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In this paper, we give a pedagogical introduction to the ideas of quantum thermodynamics and
work fluctuations, using only basic concepts from quantum and statistical mechanics. After
reviewing the concept of work as usually taught in thermodynamics and statistical mechanics, we
discuss the framework of non-equilibrium processes in quantum systems together with some
modern developments, such as the Jarzynski equality and its connection to the second law of
thermodynamics. We then apply these results to the problem of magnetic resonance, where all
calculations can be done exactly. It is shown in detail how to build the statistics of the work, both
for a single particle and for a collection of non-interacting particles. We hope that this paper will
serve as a tool to bring the new student up to date on the recent developments in non-equilibrium
thermodynamics of quantum systems. VC 2016 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4964111]

I. INTRODUCTION

Thermodynamics was initially developed to deal with
macroscopic systems1,2 and is thus based on the idea that a
handful of macroscopic variables, such as volume, pressure,
and temperature, suffice to completely characterize a system.
However, after the advent of the atomic theory, it became
clear that the variables of the underlying microscopic world
are constantly fluctuating due to the inherent chaos and ran-
domness of the micro-world. Statistical mechanics was thus
developed as a theory connecting these microscopic fluctua-
tions with the emergent macroscopic variables. Because one
usually deals with a large number of particles, the relative
fluctuations become negligible, so that thermodynamic
measurements usually coincide very well with expectation
values of the microscopic fluctuating quantities (a conse-
quence of the law of large numbers3).

Equilibrium statistical mechanics is now a well-
established and successful theory. Its main result is the
Gibbs formula for the canonical ensemble,4,5 which provides
a fundamental bridge between microscopic physics and ther-
modynamics for any equilibrium situation. Conversely, far
less is known about non-equilibrium processes. The reason is
that in this case the handful of parameters used in thermody-
namics no longer suffices, forcing one to know the full
dynamics of the system; i.e., one must study Newton’s or
Schr€odinger’s equation for all constituent particles, thus
making the problem much more difficult.

These difficulties led researchers to look for non-
equilibrium processes in the realm of small systems. On the
one hand, in these systems, the dynamics are somewhat eas-
ier to describe because there are fewer particles. But on the
other hand, fluctuations become important and must there-
fore be included in the description. Substantial progress in
experimental methods has made it possible for the first time
to experiment with small systems and has therefore contrib-
uted to this shift.

The random fluctuations present in small systems also
affect thermodynamic quantities such as work and heat. A
beautiful example is the use of optical tweezers to fold and
unfold individual RNA molecules.6 The molecules are
immersed in water and therefore subject to the incessant fluc-
tuations of Brownian motion. Thus, the amount of work
required to fold a molecule will be different each time we
repeat the experiment and should therefore be interpreted as a
random variable. The same is true of the work that is extracted
from the molecule when it is unfolded. In some realizations, it
is even possible to extract work without any changes in the
thermodynamic state of the system—something that would
contradict the second law of thermodynamics.

This example introduces the idea that fluctuations in small
systems could lead to local violations of the second law.
These violations were first observed in fluid simulations in the
beginning of the 1990s by Evans, Cohen, Gallavotti, and col-
laborators.7,8 Afterwards, in 1997 and 1998 came two impor-
tant (and intimately related) breakthroughs by Jarzynski9,10

and Crooks.11,12 They showed that the work performed in a
non-equilibrium (e.g., fast) process, when interpreted as a ran-
dom variable, obeyed a set of exact relations that touched
deeply on the nature of irreversibility and the second law.
Nowadays, these relations go by the generic name of fluctua-
tion theorems (not to be confused with the fluctuation-
dissipation theorem) and can be interpreted as generalizations
of the second law for fluctuating systems. These theoretical
findings were later confirmed by experiments on diverse sys-
tems such as trapped Brownian particles,13,14 mechanical
oscillators,15 and biological systems.6,16

With time, researchers began to look for similar results in
quantum systems, both for unitary17,18 and for open19,20

quantum dynamics. Here, in addition to the thermal fluctua-
tions, one also has intrinsically quantum fluctuations, leading
to a much richer platform to work with. One may therefore
ask to what extent will these quantum fluctuations affect
thermodynamic quantities such as heat and work. This
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research was also motivated by the remarkable progress of
the past decade in the experimental control of atoms and
photons, particularly in areas such as magnetic resonance,
ultra-cold atoms, and quantum optics. In fact, the first experi-
mental verifications of the fluctuation theorems for quantum
systems were done only recently, using nuclear magnetic res-
onance21 and trapped ions.22

It is a remarkable achievement of modern-day physics that
we are now able to test the thermodynamic properties of sys-
tems containing only a handful of particles. But despite being
an active area of research, the basic concepts in this field can
be understood using only standard quantum and statistical
mechanics. The purpose of this paper is to provide an introduc-
tion to some of these concepts in the realm of quantum sys-
tems. Our main goal is to introduce the reader to the idea that
work can be treated as a random variable. We then show how
to construct all of its statistical properties such as the corre-
sponding probability distribution of work or the characteristic
function. We discuss how these quantities can be used to derive
Jarzynski’s equality,9,10 thence serving as a quantum mechani-
cal derivation of the second law. To illustrate these new ideas,
we apply our results to the problem of magnetic resonance, an
elegant textbook example that can be worked out analytically.

II. WORK IN THERMODYNAMICS AND
STATISTICAL MECHANICS

A. Thermodynamic description

Consider any physical system described by a certain
Hamiltonian H. When this system is placed in contact with a
heat reservoir, energy may flow between the system and the
bath. This change in energy is called heat. But the energy of
a system may also change by means of an external agent,
which manually changes some parameter in the Hamiltonian
of the system. These types of changes are called work.

Heat and work are not properties of the system. Rather,
they are the outcomes of processes that alter the state of the
system. If during a certain interval of time an amount of heat
Q entered the system and work W was performed on the sys-
tem, energy conservation implies that the total energy U of
the system must have changed by

DU ¼ QþW; (1)

which is the first law of thermodynamics. When W> 0 we
say the external agent performed work on the system, while
when W< 0 we say the system performed work on the exter-
nal agent (for instance, when a gas expands against a piston).

The process of performing work on a system can be
described microscopically in a very general way through the
change of some parameter k in the Hamiltonian. We shall call
this the work parameter. Examples include the volume of a
container, an electric or magnetic field, or the stiffness of a
harmonic trap. In order to describe exactly how the work was
performed we must also specify the protocol to be used. This
means specifying precisely under what conditions are the
changes being made and with what time dependence kðtÞ. We
usually assume that the process lasts between a time t¼ 0 and
a time t ¼ s, during which k varies in some pre-defined way
from an initial value ki ¼ kð0Þ to a final value kf ¼ kðsÞ.

Overall, describing an arbitrarily fast process can be a diffi-
cult task, because it requires detailed information about the
dynamics of the system and how it is coupled to the bath.

Instead, thermodynamics usually focuses on quasi-static pro-
cesses, in which k changes very slowly in order to ensure that
throughout the process the system is always in thermal equilib-
rium. Quasi-static processes have the advantage of being atem-
poral—we do not need to specify the function kðtÞ, but merely
its initial and final values. In this paper, our focus will be on
non-equilibrium processes. But before we can get there, we
must first have a solid understanding of quasi-static processes.

Perhaps the most important example of a quasi-static pro-
cess is the isothermal process, in which the temperature of
the system is kept constant throughout the protocol. Because
work usually changes the temperature of an isolated system,
to ensure a constant temperature the system must remain
coupled to a heat reservoir kept at a constant temperature T.
It is also important to note that an isothermal process must
necessarily be quasi-static. For, if the process is not quasi-
static, the temperature will not remain constant or homoge-
neous. In fact, intensive quantities such as temperature and
pressure are defined only in thermal equilibrium, so any pro-
cess where these quantities are kept fixed must be quasi-
static. Thus, henceforth whenever we speak of an isothermal
process, it will already be implied that it is quasi-static.

In classical mechanics, we learn that the work performed
on a system can be stored as potential energy and that this
potential energy can be used to extract work from the sys-
tem. For a thermal system undergoing an isothermal process,
this is no longer true since the system must always exchange
some heat with the bath. The part of U available for perform-
ing work is called the free energy, F, so that

W ¼ DF ¼ DU % Q; (2)

where DF ¼ FðT; kf Þ % FðT; kiÞ (cf. Ref. 1 or chapter 2 of
Ref. 23). The energy is “free” in the sense that it is available
to perform work.

Now suppose we try to repeat the same process, but we do
so too quickly, so that it cannot be considered quasi-static.
The initial state is still FðT; kiÞ, but the final state will not be
FðT; kf Þ. Instead, the final state will be something compli-
cated that depends on exactly how the process was per-
formed (see Fig. 1). Notwithstanding, because the system is
coupled to a bath, if we leave it alone after the protocol is
over, it will eventually relax to the state FðT; kf Þ. Thus, over-
all, a certain amount of work W was performed to take the
system from FðT; kiÞ to FðT; kf Þ. But this work is not equal
to DF, since Eq. (2) holds only for quasi-static processes.

Instead, according to the second law of thermodynamics,
the work done in the non-equilibrium process must always
be larger than DF, so that in general

Fig. 1. Diagram representing a non-equilibrium process. Through the proto-
col kðtÞ, the system is taken from an initial state FðT; kiÞ to a final non-
equilibrium state with parameter kf (solid line). After the process is done,
the system will eventually relax from the non-equilibrium state to the equi-
librium state FðT; kf Þ (dashed line). Finally, the dotted line represents the
journey back to the original state.
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W & DF; (3)

with the equality holding only for the isothermal (i.e., quasi-
static) process. This important result means that if we wish
to change the free energy of a system by DF, the minimum
amount of work we need to perform is DF and will be
accomplished in an isothermal (quasi-static) process. Any
other protocol will require more work. The difference
Wirr ¼ W % DF & 0, known as the irreversible work, there-
fore represents the extra work that had to be done due to the
particular choice of protocol.

The inequality in Eq. (3) can be interpreted as a direct con-
sequence of the Kelvin statement of the second law: “A trans-
formation whose only final result is to transform into work,
heat extracted from a source which is at the same temperature
throughout, is impossible.”1 The key part of this statement is
the expression “only final result.” It means that it is impossi-
ble to extract work from a bath at a fixed temperature, without
changing anything else (such as the thermodynamic state of
the system). Extracting work while changing the thermody-
namic state of a system is not a problem. For instance, we can
use a heat source to make a gas expand and thence extract
work from the expansion. But by the end of the process, we
will have altered the state of the gas, so the extraction of work
was not the only outcome. What the second law says is that it
is impossible to extract work from a single source at a fixed
temperature and keep the state of the system intact.

To make the connection with Eq. (3), consider a process
divided into three steps, represented by the three lines in
Fig. 1. In the first step, we perform a certain amount of work
W in a non-equilibrium process. In the second, we perform
no work and allow the system to relax from the non-
equilibrium state to FðT; kf Þ. Finally, in the third process
(represented by a dotted line in Fig. 1), we go back quasi-
statically from FðT; kf Þ to FðT; kiÞ. The amount of work
required for the return journey is Wreturn ¼ %DF, because we
assume that this part is quasi-static. In the end, we are back
to the original state, having performed a total work
W þWreturn ¼ W % DF. According to the second law, this
total work cannot be negative, because that would mean we
would have extracted work from a reservoir at a fixed tem-
perature, without any changes in the state of the system.
Consequently, W % DF & 0, which is Eq. (3).

B. Isothermal processes in equilibrium statistical
mechanics

Let us now analyze the isothermal process quantitatively.
Because it is a quasi-static process, we can decompose it into
a series of infinitesimal processes, where k is changed
slightly to kþ dk. The full process is then simply a succes-
sion of these small steps.

We assume that initially we had a system with
Hamiltonian HðkÞ ¼ H in thermal equilibrium with a heat
bath at a temperature T. According to statistical mechanics,
its state is then given by the Gibbs density operator

qth ¼
e%bH

Z
; (4)

where Z ¼ trðe%bHÞ is the partition function and b ¼ 1=T in
units with Boltzmann’s constant equal to 1. We can also
write this expression in terms of the energy eigenvalues En

and eigenvectors jni. The probability of finding the system
in the state jni is therefore

Pn ¼ hnjqthjni ¼
e%bEn

Z
: (5)

Moreover, the internal (average) energy of the system can be
written as

U ¼ hHi ¼ trðHqthÞ ¼
X

n

EnPn: (6)

When we change k to kþ dk, both En and Pn will change;
hence, U will change by

dU ¼
X

n

dðEnPnÞ ¼
X

n

½ðdEnÞPn þ EnðdPnÞ(: (7)

This separation of dU in two terms allows for an interesting
physical interpretation.11

The change in k is infinitesimal and instantaneous, so
immediately after the change, the system has not yet
responded. This situation corresponds to the first term on the
right-hand side of Eq. (7): it is the average of the energy
change dEn over the old (unperturbed) probabilities Pn. In the
second term, the energies are fixed and the probabilities
change. We interpret this as the second step, where the system
adjusts itself with the bath in order to return to equilibrium.
Thus, each infinitesimal process can be separated into two
parts. The first part is the work performed, while the second is
the heat exchanged as the system relaxes to equilibrium.

This decomposition motivates us to define

dW ¼
X

n

ðdEnÞPn; (8)

dQ ¼
X

n

EnðdPnÞ; (9)

so that Eq. (7) can be written as dU ¼ dQþ dW (we use d
instead of d simply to emphasize that heat and work are not
exact differentials2). In order to better understand the physi-
cal meaning of these formulas, we will now explore them in
more detail.

We start with dW and show that it is related to the free
energy of the system, defined as

F ¼ %T ln Z: (10)

To understand this relationship, first note that since the
temperature T is fixed, dF ¼ %T dZ=Z. Since Z ¼

P
ne%En=T ,

one can then readily show that dF ¼
P

nðdEnÞPn, which is
precisely Eq. (8); thus,

dW ¼ dF: (11)

From this result, Eq. (2) is recovered by integrating over the
several infinitesimal steps.

Next we turn to dQ in Eq. (9). Instead of trying to manipu-
late dPn, we can use the following trick: invert Eq. (5) to
write En ¼ %TlnðZPnÞ. If we substitute this relation into Eq.
(9) we get two terms, one proportional to lnðZÞ and the other
proportional to lnðPnÞ. The term with lnðZÞ will be

%T
X

n

lnðZÞdðPnÞ ¼ %T lnðZÞ d
!X

n

Pn

"
¼ 0; (12)
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since
P

nPn ¼ 1 and dð1Þ ¼ 0. Thus, we are left only with

dQ ¼ %T
X

n

ðdPnÞln Pn: (13)

But now note that, by the chain rule,

d
X

n

PnlnPn

# $
¼
X

n

dPnð ÞlnPn þ
X

n

Pn

Pn
dPnð Þ; (14)

and the last term is also zero for the same reason as above.
Hence, we conclude that

dQ ¼ %Td

#X

n

Pn ln Pn

$
: (15)

We see that even though dQ is not a function of state, it is
related to the variation of a quantity that is a function of
state. We define the entropy as

S ¼ %
X

n

PnlnPn; (16)

so that we finally arrive at

dQ ¼ T dS: (17)

This relation, we emphasize, holds only for infinitesimal pro-
cesses. For finite and irreversible processes, there may be
additional contributions to the change in entropy.

We therefore see that it is possible to give microscopic def-
initions to thermodynamic quantities such as heat and work.
Moreover, it is possible to relate them to functions of state
that can be constructed from the initial density matrix qth.
While these thermodynamic quantities can be defined inde-
pendently of statistical mechanics, we believe that this micro-
scopic description helps to clarify their physical meanings.

III. WORK AS A RANDOM VARIABLE

In 1997, Jarzynski discovered that great insight into the
properties of non-equilibrium processes could be gained by
treating work as a random variable.9,10 For example, consider
the process in which a movable piston is used to compress a
gas contained in a cylinder. Since the molecules of the gas are
moving chaotically and hitting the walls of the piston in all
sorts of different ways, each time we press the piston the gas
molecules will exert back on us a different force. This means
that the work needed to achieve a given compression will
change each time we repeat the experiment.

Of course, one may object that in most systems these fluc-
tuations are negligibly small. But that does not stop us from
interpreting W in this way. And, as we will soon see, this
treatment does lead to several advantages. On the other
hand, when dealing with microscopic systems this interpreta-
tion becomes essential because fluctuations become signifi-
cant. A famous example is the work performed when folding
RNA molecules,6,16 already discussed in Sec. I.

In addition to thermal fluctuations, some microscopic sys-
tems also have a strong contribution from quantum fluctua-
tions. These fluctuations are related to the fact that in order
to access the amount of work performed in a system, one
must measure its energy and therefore collapse the wave
function. This measurement puts the system into different
states with different probabilities [cf. Eq. (5)]. Thus, in quan-
tum systems both thermal and quantum fluctuations must be
taken into consideration.

A. The Jarzynski equality

Usually, our knowledge of non-equilibrium processes is
restricted only to inequalities such as Eq. (3). The contribu-
tion of Jarzynski9,10 was to show that by interpreting W as a
random variable, one can obtain an equality, even for a pro-
cess performed arbitrarily far from equilibrium.

Consider several realizations of a non-equilibrium pro-
cess, such as that described by the solid line in Fig. 1. At
each realization, we always prepare the system in the
same initial state. We then execute the protocol and measure
the total work W performed. After repeating this process
many times, we can construct the probability distribution of
the work, P(W). From this probability, any average can be
computed. For instance, the average work will be

hWi ¼
ð

PðWÞ dW; (18)

or we can study the average of other quantities such as hW2i
and so on.

Jarzynski’s main result was to show that the statistical
average of e%bW should satisfy9,10

he%bWi ¼ e%bDF; (19)

where DF ¼ FðT; kf Þ % FðT; kiÞ, as described in Fig. 1. This
result is nothing short of remarkable. It holds for a process
performed arbitrarily far from equilibrium. And it is an equal-
ity, which is a much stronger statement than the inequalities
we are used to in thermodynamics. The appearance of
FðT; kf Þ in Eq. (19) is also surprising, since this is not the final
state of the process; it would only be the final state if the pro-
cess were quasi-static. Instead, as indicated in Fig. 1, the final
state is a non-equilibrium state, which may differ substantially
from FðT; kf Þ. The appearance of FðT; kf Þ therefore reflects
the state that the system wants to go to, but cannot do so
because the process is not sufficiently slow.

It is possible to show that the inequality in Eq. (3),
W & DF, is contained within the Jarzynski equality. This can
be accomplished using Jensen’s inequality (see chapter 8 of
Ref. 3), which states that he%bWi & e%bhWi. Combining this
with Eq. (19) then gives

hWi & DF: (20)

We therefore see that when we treat work as a random vari-
able the old results from thermodynamics are recovered for
the average work.

In macroscopic systems, by the law of large numbers (see,
e.g., Ref. 3, chapter 8), individual measurements are usually
very close to the average, so the distinction between the
average work hWi and a single stochastic realization W is
immaterial. But for microscopic systems, this is usually not
true. In fact, although hWi & DF, the individual realizations
W may very well be smaller than DF. These instances would
be local violations of the second law. For large systems,
these local violations become extremely rare. But for small
systems, they can be measured experimentally.6,16,21 If we
know the distribution P(W), then the probability of a local
violation of the second law can easily be found as

ProbðW < DFÞ ¼
ðDF

%1
PðWÞ dW: (21)
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The demonstration of the Jarzynski equality in Eq. (19)
requires detailed knowledge of the dynamics of the system,
i.e., if it is classical, quantum, unitary, stochastic, etc.24

Below we will give a demonstration for one particular case
of unitary quantum dynamics.

B. Non-equilibrium unitary dynamics

We will now consider in detail how to describe work in a
non-equilibrium process. As mentioned above, this requires
detailed knowledge of the dynamics of the system and how it is
coupled to the heat bath. The last part is by far the most difficult
because it requires concepts from open quantum systems such
as Lindblad dynamics or quantum Langevin equations.25 We
will therefore make an important simplification and assume
that the coupling to the heat bath is so weak that during the pro-
tocol no heat is exchanged. This situation is actually encoun-
tered very often in experiments because many systems are only
weakly coupled to the bath. It also simplifies considerably the
description of the problem, because it allows us to use
Schr€odinger’s equation to describe the dynamics of the system.

We shall consider the protocol described in Sec. II A.
Initially, the system had a Hamiltonian Hi ¼ HðkiÞ and was
in thermal equilibrium with a bath at a temperature T. The
initial state of the system is then given by the Gibbs thermal
density matrix in Eq. (4). As a first step, we measure the
energy of the system. If we let Ei

n and jni denote the eigen-
values and eigenvectors of Hi, then the energy Ei

n will be
obtained with probability Pn ¼ e%bEi

n=Z [cf. Eq. (5)].
Immediately after this measurement, we initiate the proto-

col, changing k from kð0Þ ¼ ki to kðsÞ ¼ kf according to
some pre-defined function kðtÞ. If we assume that during this
process the contact with the bath is very weak, then the state
of the system will evolve according to

jwðtÞi ¼ UðtÞjni; (22)

where U(t) is the unitary time-evolution operator, which sat-
isfies Schr€odinger’s equation (with #h ¼ 1)

i@tU ¼ HðtÞU; Uð0Þ ¼ 1: (23)

(For a derivation of this equation, see Ref. 26, chapter 2.)
At the end of the process, we measure the energy of the

system once again. The Hamiltonian is now Hf ¼ Hðkf Þ and
therefore may have completely different energy levels Ef

m
and eigenvectors jmi. The probability that we now measure
an energy Ef

m is

jhmjwðsÞij2 ¼ jhmjUðsÞjnij2; (24)

which can be interpreted as the conditional probability that a
system initially in jni will be found in jmi after a time s.

Because no heat is exchanged with the environment, any
change in the energy must necessarily be attributed to the
work performed by the external agent. The energy obtained
in the first measurement was Ei

n, and the energy obtained in
the second measurement was Ef

m. We then define the work
performed by the external agent as

W ¼ Ef
m % Ei

n: (25)

Both Ei
n and Ef

m are fluctuating quantities that change during
each realization of the experiment. The first energy Ei

n is

random due to thermal fluctuations, and the second, Ef
m, is

random due to quantum fluctuations. Consequently, W will
also be a random variable, encompassing both thermal and
quantum fluctuations.

C. Distribution of work and characteristic function

We will now obtain an expression for the probability dis-
tribution P(W) obtained by repeating the above protocol sev-
eral times. This can be accomplished by noting that we are
dealing here with a two-step measurement process. From
probability theory, if A and B are two events, the total proba-
bility P(A, B) that both events occur can be written as

PðA;BÞ ¼ PðAjBÞPðBÞ; (26)

where P(B) is the probability that B occurs and PðAjBÞ is the
conditional probability that A occurs given that B has
occurred. In our context, PðAjBÞ is given in Eq. (24),
whereas P(B) is simply the initial probability Pn. Hence, the
probability that both events have occurred is

ProbðEi
n ! protocol! Ef

mÞ ¼ jhmjUðsÞjnij
2Pn: (27)

Because we are interested in the work performed, we then
write

PðWÞ ¼
X

n;m

jhmjUðsÞjnij2 Pn d½W % ðEf
m % Ei

nÞ(; (28)

where dðxÞ is the Dirac delta function. This formula is per-
haps best explained in words: we sum over all allowed
events, weighted by their probabilities, and catalogue the
terms according to the values of Ef

m % Ei
n.

Although it is exact, Eq. (28) is not very convenient to
work with. In most systems, there are a large number of
allowed energy levels and therefore an even larger number
of allowed energy differences Ef

m % Ei
n. It is much more con-

venient to work with the characteristic function, defined as
the Fourier transform of the original distribution

GðrÞ ¼ heirWi ¼
ð1

%1
PðWÞeirW dW: (29)

From G(r) we can recover the original distribution from the
inverse Fourier transform

P Wð Þ ¼ 1

2p

ð1

%1
dr G rð Þe%irW : (30)

Because P(W) and G(r) are Fourier transforms of each other,
they contain the same information.

With the help of Eq. (28), we can write

GðrÞ ¼
X

n;m

jhmjUjnij2 PneirðEf
m%Ei

nÞ;

¼
X

n;m

hnjU†eirEf
m jmihmjUe%irEi

n Pnjni;

¼
X

n;m

hnjU†eirHf jmihmjUe%irHiqthjni

¼ trfU†ðsÞeirHf UðsÞe%irHiqthg; (31)

hence we conclude that
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G ¼ trfU†ðsÞeirHf UðsÞe%irHiqthg: (32)

The characteristic function does not have a particularly
important physical meaning. But because it is written as the
trace of a product of operators, it is usually much more con-
venient to work with than P(W). In many aspects, this func-
tion plays a role somewhat similar to the partition function Z
in equilibrium statistical mechanics. One usually does not
dwell on the physical meaning of Z, but rather uses it as a
convenient quantity from which observables such as the
energy and entropy can be extracted.

From G(r) we can also readily extract the statistical
moments of W. To see this, we expand Eq. (29) in a Taylor
series in r to find

G rð Þ ¼ heirWi ¼ 1þ irhWi% r2

2
hW2i% i

r3

3!
hW3iþ ) ) ) :

(33)

Hence, hWni will be multiplied by the term of order rn in the
expansion.

On the other hand, we can obtain quantum mechanical for-
mulas for the moments by doing a similar expansion in Eq.
(32). The average work, for instance, is found to be

hWi ¼ hHf is % hHii0; (34)

where, given any operator A, we define

hAit ¼ trfU†ðtÞAUðtÞqthg (35)

as the expectation value of this operator at time t, a result
that follows directly from the fact that the state of the system
at time t is qðtÞ ¼ UðtÞqthU†ðtÞ. We therefore see that hWi is
simply the difference between the average energy at time s
and the average energy at time 0, which is intuitive. One can
continue with the expansion of Eq. (32) to obtain formulas
for higher-order moments. Unfortunately, they do not
acquire such a simple form.

The characteristic function can also be used to demonstrate
the Jarzynski equality in Eq. (19) because, based on the defini-
tion in Eq. (29), we should have Gðr ¼ ibÞ ¼ he%bWi. But
from Eqs. (4) and (32) we find that

G ibð Þ ¼ 1

Zi
tr U†e%bHf Uð Þ ¼ 1

Zi
tr e%bHfð Þ ¼

Zf

Zi
; (36)

and since Z ¼ e%bF, this yields Eq. (19)

GðibÞ ¼ he%bWi ¼ e%bDF: (37)

Notice that no assumptions have been made as to the speed
of the process, so we conclude that the Jarzynski equality
holds for a process arbitrarily far from equilibrium.

IV. MAGNETIC RESONANCE

A. Statement of the problem

We will now apply the concepts of Sec. III to a magnetic
resonance experiment. The typical setup consists of a sample
of non-interacting spin-1/2 particles (electrons, nucleons,
etc.) placed under a strong static magnetic field B0 in the z

direction. The Hamiltonian of this interaction can be
described using the Pauli matrix rz as26

H0 ¼ %
B0

2
rz: (38)

For simplicity, we choose to measure the field in energy
units. Moreover, because we are using #h ¼ 1, the quantity B0

also represents the characteristic precession frequency of the
spin. The eigenvalues of H0 are %B0=2 and B0=2, corre-
sponding to spin up and spin down, respectively.

When the spin is coupled to a heat bath at temperature T,
its state will be given by the thermal density matrix qth in
Eq. (4). The Hamiltonian H0 is already diagonal in the usual
j6i basis that diagonalizes rz. Whenever this is true, the cor-
responding matrix exponential e%H0=T can be computed by
simply exponentiating the eigenvalues

e%H0=T ¼ eB0=2T 0
0 e%B0=2T

# $
: (39)

The partition function is the trace of this matrix,
Z ¼ trðe%H0=TÞ ¼ 2coshðB0=2TÞ. The thermal density matrix
qth ¼ e%H0=T=Z can then be written in a convenient way as

qth ¼
1

2
1þ fð Þ 0

0
1

2
1% fð Þ

0

BB@

1

CCA; (40)

where f is the equilibrium magnetization of the system

f ¼ hrzith ¼ tanh
B0

T

# $
; (41)

corresponding to the paramagnetic response of a spin-1/2
particle.

The work protocol is implemented by applying a very small
field of amplitude B1 rotating in the xy-plane with frequency x.
That is, the work parameter k is described here by the field
B1 ¼ ðB1 sin xt;B1 cos xt; 0Þ. Typically, B0 * 10 T and B1 *
0:01 T, so we can always take as a good approximation that
B1 + B0. The total Hamiltonian of the system now becomes

H tð Þ ¼ %B0

2
rz %

B1

2
rx sin xtþ ry cos xtð Þ: (42)

The oscillating field plays the role of a perturbation, which,
albeit extremely weak, may nonetheless promote transitions
between the up and down spin states. The transitions will be
most frequent at the resonance condition x ¼ B0, i.e., when
the driving frequency x is the same as the natural oscillation
frequency B0.

To make progress, we must now compute the time evolu-
tion operator U(t) defined in Eq. (23). Usually, accomplish-
ing this for a time-dependent Hamiltonian is a very
complicated task. Luckily, for the particular choice of H in
Eq. (42) the task turns out to be quite simple. The first step is
to define a new operator ~UðtÞ from the relation

UðtÞ ¼ eixtrz=2 ~UðtÞ: (43)

Substituting this in Eq. (23), one finds that ~U must obey the
modified Schr€odinger equation
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i@t
~U ¼ ~H ~U ; (44)

where

~H ¼ % B0 % xð Þ
2

rz %
B1

2
ry: (45)

We therefore see that ~UðtÞ evolves according to a time-
independent Hamiltonian. Consequently, the solution of
Eq. (44) is simply ~UðtÞ ¼ e%i ~Ht and the full time evolution
operator is

UðtÞ ¼ eixtrz=2e%i ~Ht: (46)

It is important to notice that because ry and rz do not com-
mute we cannot write U(t) as eiðxrz=2% ~HÞt.

It is also useful to have in hand an explicit formula for
e%i ~Ht. This can be accomplished using the following trick.
Let M be an arbitrary matrix such thatM2 ¼ I (where I is
the 2, 2 identity matrix). Then, if a is an arbitrary constant,
a direct power series expansion of e%iaM yields

e%iaM ¼ I cos a% iM sin a: (47)

We can apply this idea to our problem by writing Eq. (45) as

~H ¼ %X
2

rz cos hþ ry sin h
& '

; (48)

where

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B0 % xð Þ2 þ B2

1

q
; tan h ¼ B1

B0 % x
: (49)

Since r2
i ¼ I it follows that ðrz cos hþ ry sin hÞ2 ¼ I. Thus,

Eq. (47) applies and we get

e%i ~Ht ¼ I cos
Xt

2

# $
þ i rz cos hþ ry sin h
& '

sin
Xt

2

# $
:

(50)

Inserting this result into Eq. (46), we can finally write a
closed (exact) formula for the full time evolution operator
U(t). After organizing the terms a bit, we get

UðtÞ ¼ uðtÞ vðtÞ
%v-ðtÞ u-ðtÞ

# $
; (51)

where

u tð Þ ¼ eixt=2 cos
Xt

2

# $
þ i cos h sin

Xt

2

# $) *
; (52)

v tð Þ ¼ eixt=2 sin h sin
Xt

2

# $
: (53)

We see that, apart from a phase factor eixt=2, the final result
depends only on X and h, which in turn depend on B0, B1,
and x [cf. Eq. (49)].

To understand the physics behind u(t) and v(t), suppose
the system starts in the pure state jþi. The probability that
after a time t it will be found in state j%i is jh%jUðtÞjþij2.

But looking at Eq. (51) we see that h%jUðtÞjþi ¼ vðtÞ.
Therefore, jvj2 represents the transition probability per unit
time for a jump to occur. Moreover, the unitarity condition
U†U ¼ 1 implies that jvj2 þ juj2 ¼ 1, so juj2 is the probabil-
ity that no transition occurs.

From Eq. (53), we also see that v / sin h, which therefore
attributes a physical meaning to the angle h [defined in Eq.
(49)] as representing the transition probability. This proba-
bility reaches a maximum precisely at resonance (x ¼ B0),
as we intuitively expect. In fact, at resonance Eqs. (52) and
(53) simplify to

u tð Þ ¼ eixt=2 cos
B1t

2

# $
; (54)

v tð Þ ¼ eixt=2 sin
B1t

2

# $
: (55)

Now that we have the initial density matrix [Eq. (40)] and
the time evolution operator [Eq. (51)], we can compute the
evolution of any observable A we want using Eq. (35). For
example, we could compute the evolution of the magnetiza-
tion components hriit. All calculations are reduced to the
multiplication of 2, 2 matrices; for instance, the magnetiza-
tion in the z-direction will be

hrzit ¼ f ð1% 2jvj2Þ ¼ f ð cos2 hþ sin2 h cos XtÞ; (56)

where f is given in Eq. (41) and we used the fact that
juj2 þ jvj2 ¼ 1.

B. Average work

When computing the expectation values of quantities
related to the energy of the system, we can always use the
unperturbed Hamiltonian H0 in Eq. (38) instead of the full
Hamiltonian H(t) in Eq. (42), which is justified since
B1 + B0. The energy of the system at any given time can
therefore be found from Eq. (35) with A¼H0

hH0it ¼ %
B0

2
hrzit ¼ %

B0f

2
1% jvj2
& '

: (57)

The average work at time t is then simply the difference
between the energy at time t and the energy at time 0

hWit ¼ fB0jvj2 ¼ fB0
B2

1

X2
sin2 Xt

2

# $
; (58)

where we recall that X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB0 % xÞ2 þ B2

1

q
. The average

work therefore oscillates indefinitely with frequency X=2, a
consequence of the fact that the time evolution is unitary.

The amplitude multiplying the average work is propor-
tional to the initial magnetization f and to the ratio B2

1=
½ðB0 % xÞ2 þ B2

1(. This ratio is a Lorentzian function; it has a
sharp peak at the resonance frequency x ¼ B0, which
becomes sharper with smaller values of B1. The maximum
possible work therefore occurs at resonance and has the
value fB0.

The equilibrium free energy, Eq. (10), is F ¼ %T ln Z,
where Z ¼ 2coshðB0=2TÞ. Thus, the free energy of the initial
state (at time t¼ 0) and the final state (at any arbitrary time
t) are the same, giving DF ¼ 0. This is a consequence of the
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fact that B1 + B0. According to Eq. (20), we should then
expect hWi & 0, which is indeed observed in Eq. (58).

C. Characteristic function and distribution of work

Next we turn to the characteristic function G(r) given in
Eq. (32), with both Hi and Hf replaced by H0 in Eq. (38).
After carrying out the matrix multiplications, we get the fol-
lowing very simple formula:

G rð Þ ¼ ju tð Þj2 þ jv tð Þj2 1þ fð Þ
2

eiB0r þ 1% fð Þ
2

e%iB0r

) *
:

(59)

If we set r ¼ ib and recall the definition of f in Eq. (41), we
find that the term inside the square brackets becomes 1.

Thus, we are left with he%bWi ¼ GðibÞ ¼ juj2 þ jvj2 ¼ 1,
which is the Jarzynski equality, Eq. (37), since DF ¼ 0.

Expanding G(r) in a power series, as in Eq. (33), we also
obtain the statistical moments of the work. The first-order
term will give hWi exactly as in Eq. (58). Similarly, the sec-
ond moment can be found to be hW2i ¼ B2

0jvj
2. As a conse-

quence, the variance of the work is

varðWÞ ¼ hW2i% hWi2 ¼ B2
0jvj

2ð1% f 2jvj2Þ: (60)

Finally, we can compute the full distribution of work
P(W). The simplest way to do so is through the characteristic
function. Recall from Eq. (30) that P(W) is the inverse
Fourier transform of G(r). To carry out the computation, we
must use the integral representation for the Dirac delta
function

1

2p

ð1

%1
ei a%bð Þrdr ¼ d a% bð Þ: (61)

Using this in Eq. (59), we then find

P Wð Þ ¼ juj2d Wð Þ þ jvj2 1þ f

2
d W % B0ð Þ

þ jvj2 1% f

2
d W þ B0ð Þ: (62)

We therefore see that the work, interpreted as a random vari-
able, can take on three distinct values: W¼ 0, þB0, or %B0.

The physics behind this result is the following. Looking
back at the original Hamiltonian in Eq. (38), we see that B0 is
the energy spacing between the up and down states. The event
where W ¼ þB0 corresponds to the situation where the spin
was originally up and then flipped down (“up-down flip”).
The change in energy in this case is B0=2% ð%B0=2Þ ¼ B0.
Similarly, W ¼ %B0 corresponds to a down-up flip. And,
finally, W¼ 0 corresponds to no flip at all.

We can also find the distribution P(W) “by hand,” using
Eq. (28). For instance, the value W ¼ þB0 corresponds to
the up-down flip. The initial probability to have a particle up

is ð1þ f Þ=2 and the transition rate is jh%jUðtÞjþij2 ¼ jvj2.

Thus, PðW ¼ B0Þ ¼ jvj2ð1þ f Þ=2, which agrees with Eq.
(62). The other two probabilities can be computed in an iden-
tical way.

From the second law, we expect that W> 0. But our results
show that in a down-up flip we should have W ¼ %B0.
Hence, PðW ¼ %B0Þ is the probability of observing a local

violation of the second law. On the other hand, notice in Eq.
(62) that PðW ¼ 6B0Þ is proportional to 16f , where
f ¼ tanhðbB0Þ. Thus, up-down flips are always more likely
than down-up flips, ensuring that hWi & 0. That is to say, vio-
lations to the second law are always the exception, never the
rule.

It is also possible to express Eq. (62) in terms only of the
magnetization hrzit [Eq. (56)]. This is interesting because
hrzit is a quantity that can be directly accessed experimen-
tally. Substituting jvj2 ¼ ðf % hrzitÞ=2f in Eq. (62) gives

Prob W ¼ 6B0ð Þ ¼ f % hrzit
2f

# $
16f

2
: (63)

This formula shows that by measuring the average magneti-
zation of a system, which is a macroscopic observable, we
can extract the full distribution of work for a single spin-1/2
particle. The Jarzynski equality for a quantum system was
first confirmed experimentally in Ref. 21 using magnetic res-
onance. However, in their experiment, it was necessary to
use two interacting spins, which turns out to be a conse-
quence of the fact that in their case ½Hi;Hf ( 6¼ 0. In our case,
since B1 + B0, the initial and final Hamiltonians commute
and thus we are able to relate the distribution of work to the
properties of a single spin.

D. Statistics of the work performed on a large number of
particles

So far we have studied the work performed by an external
magnetic field on a single spin-1/2 particle. It is a remarkable
fact that with recent advances in experimental techniques, it
is now possible to experiment with just a single particle.
Notwithstanding, in most situations, one is still usually faced
with a system containing a large number of particles. The
next natural step is therefore to consider the work performed
on N spin-1/2 particles. For simplicity, we will assume that
the particles do not interact (otherwise the problem would be
much more difficult).

The work corresponds to energy differences and for non-
interacting systems, energy is an additive quantity. Hence,
the total work W performed during a certain process will be
the sum of the work performed on each individual particle

W ¼ W1 þ ) ) ) þWN: (64)

Because all spins are independent, it follows from this result
that hWi ¼ NhWi, where hWi is the average work in Eq.
(58); this is a manifestation of the fact that work, as with
energy, is an extensive quantity.

The problem has thus been reduced to the sum of indepen-
dent and identically distributed random variables, something
that is discussed extensively in introductory probability
courses (e.g., Ref. 3, chapter 6). It is in problems such as this
that the characteristic function shows its true power. Because
the variables are statistically independent, we have from Eq.
(64) that

heirWi ¼ heirðW1þ)))þWNÞi ¼ heirW1i ) ) ) heirWN i: (65)

Moreover, since all spins are identical each term on the
right-hand side corresponds exactly to the characteristic
function G(r) in Eq. (59). Thus, the characteristic function of
the total workW will be
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GðrÞ ¼ heirWi ¼ GðrÞN: (66)

Referring back to Eq. (59), let us introduce momentarily
the notation b0 ¼ juj2 and b6 ¼ jvj2ð16f Þ=2. Then Eq. (66)
can be written as

GðrÞ ¼ ðb0 þ bþeiB0r þ b%e%iB0rÞN: (67)

The importance of this formula lies in its connection with
the probability distribution PðWÞ, established via the inverse
Fourier transform in Eq. (30). If we expand the product in
Eq. (67), we will get

GðrÞ ¼
XN

k¼%N

CkeirB0k; (68)

where the factors Ck are complicated combinations of the b
coefficients that result from expanding Eq. (67). When we
take the inverse Fourier transform, this is mapped into

PðWÞ ¼
XN

k¼%N

Ck dðW % B0kÞ: (69)

We therefore see that W can take on values between %NB0

and NB0. A work of NB0, for instance, corresponds to an
event where all spins have flipped from up to down.
Similarly, a work of ðN % 1ÞB0 corresponds to N % 1 spins
flipping. And there are N possibilities for which one of the
spins did not flip. For other values the situation becomes
even more complicated.

The characteristic function in Eq. (67) can also be inter-
preted as a random walk with N steps. In a single step, one
can think of bþ and b% as the probabilities of taking a step to
the right or to the left (while b0 is the probability of not mov-
ing). If we repeat this N times, we get a characteristic func-
tion of the form (67). Moreover, PðWÞ plays the role of the
distribution of discrete positions of the random walk.

Equation (69) is illustrated in Fig. 2 for an arbitrary choice
of parameters, as explained in the figure caption. The impor-
tant point to be drawn from this analysis is that there is a cer-
tain finite probability to observe a negative work W. Since
DF ¼ 0, these instances would then correspond to local vio-
lations of the second law. However, notice also that as the
size N increases, the relative probability that W < 0 dimin-
ishes quickly. In fact, a more detailed analysis shows that

ProbðW < DFÞ * e%N: (70)

Thus, if the sample is macroscopic, it becomes extremely
unlikely to observe such a violation. This is why, in our
everyday experience, the second law is always satisfied.

Lastly, we should mention that when N is large we can
approximate P(W) by a Gaussian distribution, as a conse-
quence of the central limit theorem.3 This distribution will
have mean hWi ¼ NhWi and variance varðWÞ ¼ NvarðWÞ,
which are quantities we already know from Eqs. (58) and
(60). This distribution is plotted as a solid line in Fig. 2(d),
to be compared with the exact solution.

V. CONCLUSIONS

The goal of this paper is to introduce the student to the
concepts of quantum thermodynamics and work fluctuations.

This area of research is very active and lies at the boundary
between many well established areas, such as non-
equilibrium statistical mechanics, quantum physics, and con-
densed matter; it also has deep connections with quantum
information and quantum computing. Notwithstanding,
unlike most frontier areas, the basic ideas can be understood
using only concepts learned in standard quantum and statisti-
cal mechanics courses, thus providing an opportunity to
bring the student up to speed with the current research.

We have aimed to give an introduction that is as simple as
possible while still being useful to students. In this regard,
we would like to comment on the use of the characteristic
function. This is a concept that is not necessary, per se, to
understand the main ideas in this paper. But it is such a use-
ful concept that we feel every student in this area should
know how to work with it. Even though the use of the char-
acteristic function may have complicated the analysis a bit,
we strongly believe that it was worth the effort.

In this paper, we have made the assumption that the
motion of the system is unitary. In other words, during the
time evolution we have assumed that the system is not con-
nected to a heat reservoir. This is certainly true for many
systems, including nuclear magnetic resonance experi-
ments. However, in many other scenarios, it becomes
important to consider open quantum systems, that is, sys-
tems whose dynamics evolve coupled to a heat bath. The
tools for working with open quantum systems are already
extensively used in many areas, but the subject is still in its
infancy. We believe that in the future these systems will
play a particularly important role in the developments of
this area.
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