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The characterization of irreversibility in general quantum processes is an open problem of increasing
technological relevance. Yet, the tools currently available to this aim are mostly limited to the assessment of
dynamics induced by equilibrium environments, a situation that often does not match the reality of
experiments at the microscopic and mesoscopic scale. We propose a theory of irreversible entropy
production that is suited for quantum systems exposed to general, nonequilibrium reservoirs. We illustrate
our framework by addressing a set of physically relevant situations that clarify both the features and the
potential of our proposal.
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Introduction.—The entropy of an open system, unlike
the energy, does not satisfy a continuity equation: in
addition to entropic fluxes exchanged with the environ-
ment, some entropy may also be produced within the
system. This contribution is called the entropy production
and, according to the second law of thermodynamics, it is
always non-negative, being zero only when the system and
the environment are in thermal equilibrium. It therefore
serves as a measure of the irreversibility of a physical
process and may be used to characterize nonequilibrium
systems in a broad range of situations and across all length
scales. In symbols, if S is the entropy of the system, then its
rate of change may always be written as

dS
dt

¼ ΠðtÞ −ΦðtÞ; ð1Þ

where Π ≥ 0 is the entropy production rate and Φ is the
entropy flux rate, from the system to the environment. The
quantities Π and Φ are not direct observables and must
therefore be related to experimentally accessible quantities
via a theoretical framework. Unfortunately, a unified
approach for this is still lacking.
In the past decades, several theories of entropy produc-

tion have been developed in different contexts. The most
prominent example is Onsager’s theory of chemical
kinetics [1–4], where the entropy production rate is related
to particle and energy currents. Another widely used
framework is that of Schnakenberg [5,6], which relates
the entropy production rate to the transition rates of a
system governed by a master equation. The generalization
to other classical stochastic processes, such as dynamics
described by a Fokker-Planck equation, have also been
addressed [7–9].
The extension of these results to mesoscopic systems

came into relevance with the discovery by Gallavotti,

Cohen, and collaborators [10,11] that the total entropy
production Σ of a process, when interpreted as a fluctuating
quantity of the system’s stochastic trajectory, satisfies a
fluctuation theorem of the form he−Σi ¼ 1, which is valid
for processes arbitrarily far from equilibrium. Similar
results were found by Jarzynski [12] and Crooks [13]
for systems undergoing a work protocol, where the entropy
production is proportional to the irreversible work. These
developments and, in particular, their extensions to quan-
tum systems, have shown that in meso- and microscopic
systems, quantum fluctuations may play a prominent role in
nonequilibrium processes.
Quantum systems also open up the possibility for

exploring more general reservoirs, such as dephasing
and squeezed baths [14]. The description of these systems
extends beyond the usual paradigms of equilibrium envi-
ronments. Despite the lack of equilibrium at the bath level,
one should still be able to characterize processes by their
irreversibility and entropy production. There is thus a
strong need for the identification of suitable tools that
are able to characterize nonequilibrium processes in a broad
class of settings.
The goal of this Letter is to derive a theory of entropy

production that is applicable to quantum systems subject
to more general reservoirs. Differently from existing
theories, instead of using the von Neumann entropy SvN ¼
−trðρ ln ρÞ, we shall characterize the irreversibility using
the Rényi-2 entropy S2 ¼ − ln trρ2, where ρ is the density
matrix of the system. Both entropies have a similar
behavior when used to characterize disorder. However,
the Rényi-2 entropy is much more convenient to manipu-
late, since it is simply related to the purity trρ2 of the
state. Recently, there have been several papers linking
the general Rényi-α entropies Sα ¼ ð1 − αÞ−1 ln TrðραÞ to
the thermodynamic properties of quantum systems, from
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the formulation of general fluctuation theorems to the
derivation of a family of second laws of thermodynamics

]15–17 ]. Remarkably, all Rényi-α entropies tend asymp-
totically to the von Neumann one in the classical limit,
corroborating their use in reformulating the theory of
thermodynamic irreversibility. The subtleties implied by
the differences between the von Neumann and Rényi
entropies have been stressed in Ref. [18].
In this Letter, we shall focus on bosonic systems char-

acterized by Gaussian states. In this case, the expression for
S2 is written simply as S2 ¼ 1

2
ln jΘj, where Θ is the

covariance matrix [19]. Moreover, as shown in Ref. [20],
S2 coincides up to a constant with the Wigner entropy

S ¼ −
Z

d2αWðα�; αÞ lnWðα�; αÞ; ð2Þ

where Wðα�;αÞ is the Wigner function and the integral is
over the complex plane (as the state is Gaussian,W > 0 and
hence S is real). This link between S and S2 allows for a
fundamental simplification of the problem of characterizing
entropy production, as one can map the open system
dynamics into a Fokker-Planck equation for W and hence
employ tools of classical stochastic processes to obtain
simple expressions for Π andΦ. This idea was already used
in Refs. [21,22] via a quantum-to-classical correspondence
to treat the case of simple heat baths. Here, instead, we
present a full quantum mechanical treatment and show how
to extend the framework to treat squeezed and dephasing
reservoirs. The generalization to other types of baths is
straightforward.
We shall assume that the system is modeled by a

Lindblad master equation of the form

∂tρ ¼ −i½H; ρ� þDðρÞ; ð3Þ
where ρ is the density matrix of the system, H is its
Hamiltonian, and DðρÞ describes the process arising from
its coupling to the external reservoir. Let ρ� denote the
target state ofDðρÞ (for thermal baths ρ� ¼ ρeq ¼ e−βH=Z).
In Refs. [23–26], it was shown that the von Neumann
entropy production rate can be defined as

ΠvN ¼ −∂tKvNðρjρ�Þ; ð4Þ
where KvNðρjρ�Þ ¼ tr½ρ lnðρ=ρ�Þ� is the von Neumann
relative entropy. Equation (4) satisfies several properties
expected from an entropy production. First, ΠvN ≥ 0, with
the equality holding only for ρ ¼ ρ�. Second, for thermal
baths, the corresponding total entropy production, when
interpreted as a stochastic quantity, satisfies an integral
fluctuation theorem [26]. Finally, Eq. (4) may be factored in
the form of Eq. (1), with S ¼ SvN and

ΦvNðtÞ ¼ −
1

T
tr½HDðρÞ� ≔ ΦE

T
; ð5Þ

where ΦE is the energy flux from the system to the
environment. This is a well known result of classical
thermodynamics, relating heat and entropy flux.

Despite their clear physical interpretation, Eqs. (4) and
(5) suffer from the problem that they diverge in the limit
T → 0. This is related to the divergence of the relative
entropy when the reference state tends to a pure state
[27,28]. This divergence is clearly an inconsistency of the
theory. The limit T → 0 is frequently used in quantum
optics and the dynamics is known to be well behaved and to
correctly reproduce experimental results in several situa-
tions. In fact, even dS=dt remains finite in this limit, and
only Π and Φ diverge. In the past, several attempts have
been made to overcome this problem [27–32] but a
consistent theory is still lacking. To obtain a framework
that does not suffer from this deficiency is another
motivation for this Letter. As we will show, using the
Rényi-2–Wigner entropy avoids this problem entirely.
Thermal bath.—We begin the construction of our for-

malism by considering a single bosonic mode with H ¼
ωða†aþ 1=2Þ and dissipator

DðρÞ ¼ γðn̄þ 1Þ
�
aρa† −

1

2
fa†a; ρg

�

þ γn̄

�
a†ρa −

1

2
faa†; ρg

�
: ð6Þ

Here, γ is the damping rate of the oscillator and n̄ ¼
ðeβω − 1Þ−1 is the mean number of excitations in the
bath (β ¼ 1=T is its inverse temperature). The target state
of this dissipator is the Gibbs thermal state ρ� ¼ ρeq ¼
ð1 − e−βωÞe−βωa†a.
We define the Wigner function of the system as

Wðα�; αÞ ¼ 1

π2

Z
d2λe−λα

�þλ�αtrfρeλa†−λ�ag; ð7Þ

where λ and α are phase space variables. Using standard
operator correspondences, Eq. (3) can be translated into the
Fokker-Planck equation

∂tW ¼ −iω½∂α�ðα�WÞ − ∂αðαWÞ� þDðWÞ; ð8Þ
where the dissipative part is written as a divergence in the
complex plane:

DðWÞ ¼ ∂αJðWÞ þ ∂α�J�ðWÞ ð9Þ
with

JðWÞ ¼ γ

2
½αW þ ðn̄þ 1=2Þ∂α�W�: ð10Þ

Equation (8) is a continuity equation in the complex plane.
Hence, JðWÞ can be interpreted as the irreversible compo-
nent of the probability current. This picture is further
corroborated by the fact that JðWÞ will be zero only in
the thermal state Weq¼½1=πðn̄þ1=2Þ�exp½−jαj2=ðn̄þ1=2Þ�;
i.e., JðWeqÞ¼0. This statement is stronger than DðWeqÞ¼0

as it implies that the thermal equilibrium state is not only a
fixed point of the dissipative dynamics, but also the state
where all probability currents vanish identically.
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Having defined the Wigner entropy as in Eq. (2), we now
define the Wigner entropy production rate as

Π ¼ −∂tK(WðtÞjjWeq); ð11Þ
where KðWjjWeqÞ ¼

R
d2αW lnW=Weq is the Wigner rel-

ative entropy. For a bipartite Gaussian state, this coincides
(up to a constant) with the Rényi-2 mutual information
[20]. Inserting the Fokker-Planck Eq. (8) in Eq. (11) and
integrating by parts we get

Π ¼ −
Z

d2αDðWÞ lnðW=WeqÞ: ð12Þ

Next, we use Eq. (9) and integrate by parts again to obtain

Π ¼
Z

d2α

�
J

�∂αW
W

−
∂αWeq

Weq

�
þ α → α�

�
: ð13Þ

Finally, one notes that, from Eq. (10),

∂αW
W

−
∂αWeq

Weq
¼ 2J�

γðn̄þ 1=2Þ
1

W
: ð14Þ

Therefore, we conclude that the entropy production rate
may be written as

Π ¼ 4

γðn̄þ 1=2Þ
Z

d2α
jJðWÞj2

W
: ð15Þ

This quantity is always non-negative (as we take W > 0)
and null only at thermal equilibrium, which are precisely
the properties expected from an entropy production rate.
Going back to Eq. (12), the term proportional to

DðWÞ lnW is precisely dS=dt, with S defined in Eq. (2).
Hence, comparing with Eq. (1) we find that the remainder
must be the entropy flux rate

Φ ¼
Z

d2αDðWÞ lnWeq ¼
γ

n̄þ 1=2

Z
d2αjαj2W − γ;

where, in the last line, we integrated by parts and
substituted the formulas for DðWÞ and Weq. SinceR
d2αjαj2W ¼ ha†ai þ 1=2 we finally conclude that

Φ ¼ γ

n̄þ 1=2
ðha†ai − n̄Þ: ð16Þ

Equations (15) and (16) are the main results for the Wigner
entropy production and entropy flux rate. Equation (16) in
particular is very useful, as it relates the entropy flux rate to
a simple expectation value.
On the other hand, the energy flux rate may be computed

from Eq. (3) and reads ΦE ¼ γωðha†ai − n̄Þ. We thus
conclude that the entropy flux rate and the energy flux rate
are related by

Φ ¼ ΦE

ωðn̄þ 1=2Þ : ð17Þ

When T ≫ ω we may approximate ωðn̄þ 1=2Þ≃ T, in
which case we recover the traditional formula Φ≃ΦE=T
[Eq. (5)]. Thus, Eq. (16) recovers the expected result at high

temperatures. In addition, it tends to a finite value as T → 0.
Hence, as mentioned above, within the Wigner entropy
formulation, both Π and Φ remain well behaved in the
limit T → 0.
We have opted to derive Eqs. (15) and (16) starting from

the Wigner relative entropy, since this gives the most
natural physical interpretation. In the Supplemental
Material [33] we provide two alternative derivations of
these formulas. The first is through a simple algebraic
manipulation, which makes no mention at all of the relative
entropy or the target stateWeq. It may therefore be useful in
situations where one does not know the target state of the
dissipator a priori.
The second method is to map the Fokker-Planck Eq. (8)

into a stochastic process in the complex plane. In this way,
the total entropy production Σ of a process may be defined
as a functional of the stochastic forward and backward
trajectories. The entropy production rate is then obtained by
averaging the stochastic entropy over an infinitesimal time
interval, hΣi ¼ Πdt, where h·i stands for the average over
all stochastic paths. The interesting aspect of this approach
is that, as we show, Σ satisfies an integral fluctuation
theorem, which is the fundamental property expected of the
entropy production. This supports the interpretation of
Eq. (15) as a valid entropy production rate.
Squeezed bath.—We now generalize the above results to

the case of a bosonic mode subject to a nonequilibrium
broadband squeezed bath. This type of reservoir appears
frequently in quantum optics [14,34–38], whenever the
squeeze radiation field is treated as an external bath. The
bath is characterized by a temperature T (usually zero), a
squeeze parameters reiθ, and a central frequency ωs, related
to the production of the squeezed field (usually by para-
metric down conversion).
The dissipator of the squeezed bath may be written in

terms of the squeezed operators bz ¼ SðzÞaS†ðzÞ, where
SðzÞ ¼ eðz�a2−za†2Þ=2 and z ¼ reiðθ−2ωstÞ. With these defini-
tions, the formula for the squeezed Lindblad superoperator
becomes identical to Eq. (6), with a replaced by bz.
Because of this correspondence, all results obtained above
for the thermal bath remain valid for the squeezed bath,
provided the calculations are all carried out in terms of the
operators bz instead of a. This allows us to readily write
down the analogs of Eqs. (15) and (16) as

Π ¼ 4

γðn̄þ 1=2Þ
Z

d2β
jJbðWÞj2

W
; Φ ¼ γðhb†zbzi− n̄Þ

n̄þ 1=2
;

ð18Þ
where JbðWÞ is defined exactly as in Eq. (10), but with β
instead of α. As bz and a are related by a unitary trans-
formation, the Jacobian of the transformation from β to α is
unity. Moreover, a straightforward calculation shows that

JbðWÞ ¼ JðWÞ cosh rþ ½γα�W − J�ðWÞ�eiðθ−2ωstÞ sinh r:

ð19Þ
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With these transformations and bz ¼ SðzÞaS†ðzÞ, it is
possible to express both Π and Φ solely in terms of
quantities linked to a and a†.
To illustrate the new effects brought about by the

squeezing of the bath, consider a cavity with frequency
ωc pumped by a radiation field with frequency ωp and
squeezed central frequency ωs. The Hamiltonian describing
the cavity mode is

H ¼ ωca†aþ iðEe−iωpta† − E�eiωptaÞ; ð20Þ
where jEj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Pκ=ℏωp
p

with P being the pump laser
power and κ ¼ γ=2 the cavity amplitude decay rate. The
contact with the squeezed reservoir is modeled exactly by
the Lindblad superoperator (6) with a → bz, γ ¼ 2κ, and
n̄ ¼ 0. Because of the Gaussian nature of the problem, all
calculations are straightforward [cf. the Supplemental
Material [33]]. Here, we only emphasize the final result.
First, the steady-state energy flux is given by

ΦE ¼
	∂H
∂t



¼ 2κωpjEj2

κ2 þ Δ2
cp
; ð21Þ

whereΔij ¼ ωi − ωj. The heat current will thus be nonzero
only in the presence of the pump. Second, at the steady
state we have dS=dt ¼ 0, so that Π ¼ Φ and

Π ¼ 2κΔ2
sc

κ2 þ Δ2
sc
sinh2ð2rÞ þ 4κjEj2

κ2 þ Δ2
cp
coshð2rÞ

þ 4κRe

�
E2e−ið2ΔpstþθÞ

ðκ þ iΔcpÞ2
�
sinhð2rÞ: ð22Þ

If ωp ≠ ωs, in a time-averaged picture the last term will
oscillate in time with zero average and may thus be
neglected. In the limit of zero squeezing (r → 0) only
the second term survives and we find that Φ ¼ ΦE=2. The
important part of Eq. (22), however, is the first term, which
would still be present even for no pumping (E ¼ 0). This
term reflects the contribution coming from the nonequili-
brium nature of the bath (encompassed by the degree of
squeezing), and the one resulting from the mismatch
between the central frequency ωs of the broadband
squeezed bath and the natural frequency ωc of the cavity
(which induces off-resonant exchanges of excitations
between the cavity and the bath that are not present in
the resonant case). We interpret this term as a signature of
an (irreversible) nonequilibrium steady state that will occur
even in the absence of a pump.
It is remarkable that this information is not present in the

energy flux rate (21), but only in the entropy production.
This thus provides a clear exception to the usual
assumption that nonequilibrium steady states always have
an associated energy current. In addition, our formulation
reveals a genuinely quantum effect, and one that in
principle could be measured experimentally. Similar
counterintuitive results have been reported for the

efficiency of quantum Carnot cycles under squeezed
reservoirs [39]. We can also analyze this effect from the
viewpoint of the irreversible current JbðWÞ appearing in
Eq. (18). Using the results detailed in the Supplemental
Material [33], one may readily show that for E ¼ 0

jJbðWÞj2
W2

¼ κ2Δ2
scsinh2ð2rÞ

κ2 þ Δ2
cscosh2ð2rÞ

jβj2; ð23Þ

where β ¼ α cosh rþ α�eiðθ−2ωstÞ sinh r. Thus, the magni-
tude of the current will be zero when either Δsc ¼ 0 or
r ¼ 0. Figure 1 shows jJbj2=W against α.
Dephasing bath.—Finally, we turn to the problem

of a dephasing bath, characterized by the Lindblad
superoperator

DdephðρÞ ¼ λ

�
a†aρa†a −

1

2
fða†aÞ2; ρg

�
: ð24Þ

The action of the environment is to suppress quantum
coherences without the exchange of energy with the
system, so that ΦE ¼ 0. The corresponding operator in
Wigner space reads DdephðWÞ ¼ ∂αIðWÞ þ ∂α�I�ðWÞ,
where IðWÞ ¼ λα½α�∂α�W − α∂αW�=2. The target state
of this dynamics is not unique, as any Gibbs thermal state
will be a target state. Using Eq. (11), we find

dS
dt

����
deph

¼ Πdeph ¼
2

λ

Z
d2α
W

jIðWÞj2
jαj2 : ð25Þ

Clearly, for such a dephasing bath the entropy flux Φ is
null, which agrees intuitively with the idea that the energy
flux will also be zero, and demonstrates the suitable nature
of the approach that we have proposed.
Conclusions.—We have addressed the difficulty of

studying irreversibility in a general quantum process
incorporating an out-of-equilibrium environment. While
relevant, experimentally and technologically, in a number
of physical situations (especially in solid-state quantum
information processing), the successful addressing of this
problem has so far been hindered by the lack of formal tools

FIG. 1. jJbj2=W as a function of α, computed using Eq. (23)
with Δcs=κ ¼ 0.9, r ¼ 0.5, and θ − 2ωst ¼ 0.0.
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suited to encompass the complexity of the effects arising
from the environment. We have put forward a new,
alternative picture for irreversible entropy production based
on the use of the Rényi-2 entropy, which is able to address
the open-system dynamics of a quantum system in contact
with nonequilibrium reservoirs in a successful way. Three
independent methods of obtaining the entropy production
rate were provided, which serves to corroborate the general-
ity of our approach. Whether it is possible to generalize this
theory to arbitrary Rényi-α entropies remains an open
question. The illustrations that we have discussed, includ-
ing squeezed and dephasing baths, show both the potential
of the proposed approach and the breath of physically
relevant situations that it is able to address. We have opted
to focus our approach on a single bosonic mode. The
generalization to a multimode process is straightforward
and will be the subject of a future publication.
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