,44 This method is believed
to better estimate SLP than the most common initial-slope
procedure that can underestimate this value.45

IV. RESULTS AND DISCUSSION

A. Theoretical results

Several experimental results show the existence of an
optimal particle size for hyperthermia.16,18,30 This is also
contemplated in Eq. (A5) of the Appendix, obtained in LRT,
which predicts that this optimal size should occur when
xs ¼ 1. This, however, is only true at low field amplitudes.
Increasing field amplitude one notices a shift of maximum
size towards larger particles in a noninteracting system. This
can be easily modelled within LRT using the field dependent
magnetization relaxation time.24 Indeed, such drift becomes
clear when h> 0.04 (see discussion of Fig. 2(f) below).
Further, numerical dynamic hysteresis simulations using the
SLLG model or Kinetic Monte Carlo method16–18,46 show
that, as the field amplitude increases, the optimal size shifts
towards larger particles. It may even disappear, depending
(also) on the magnetic anisotropy of the nanoparticle.16–18,46

Most of the above results consider a noninteracting system.
However, in colloids, or real in vivo situation, agglomerate
formation plays a key role. In this case, it has been shown

within LRT that the opposite effect occurs, i.e., increasing
the strength of the particle interaction shifts the optimal
diameter to lower sizes.15 The same was found including the
particle-particle interaction using a mean field approach to
the SLLG model in the low field regime.27 Notwithstanding,
a valuable analytical nonlinear response theoretical model
(NLRT) should be able to explain at least some of the fea-
tures discussed above.

A comparison between the hysteresis curves obtained
from the LRT, our NLRT model, and the numerical solution
of the SLLG model is shown in Figs. 2(a)–2(d), for distinct r
values considering xs0 ¼ 10#3 and H0=HK ¼ 0:1. It is found
that the inclusion of the corrected cubic term leads to a good
agreement with the numerical simulations, adequately
describing the deviations from the linear response. Note that
the agreement is far better than any other model discussed
previously (see the Appendix). The LRT model is shown as
a dashed line, the exact result using the SLLG equation is
shown as dashed-dotted line, while NLRT (considering Eq.
(9)) is shown as a solid line. It is very surprising that, with
such a simple assumption, an interesting nonlinear effect is
obtained able to represent far better the magnetization
dynamics. Indeed, we found that the present model works
very well close to this limit of anisotropy value (H0

ffi 0:14HK). It also has a slight frequency dependence which
can be monitored by nonphysical results in the magnetization
curve or kinks in the SLP versus r curves increasing the
field. At higher fields, we observe deviations from the exact
solution that might be only addressed if higher-order terms
are determined. Nevertheless, as shown in Fig. 1 (see the
NLRT line), the range of validity of the model is almost
completely within the hyperthermia therapeutic window.
This suggests that this model might be applicable for real
clinical situations.

Figure 2(e) shows the SLP as a function of r for the LRT
(dashed line) and the NLRT (solid line) for distinct field
amplitudes. For simplicity, we are not considering the field
dependence on the relaxation time. One can clearly observe a
shift of the maximum of SLP towards higher particle sizes in
the nonlinear case and also a decrease of the maximum SLP
value for the NLRT case. The phenomenon is strictly related
to the nonlinear effect introduced in the model and not due to
the field effect from the relaxation. This result is in accor-
dance with numerical simulations from the literature.18,46 On
the other hand, Fig. 2(f) also shows SLP as a function of r in
both cases, but now investigating the field effect on the relaxa-
tion time for H ¼ 0:09HK . Similar behavior to that mentioned
before is observed. Nevertheless, in comparison with the
LRT, the NLRT-sðHÞ shows a larger size shift. As for
instance, the optimum anisotropy term changes from ropt ¼
8:1 for LRT to ropt ¼ 9:0 for NLRT-sðHÞ, which corresponds
to a shift in optimal diameter of the order of 4%.

As discussed, there are other nonlinear models (see the
Appendix). In particular, cubic susceptibility expressions using
the RS model had been suggested to represent experimental
data of noninteracting magnetic nanoparticles.47 Figure 2(g)
shows the cubic susceptibility terms, imaginary and real,
for the RS model and the NLRT model as a function of
temperature. Here, the parameters used were d ¼ 11 nm,

TABLE I. Characterization parameters of the samples. DXRD is the crystal-
line size, MS is the saturation magnetization, and Hcoer is the coercive field.
! is the apparent SLP field exponent from allometric fit.

Sample DXRD (nm) MS (emu/cm3) Hcoer (Oe) !

MnFe2O4 11.3 293 21 2.2

Mn0.75Zn0.25Fe2O4 11.1 302 0.4 1.6

Mn0.75Co0.25Fe2O4 11.4 309 77 2.6

CoFe2O4 9.1 272 152 3.9

c –Fe2O3 9.3 209 2.7 2.0

CuFe2O4 9.4 124 0.5 1.2

CoFe2O4 3.4 103 1.4 1.9

CoFe2O4 12.9 253 261 2.5

CoFe2O4 13.6 281 299 5.5

NiFe2O4 5.3 153 0.3 1.5

NiFe2O4 7.9 151 0.4 2.1

NiFe2O4 12.8 185 4.4 2.3
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MS ¼ 270 emu=cm3; Kef ¼ 8' 104 erg=cm3, a ¼ 0:05, and
q ¼ 5 g=cm3. As found in Ref. 37, the real cubic term in the
RS model shows a significant variation as a function of tem-
perature, in particular, in the range below 60 K, where a quite
high positive cubic value is found theoretically. It is curious
to notice that experimentally such effect has not been
observed in Ref. 47 for noninteracting nanoparticle samples.
In fact, discrepancies between the RS model and data of Ref.
47 had been attributed to polydispersity and particle-particle
interaction effects. Note that the inclusion of such effects
could be responsible for some of those differences between
theory and data. However, there might be another explana-
tion. As we have just shown, the NLRT model represents far

better the magnetization response. Differently from the RS
model, the real cubic susceptibility from NLRT does not
show such strong positive contribution at low temperatures.
As a consequence, it might represent better experimental
data. Another point that could be commented about the
improvement in the NLRT model in comparison to others is
the SLP calculation. Note that in the RS model the SLP cal-
culation, using the magnetization expression of Eq. (A11) in
the Appendix, provides the same result as the LRT. So,
although the magnetization equations are not the same, the
hysteresis area is the same as the LRT case. Again, this is in
contradiction with several experimental results. As com-
mented before, experimental results are often fitted using

FIG. 2. Dynamic hysteresis curves for
the LRT (dashed line), NLRT (solid
line), and the exact solution (dashed-
dotted line) using the SLLG equation
for field H0 ¼ 0:1HK and xs0 ¼ 10#3.
In (a) r¼ 4, (b) r¼ 6, (c) r¼ 10, and
(d) r¼ 12. (e) SLP as a function of r
for the LRT and NLRT with distinct
field amplitudes. (f) SLP as a function
of r for the LRT and NLRT with and
without the field dependence on the
relaxation time. (g) Real and imaginary
susceptibilities as a function of temper-
ature for the RS and the NLRT models.
(h) SLP as a function the square of the
field for the LRT (dash), NLRT (solid),
and exact solution using the SLLG
(points) for r values of 6 and 10.
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allometric function SLP ¼ aH! , where an exponent different
than 2 indicates a deviation from linear response. An alterna-
tive approach is plotting SLP data as a function of quadratic
field, where linear behavior is represented by the straight
line, obviously. Figure 2(h) shows the SLP as a function of
the quadratic field for distinct r values considering the LRT
(dash), NLRT (solid), and SLLG (points). Both situations
show that depending on the particle size or anisotropy, devi-
ations from the expected quadratic field dependence of the
LRT are found. In the low barrier regime (r < ropt), i.e., for
particle sizes lower than the optimum value, the field depen-
dence exponent is lower than 2. While in the high barrier
regime, an exponent higher than 2 is observed. The same
behavior is found from SLLG, as expected, since the NLRT
model is based on the assumption that SLLG is the exact
result. However, because in the NLRT only the cubic term
was introduced, deviations between both models are
expected for higher fields. The nonlinear regime has been
studied experimentally before in Ref. 17, where the transi-
tion to the nonlinear regime was explained using the SLLG
model, though without any analytical expression. The expla-
nation for such behavior may be understood using Eq. (8).
Note that vQS;3 < 0, so when xs <

ffiffiffi
3
p
/ 1:7 the high-order

contribution term lowers the linear SLP field dependence
term. The consequence of this is an apparent field exponent
lower than 2. On the other hand, when xs >

ffiffiffi
3
p

the higher
order SLP term changes sign, which now adds a value to the
first order term. In this case, exponents larger than 2 might
appear if the field is high enough.

From Fig. 2(h), it is also possible to discuss the differ-
ence between NLRT and LRT in terms of error in SLP esti-
mate. Using SLLG (points) as the reference, it is clear that
the error depends not only on the field but also on r. For
instance, for ðH0=HKÞ2 ¼ 0:008, NLRT presents an error of
#2.6% when r¼ 10 and #4.8% when r¼ 6. In this same
condition, LRT presents errors of #18% and þ29%, respec-
tively. Note that positive error means an overestimation,
while negative is an underestimation. Moreover, returning to
Fig. 1 (using the same nanoparticle parameters), for a fre-
quency of 234 kHz and a field of 4:1 kA=m (52 Oe), the LRT
error is þ5.9%. Increasing the field up to 6:4 kA=m (80 Oe,
still in the biologically safe region) this error reaches
þ14.6%. So, using the LRT model for clinical planning
might result in inadequate treatment decisions due to the
overestimation of the heat efficiency.

B. Magnetic hyperthermia evidence

Evidence of nonlinear behavior is that the SLP field
dependence can be found in distinct ferrite-based powder
samples. Table I summarizes the parameters obtained from
sample analysis. Four sets of samples were studied. The first
set is composed of three samples: manganese-ferrite based
nanoparticles undoped, doped with zinc, and doped with
cobalt. Since samples were produced using the same method
and have (approximately) the same magnetization and the
same diameter, this set allows the study of anisotropy influ-
ence over SLP versus H behavior. The second set is com-
posed of other three samples: cobalt-ferrite, maghemite, and

copper-ferrite. These samples have very different magnetiza-
tion and anisotropy but the same diameter (some results pub-
lished in Ref. 18). The third set is composed of other three
samples of cobalt-ferrite, which have a high anisotropy, with
different diameters. And, the last set is composed of three
samples of nickel-ferrite, which have a lower anisotropy
than cobalt-ferrite, with different diameters.

Magnetic hyperthermia experimental data around
500 kHz are shown in Figs. 3(a), 3(c), 3(e), and 3(g) for pow-
der samples, where we present the SLP as a function of the
applied field for distinct ferrite-based samples. Most of the
applied fields are above the therapeutical values (see Fig. 1)
but are necessary to experimentally observe deviations from
LRT. Symbols represent experimental data, while the lines
are the fit of the data using the allometric function. First,
notice that soft-like materials heat more efficiently at low field
amplitudes, in agreement with what was found before experi-
mentally and theoretically.15,17,18 This property, although not
discussed in this work, is relevant for in vivo applications.5

Table I shows the apparent field exponents obtained from this
type of phenomenological approach for all the samples, as
well Figs. 3(b), 3(d), 3(f), and 3(h), compared with 2 (gray
dashed line which represents LRT). The result indicates devi-
ation from linear behavior and the samples show distinct
exponents values, depending (probably) on sample anisotropy.
The same behavior has been observed with other ferrites.17

This behavior is in accordance with our previous theoretical
analysis. However, a direct comparison between experimen-
tal data and theoretical analysis is compromised by the fact
that samples are solid and allow a random anisotropy axis
nanoparticle configuration that decreases the equilibrium sus-
ceptibility values lowering the SLP.17 So, the nanoparticles
at this highly packed configuration are at strong interacting
conditions, which may affect the magnetic anisotropy.15,17 In
this case, one cannot use the longitudinal calculation devel-
oped in this work for the powder samples, because the quasi-
static susceptibility values are now different. Nevertheless,
powder configuration inhibits frictional loss contributions
due to the Brownian relaxation mechanism39,48,49 and a simi-
lar behavior for SLP (with distinct absolute values) is also
expected.

The NLRT model developed here is valid for
H ( 0:14HK , where magnetization relaxation mechanisms
play a role in the spin reorientation by overcoming the bar-
rier energy. For increasing the field value, one need to use
directly the SLLG model, which due to the complexity of
the problem does not reveal any simple analytical equation.
Nevertheless, a simple approach for qualitative analysis
under high field conditions (H > HKÞ might be achieved
using the Stoner-Wohlfarth (SW) model.13 As discussed
before, because of the samples studied, NLRT as presented
here does not take into account the Brownian relaxation
mechanism, although it is possible to include this feature
using a similar approach.

C. Magnetic particle imaging evidence

Figure 4 shows the experimental MPI data of the third
harmonic magnetization signal of magnetite nanoparticles of
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distinct sizes performed at 250 kHz (see Ref. 36 for details).
Spheres correspond to experimental data, while squares are
related to the FK model of Ref. 36. Note the logarithmic
scale and that we are presenting the data in terms of r. Here,
we assumed the bulk magnetic anisotropy value, although is
well known that the anisotropy is size dependent.35,50–52

Nevertheless, size dispersity was taken into account. The cal-
culations used a relaxation time valid for any r (Refs. 15 and
38) and parameters from Table I of Ref. 36. Triangles corre-
spond to our polydisperse calculation taking the Discrete
Fourier Transform and using Eq. (14) in units of V/g, i.e.,

taking into account in the calculation of emf3x0
the amount

of magnetic material in mass per unit volume. Note that our
model represents better the MPI experimental data. Indeed
from 10 data points, NLRT is in better agreement with 80%
of the data. Better theoretical results might be achievable if
the anisotropy of each sample is known, or even more if
one is able to take into account possible particle-particle
interaction effects due to agglomerate formation.53 So, it
might be fair to say that both hyperthermia and MPI experi-
ments seem to be more adequately described by the NLRT
model.

FIG. 3. (a) SLP as a function of the
magnetic field for distinct manganese-
ferrite nanoparticles around 11 nm in
powder configuration at f¼ 522 kHz.
(b) Apparent SLP field exponent !
obtained for manganese-ferrite in
powder configuration. (c) SLP as a
function of the magnetic field for dis-
tinct ferrite nanoparticles around 9 nm
in powder configuration at f¼ 500
kHz. (d) Apparent SLP field exponent
! obtained for distinct ferrite nanopar-
ticles in powder configuration. (e)
SLP as a function of the magnetic
field for cobalt-ferrite nanoparticles
with distinct sizes in powder configu-
ration at f¼ 500 kHz. (f) Apparent
SLP field exponent ! obtained for
cobalt-ferrite in powder configuration.
(g) SLP as a function of the magnetic
field for nickel-ferrite nanoparticles
with distinct sizes in powder configu-
ration at f¼ 500 kHz. (h) Apparent
SLP field exponent ! obtained for
nickel-ferrite in powder configuration.
Symbols are data and lines represent
the best fit using the allometric
function.
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Finally, it might be relevant to comment that there is a
huge interest of not only delivering heat using magnetic
nanoparticle hyperthermia but also monitoring non-
invasively heat delivery using magnetic nanoparticles. In
order to be successful in such areas, analytical expressions,
as the ones derived in this work, that better represent the
non-linear response of magnetic nanoparticles, are highly
needed. The authors believe that the model developed here
might indicate a useful approach towards this important clin-
ical goal.

V. CONCLUSION

In conclusion, a nonlinear response model of magnetic
nanoparticles valid for single-domain nanoparticles was
developed. The model is valid beyond the linear response
theory and showed good agreement with dynamic hysteresis
simulations using the stochastic Landau-Lifshitz-Gilbert
approach and experimental hyperthermia data for field
amplitudes as high as 10% of the magnetic anisotropy field.
In particular, a generalized expression for the magnetization
and the heat loss efficiency (SLP) were obtained. The model
showed many features found experimentally in magnetic
hyperthermia and MPI studies, for example, Stoner-
Wohlfarth-like dynamic hysteresis curves, distinct SLP field
exponents, and optimum hyperthermia nanoparticle size
shift, among others. The magnetization expression was criti-
cally compared with the ones used in MPI and MNT, from
which we were able to identify when some approximations
can be used. Moreover, the NLRT was found to be valid
mostly within the hyperthermia therapeutic window, which
suggests strong applicability in the biomedical field.
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APPENDIX: MODELS REVIEW

All the models discussed in this manuscript are valid
within the single-domain range. Also, although its suitability
to describe nanostructures can be discussed,54 several models
assume the giant-spin hypothesis of Brown,23 i.e., nanoparti-
cle uniformity and coherent spin rotation. Here, we will con-
sider the case of uniaxial magnetic nanoparticle, where the
energy is given by

E ¼ KV sin2 h# l0MSVH cosðh# uÞ: (A1)

The first term is the uniaxial anisotropy energy, while the
other is the Zeeman interaction. h represents the angle
between the magnetic moment of the nanoparticle and the
easy axis direction, while h# u corresponds to the angle
between the magnetic dipole and the applied field. It is com-
mon to name the longitudinal case as u ¼ 0, which is the
case where the field is applied in the anisotropy axis
direction.

The simplest quasi-static magnetization model in the lit-
erature, named Langevin model, neglects the anisotropy
term, which can only be done if the ratio of this anisotropy
contribution to the thermal energy is very low. In this case,
the magnetization can be calculated from

M

MS
¼ h cos hi ¼

ðp

0

cos hen cos h sin hdh
ðp

0

en cos h sin hdh
¼ L nð Þ: (A2)

LðnÞ ¼ cothðnÞ # 1=n is the Langevin function, whose series
expansion to fifth order gives

M ¼ MS
n
3
# n3

45
þ 2n5

945
# " " "

$ %

¼ vLA;1H þ vLA;3H3 þ vLA;5H5 þ " " ": (A3)

The first term is the initial (linear) susceptibility, the second
the cubic, and there on.

1. Linear response theory

The first linear response model to describe heat loss was
probably described by Debye in the context of rigid electric
dipoles.12 Here, we focus on the magnetic case. Let us first
start by assuming that a magnetic particle is subjected to a

harmonic field HðtÞ ¼ <efH0eixtg ¼ H0 cos xt, with the
magnetic susceptibility v ¼ v0 # iv00, where v0 and v00 corre-
spond to the real and imaginary linear susceptibility terms,
respectively. So, the magnetization term can be written
as MðtÞ ¼ <efvHðtÞg ¼ H0ðv0 cos xtþ v00 sin xtÞ, where
x ¼ 2pf with f the field frequency. Therefore, defining the
heating efficiency (SLP) as the frequency times the hystere-
sis loss divided by the particle density (q) one finds

SLP ¼ f

qVp

þ

cycle

dQ ¼ # f

q
l0

þ
MdH

¼ p
f

q
l0H2

0v
00: (A4)

FIG. 4. MPI third harmonic signal of magnetite-based magnetic fluids con-
taining nanoparticles of different sizes as a function of r. The figure shows
the experimental data (circles) from Ref. 36, calculations using the FK
model of Ref. 36 (squares) and the NLRT (triangles) calculation.
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This equation represents the heat loss of the magnetic mate-
rial. So, one now needs an expression for the imaginary sus-
ceptibility term. If the projection of the magnetization, M(t),
in the field direction satisfies the Bloch equation, i.e.,
sðdM=dtÞ þM ¼ vHðtÞ, where s is the magnetization relaxa-
tion time, one can show that the linear susceptibility term is
v ¼ v0=ð1þ ixsÞ, revealing that

v00 ¼ v0

xs

1þ xsð Þ2
: (A5)

v0 is the equilibrium susceptibility, which in the absence of
anisotropy contributions, i.e., within the Langevin model, is
equal to vLA;1. However, if anisotropy must be considered,
this term would be different depending on energy symmetry
and distinct particle configuration situations, e.g., longitudi-
nal or random. The relaxation of the magnetization for a uni-
axial nanoparticle is s ¼ s0er=r1=2 with r ¼ KV=kBT, that is
valid when rP2.38 Here, V is the particle volume, T is the
temperature, kB is Boltzmann’s constant, and K is the
magnetic anisotropy. s0 ¼

ffiffiffi
p
p

MSð1þ a2Þ=ðc02KaÞ (about
10#10#10#8 s), with c0 the electron gyromagnetic ratio and
a the dimensionless damping factor. For the field applied in
the anisotropy direction, one finds for the relaxation in the
limit of high anisotropy

sh ¼
2s0 1# hð Þe#r 1#hð Þ2 þ 1þ hð Þe#r 1þhð Þ2
h i#1

r1=2 1# h2ð Þ : (A6)

The field term h is given in reduced units, i.e., h ¼ H0=HK .
This expression returns to the former in the absence of an
applied field. The first one to describe this heat loss for mag-
netic fluids was Rosensweig.14 The above model predicts a
loss proportional to the square of the applied field. However,
this is only true experimentally at low field amplitudes as
found in several cases dealing with magnetic nanopar-
ticles.17,18,29 Note that the same issue occurs in the electric
case for dielectrics19 or relaxor ferroelectrics.20 In addition,
the LRT model predicts elliptical magnetic hysteresis curves,
which have been observed at low field amplitudes (less than
4 kA=m) by Eggeman et al.55 and Tomitaka et al.56

However, this is not consistent with findings at higher field
amplitudes, as for instance in magnetic particle imaging
where a nonlinear response plays a crucial role.31,32

2. Ferguson-Krishnan approach

In an attempt to include nonlinear phenomena in the
description, Ferguson and Krishnan36 proposed a generaliza-
tion of linear magnetization, using the Langevin function:

M tð Þ¼MS
1

1þ xsð Þ2
L ncos xtð Þð Þþ xs

1þ xsð Þ2
L nsin xtð Þð Þ

 !
:

(A7)

This approach assumes that the frequency response of higher
field order (quasi-static) terms is the same as the linear
dynamic susceptibility term and neglects the quasi-static
contribution from the magnetic anisotropy energy term. This

expression is usually used to obtain the nth-order harmonic
magnetization, which represents an important quantity in
magnetic particle imaging.31,32

3. Raikher-Stepanov perturbation method

Using the perturbation theory, Raikher and Stepanov37

included the anisotropy term and showed that the magnetiza-
tion could be written as MðtÞ¼<ðv1H0eixt þv3H3

0e3ixtþ"""Þ.
However, different from the FK model above, the frequency
dependence of the cubic term was found to be different from
the linear term. The authors found that the cubic susceptibility
could be written as

v3 ¼ #
1

4
v 0ð Þ

3

1þ S2
2

( )
1# ixsð Þ

45 1þ ixsð Þ 1þ 3ixsð Þ ; (A8)

where vð0Þ3 ¼ /l3
0M4

SV3=ðkBTÞ3, / is the particle volume
fraction of the assembly, and S2 ¼ 1

2

Ð 1
0 ð3x2 # 1Þ

expðrx2Þdx=
Ð 1

0 exp ðrx2Þdx. So, the real and imaginary sus-
ceptibility terms are given by

v03 ¼
1

180
v 0ð Þ

3

1þ S2
2

( )
7x2s2 # 1ð Þ

1þ x2s2ð Þ 1þ 9x2s2ð Þ ; (A9)

v003 ¼ #
1

180
v 0ð Þ

3

1þ S2
2

( )
xs 3x2s2 # 5ð Þ

1þ x2s2ð Þ 1þ 9x2s2ð Þ : (A10)

Using up to the cubic term the magnetization of the
nanoparticle in the RS model gives

MðtÞ ¼ ðv01 cosðxtÞ þ v001 sinðxtÞÞH0

þðv03 cosð3xtÞ þ v003 sinð3xtÞÞH3
0; (A11)

where v01¼vð0Þ1 ð1þ2S2Þ=ð1þðxsÞ2Þ, v001¼xsvð0Þ1 ð1þ2S2Þ=
ð1þðxsÞ2Þ, with vð0Þ1 ¼/l0M2

SV=ðkBTÞ and v03 and v003 are

given by Eqs. (A9) and (A10). Note that those expressions
are valid for an ensemble and low field amplitudes. In order
to obtain the equivalent expressions for the nanoparticle, one
only needs to neglect the particle volume fraction in the
equilibrium susceptibilities. The model is valid only at very
low field amplitudes and shows an elliptical-like behavior as
LRT (see below).

4. Stochastic Landau-Lifshitz-Gilbert model

The model that is expected to correctly describe the
magnetization response of a single-domain nanoparticle at
any field amplitude and frequency range is the SLLG
model. In this case, the magnetic moment of the nanoparti-
cle is assumed to be described by the Landau-Lifshitz-
Gilbert equation

d~M

dt
¼ #c~M ' ~Heff #

ac
MS

~M ' ~M ' ~Heff

( )
; (A12)

where

~HeffðtÞ ¼ ~HðtÞ þ ~Hani þ ~H thðtÞ: (A13)
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In this case, the effective field has three contributions: the
applied external field, the anisotropy field, and the thermal
fluctuation field. So the Landau-Lifshitz-Gilbert equation
for a magnetic dipole is augmented with a Gaussian white
noise thermal field ~H th whose Cartesian coordinates satisfy
the statistical properties: h~Hi

thðtÞi ¼ 0 and h~Hi

thðtÞ ~H
j

thðsÞi
¼ 2ðkBTa=VÞdijdðt# sÞ. The Kronecker and Dirac delta
functions indicate that the thermal field is both spatial and
temporally uncorrelated. In principle, one could use the
equation above and do numerical simulations. However, the
approach of Brown was to connect the SLLG equation to
the Fokker-Planck equation of the magnetic moment orien-
tational distribution function,23 which can be used to obtain
the nanoparticle magnetic moment response.

In this work, we focus on the longitudinal case. The first
authors to study in detail this problem analytically was
Dejardin and Kalmykov.24 Later, others used the same
approach to describe dynamic magnetic hysteresis.25–27

Here, the magnetic moment orientational distribution func-
tion f(z, t) can be shown to obey the Fokker-Planck equation

2sN
@f

@t
¼ @

@z
1# z2ð Þ @f

@z
# f z; tð Þheff z; tð Þ

$ %& '
; (A14)

with sN ¼ l 1þa2ð Þ
2c0akBT the free diffusion time and z ¼ cos h with h

the angle between the magnetic dipole and the applied field.
The magnetic anisotropy is assumed uniaxial. So, the ratio of
the particle energy to thermal energy can be written as

Ueff

kBT
¼ #rz2 # 2hrz; (A15)

where the field term h ¼ H=HK . Therefore, the effective
field is

heff ¼ #
1

kBT

@Ueff

@z
¼ 2r hþ zð Þ: (A16)

The Fokker-Planck equation is then used to obtain the
time evolution of the lth-order moment plðtÞ ¼ hPli, which is
shown to be described by

2sN
dpl

dt
¼ l lþ 1ð Þ

2lþ 1
A1 þ A2ð Þ # l lþ 1ð Þpl; (A17)

with

A1 ¼ 2rhðpl#1 þ plþ1Þ; (A18)

and

A2 ¼ 2r
l# 1

2l# 1
pl#2 þ

2lþ 1

2l# 1ð Þ 2lþ 3ð Þ pl#
lþ 2

2lþ 3
plþ2

& '
:

(A19)

This equation shows that each moment depends on others in
a nonlinear fashion. This infinite hierarchy may be solved
numerically using fast sparse solvers17,22,25,27 and discarding
several periods of the external field. Alternatively, one could
also expand the plðtÞ in a Fourier series as

plðtÞ ¼
X1

k¼#1
Fl

kðxÞe
ikxt; (A20)

with all plðtÞ real, which implies that Fl
#k ¼ ðFl

kÞ
&, where the

asterisks refer to the complex conjugate.24 This will then
lead to a hierarchy of algebraic equations for the Fourier
amplitudes, which also need to be solved numerically.24

5. Magnetization loops

We are now in condition to compare the hysteresis loops
of each model, namely, the linear response theory using the
field-independent relaxation time (LRT) and also the field-
dependent relaxation time of Eq. (A6) (LRT sh), the FK
model, the RS model, and the exact solution for the SLLG
model. In Fig. 5(a), we show the magnetization curves of all
those models. It is clear that the LRT model, independent of
the relaxation time equation used, shows an elliptical loop.
The RS model showed a similar behavior. The only model
that shows a significant difference from LRT is the FK
model. However, it also shows an elliptical hysteresis, which

FIG. 5. (a) Dynamic hysteresis curves for the LRT, LRT considering field
dependence on relaxation time s, Ferguson-Krishnan approach, Raikher
Stepanov method, and numerical solution of SLLG for r¼ 6 and
xs0 ¼ 10#3. (b) Longitudinal to Langevin susceptibilities ratio for n¼ 1,
n¼ 3, and n¼ 5.
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is distinct from the LRT model because of the Langevin
equilibrium susceptibility. So, different from the other mod-
els, it does not take into account the anisotropy term.
Nevertheless, for the parameters used in this simulation, it is
shown that none of the models above represent well the exact
solution given by the SLLG magnetization hysteresis loop.
Although improvements were obtained in each model, in
general they are not yet satisfactory. The importance of
anisotropy in magnetic response description becomes clear
in Fig. 5(b), which shows the ratio of vQS;n=vLA;n up to the
fifth-order (n¼ 5). The longitudinal linear susceptibility
(vQS;1) approaches Langevin result in the absence of (or very
low) magnetic anisotropy, as expected. On the other hand, it
tends to the Ising behavior, in high anisotropy limit, when
the ratio approaches 3.
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