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Quantum master equations form an important tool in the description of transport problems in open quantum
systems. However, they suffer from the difficulty that the shape of the Lindblad dissipator depends sensibly on
the system Hamiltonian. Consequently, most of the work done in this field has focused on phenomenological
dissipators which act locally on different parts of the system. In this paper we show how to construct Lindblad
dissipators to model a one-dimensional bosonic tight-binding chain connected to two baths at the first and last
site, kept at different temperatures and chemical potentials. We show that even though the bath coupling is
local, the effective Lindblad dissipator stemming from this interaction is inherently nonlocal, affecting all normal
modes of the system. We then use this formalism to study the current of particles and energy through the system
and find that they have the structure of Landauer’s formula, with the bath spectral density playing the role of
the transfer integral. Finally, we consider infinitesimal temperature and chemical potential gradients and show
that the currents satisfy Onsager’s reciprocal relations, which is a consequence of the fact that the microscopic
quantum dynamics obeys detailed balance.
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I. INTRODUCTION

Transport phenomena in quantum systems constitutes one
of the major areas of research in condensed matter. And despite
the great experimental and theoretical progress that it has seen
in recent years, the number of open questions remains enor-
mous. Part of this difficult lies with the fact that nonequilibrium
processes generally lack a unified framework. Most of the
advances in this area have relied on linear response theories
such as the Kubo formula [1–3] or the Landauer-Bütiker
formalism [4–8], which relate nonequilibrium quantities to
equilibrium fluctuations. However, these formalisms do not
allow one to describe the dependence on the structure of
the reservoirs, which is essential for systems beyond linear
response. Moreover, they are not well suited to model specific
details of the interaction between the system and the bath.
For micro- and mesoscopic systems, new evidence suggests
[9] that this coupling may be much more complicated than
expected.

An alternative approach to nonequilibrium processes is that
of Lindblad quantum master equations [10–12]. When derived
from a microscopic model of the system-reservoir interactions,
the dynamics generated by this approach satisfies detailed
balance and will, when all reservoirs are in equilibrium with
each other, take the system to the correct Gibbs thermal state.
However, the functional structure of these master equations
depend sensibly on the form of the Hamiltonian, making them
difficult to implement. These difficulties have led researchers
to focus on phenomenological dissipators which act locally on
specific parts of the system [13–26]. The equations generated
by this approach are much easier to handle, but will give only
physically reasonable results in the limit where the different
parts of the system are weakly coupled.

This was tested in a specific example in Ref. [27],
where the authors compared the dynamics of two coupled
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oscillators interacting with local Lindblad dissipators, with
exact numerical solutions. They found that the use of local
dissipators was justified only when the interaction between the
two oscillators is weak. This argument was then used recently
in Ref. [13] to study the transport properties of a bosonic
tight-binding chain connected to two local dissipators acting
on the first and last sites. The authors were, among other things,
able to compute the particle and energy currents exactly for
chains of arbitrary sizes and showed that these currents are
ballistic, as expected for harmonic systems. However, since
they used local dissipators, their results are valid only in the
limit where the chain is weakly coupled.

The goal of this paper is to show how to go beyond the use
of these phenomenological local dissipators and derive micro-
scopic Lindblad dissipators for quantum many-body systems.
For concreteness, and also for the purpose of comparison,
we consider here also the bosonic tight-binding chain, with
the first and last sites coupled to two baths kept at different
temperatures and chemical potentials (which we model, as
usual, as an infinite collection of bosonic modes). We show
that even though the coupling is local (the baths couple only to
the first and last sites), the Lindblad dynamics generated by this
process is inherently nonlocal, affecting all normal modes of
the system. We then study the flow of particles and heat through
the system and show that both have the general structure of
Landauer’s formula, with a transfer matrix depending on the
bath spectral density. This therefore establishes a connection
between the Lindblad and the Landauer-Bütiker formalism.
Moreover, we find that in the limit of infinitesimal temperature
and chemical potential gradients, the fluxes obey Onsager’s
reciprocal relations, which is in agreement with the fact that
the dynamics satisfies detailed balance.

Even though the general procedure for constructing Lind-
blad master equations is well known [12,28], extending
these derivations to many-body systems is not trivial due to
the complex eigenstructure of these systems. Of particular
difficulty is the description of spatially localized baths; that
is, baths which act on specific parts of the system. This
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type of problem was approached recently by one of the
authors in Ref. [29]. There spatial reference was introduced
by constructing baths which correctly thermalize different
parts of the chain (while the thermalization within the chain
was completely uniform). As a consequence, it was found
that the dynamics only obeyed detailed balance in the limit
where the different parts of the chain were weakly coupled.
In the present paper we extend this idea to describe arbitrary
spatial configurations of the baths. The method introduced
here is not only more general, but it also does not suffer from
this deficiency, satisfying detailed balance for any inter chain
coupling strength.

The approach that will be used here extends far beyond the
tight-binding model. In principle, it is applicable to any system
amenable to a quasiparticle diagonalization (in the language
of second quantization) and which is coupled linearly (in the
creation and annihilation operators) to an arbitrary number of
heat baths. It also encompasses interacting systems described
using mean-field theory. The present work constitutes a
first step towards a more systematic method of constructing
Lindblad dissipators for quantum many-body systems.

II. FORMAL FRAMEWORK

We consider a 1D lattice with N sites, each described by
a bosonic operator an, where n = 1, . . . ,N . The system is
assumed to evolve according to the tight-binding Hamiltonian

H = ε

N∑
n=1

a†
nan − g

2

N−1∑
n=1

(a†
nan+1 + a

†
n+1an). (1)

The first term is the on-site energy and the second term is
the hopping (tight-binding) term describing the tunneling of
bosons through different sites. We also assume that the system
is coupled to two heat baths connected to sites 1 and N . Each
bath is described by an independent (and infinite) set of bosonic
operators b�,n, with n = 1,N , and � representing the internal
indices of the bath modes. The Hamiltonian of each bath is

HB,n =
∑

�

��b
†
�,nb�,n, (2)

where the bath frequencies �� are assumed to take on a qua-
sicontinuum of values. Moreover, the interaction Hamiltonian
is taken to be linear in the system and bath operators:

HI,n =
∑

�

c�,n(an + a†
n)(b�,n + b

†
�,n), n = 1,N. (3)

Thus, the composite system will evolve according to the total
Hamiltonian

Htot = H + HB,1 + HB,N + HI,1 + HI,N . (4)

Throughout the process we assume that the baths remain in
thermal equilibrium with a grand-canonical density matrices

ρB,n = e−βn(HB,n−μnNB,n)

ZB,n

, (5)

where βn and μn are the temperature and chemical potentials of
each bath and NB,n = ∑

� b
†
�,nb�,n is the bath number operator.

Our goal is to trace out the bath degrees of freedom and obtain

an effective Lindblad master equation for the chain, of the
form

dρ

dt
= −i[H,ρ] + D1(ρ) + DN (ρ), (6)

where ρ is the reduced density matrix of the system. Intuitively,
one expects that D1 would act only on site 1, and DN would
act only on site N . However, we will show that when these
dissipators are derived from a microscopic theory, they become
nonlocal, affecting all normal modes of the system.

The derivation of the effective Lindblad dissipators can be
accomplished using the method of eigenoperators, discussed
in detail in Ref. [12]. We now briefly review its main features
and then show how it can be applied to our present problem.

A. The method of eigenoperators

Consider any physical system with Hamiltonian H , that is
coupled to a bath via a Hamiltonian HI = AB, where A and B

are Hermitian system and bath operators, respectively. In our
case

B =
∑

�

c�,n(b�,n + b
†
�,n). (7)

According to the method of eigenoperators, one may readily
write down an effective Lindblad master equation for this
bath interaction, assuming the usual Born-Markov and rotating
wave approximations. The result is [12]

D(ω) =
∑

ω

�(ω)

[
A(ω)ρA†(ω) − 1

2
{A†(ω)A(ω),ρ}

]
. (8)

The different terms in this equation will now be explained in
detail.

Let ε and 	ε denote the eigenvalues and eigenprojectors
of the system Hamiltonian H . The operator A(ω) is called the
eigenoperator of H and is defined as

A(ω) =
∑
ε,ε′

	ε A 	ε′ δω,ε′−ε, (9)

where ω therefore represents all allowed Bohr frequencies of
the system. One may verify that these operators satisfy the
following relations:

[H,A(ω)] = −ωA(ω), A†(ω) = A(−ω). (10)

For many-body systems Eq. (9) is cumbersome to work with.
Fortunately, all we will need is Eq. (10), which we may also
take as the definition of an eigenoperator.

Next, we discuss the quantity �(ω) in Eq. (8). It is defined
as the Fourier transform of the bath correlation functions

�(ω) =
∫ ∞

−∞
eiωt 〈B(t)B(0)〉,

where B(t) = eiHBtBe−iHB t is the Heisenberg representation
of the bath operator B and the expectation value in this formula
is taken with respect to the bath thermal state (5). We may
evaluate it explicitly for the case where B is given in Eq. (7).
For now we drop the indices n since the derivation is the same
for both baths. A straightforward calculation shows that � may

062143-2



MICROSCOPIC THEORY OF A NONEQUILIBRIUM OPEN . . . PHYSICAL REVIEW E 94, 062143 (2016)

be written as

�(ω) =
{
γ (ω)[1 + n̄(ω)], if ω > 0
γ (−ω)n̄(−ω), if ω < 0 , (11)

where

n̄(ω) = 1

eβ(ω−μ) − 1
(12)

is the Bose-Einstein distribution and

γ (ω) = 2π
∑

�

c2
� δ(ω − ��) (13)

is the spectral density of the system. Usually it is not possible to
know the spectral density in detail, since it depends sensibly on
the system bath couplings. The standard approach is to assume
that it depends on ω as γ (ω) ∼ ωα , up to a high cutoff and for
some exponent α. The case α = 1 is usually referred to as an
Ohmic spectral density.

B. Derivation of the dissipators for the harmonic chain

Now that we have a general recipe for constructing a
dissipator, we may apply it to our specific problem. This
amounts essentially to obtaining the eigenoperators A1(ω) and
AN (ω) corresponding to A1 = a1 + a

†
1 and AN = aN + a

†
N .

This is the main challenge of this method since, to find the
eigenoperators one must know the entire eigenstructure of the
Hamiltonian H [Eq. (1)]. In our case, however, this task is
straightforward since a quadratic Hamiltonian may always be
diagonalized by a Bogoliubov transformation. We first define
a new set of bosonic operators ηk according to

an =
∑

k

Sn,k ηk, (14)

where

Sn,k =
√

2

N + 1
sin(nk), k = π

N + 1
, . . . ,

Nπ

N + 1
(15)

is the Fourier sine transform matrix. The unitary nature of the
Sn,k preserves the bosonic algebra of the ηk . In terms of these
new operators the Hamiltonian (1) becomes

H =
∑

k

Ek η
†
kηk, Ek = ε − g cos k. (16)

This result shows clearly that the model will only have a stable
ground state for ε > |g|.

To find the eigenoperators A1,N (ω) we now note that the
ηk satisfy [H,ηk] = −Ekηk . Comparing this with Eq. (10)
then shows that ηk is itself an eigenoperator of H with Bohr
frequency Ek . Similarly, η

†
k will be an eigenoperator with

frequency −Ek . The eigenoperator A1(ω) corresponding to
the operator A1 = a1 + a

†
1 will then be

A1(ω) =
∑

k

S1,k

[
ηk δω,Ek

+ η
†
k δω,−Ek

]
. (17)

This can also be shown using Eq. (9) directly. However, this
approach is much more cumbersome, and we prefer to use
Eq. (10). Similarly, the eigenoperator AN (ω) corresponding to

the operator AN = aN + a
†
N will be

AN (ω) =
∑

k

SN,k

[
ηk δω,Ek

+ η
†
k δω,−Ek

]
. (18)

As a sanity check, if g = 0 then Ek = ε and the δ may be taken
out of Eqs. (17) and (18). Using Eq. (14) we then get

A1(ω) = a1 δω,ε + a
†
1 δω,−ε (g → 0) (19)

and similarly for AN . Physically, this means that when g = 0
the only allowed transitions that can be produced by (a1 + a

†
1)

are those which affect only the first mode. Conversely, when
g �= 0 then (a1 + a

†
1) may cause transitions which influence all

normal modes of the system.
The next step is to substitute each of these terms into Eq. (8)

to find the corresponding dissipator. In order to simplify the
formulas, let us look at a typical term like A1(ω)ρA

†
1(ω). In

doing so, we must keep in mind that the single-particle energy
eigenvalues Ek are non-negative and nondegenerate. We then
get ∑

ω

�1(ω)A1(ω)ρA
†
1(ω)

=
∑
ω,k,q

�1(ω)S1,kS1,q

(
ηk δω,Ek

+ η
†
k δω,−Ek

)

ρ
(
η†

q δω,Eq
+ ηq δω,−Eq

)
=

∑
ω,k,q

�1(ω)S1,kS1,q

(
ηkρη†

q δω,Ek
δω,Eq

+ η
†
kρηq δω,−Ek

δω,−Eq

)
=

∑
k

S2
1,k[�1(Ek) ηkρη

†
k + �1(−Ek)η†

kρηk].

A similar structure will follow for all other terms in the
dissipator. Finally, substituting Eq. (11) for �(Ek) and �(−Ek),
we arrive at the dissipators

Dn(ρ) =
∑

k

S2
n,kγn(Ek)

{
[1 + n̄n,k]

[
ηkρη

†
k − 1

2
{η†

kηk,ρ}
]

+ n̄n,k

[
η
†
kρηk − 1

2
{ηkη

†
k,ρ}

]}
, (20)

where n = 1,N and

n̄n,k = 1

eβn(Ek−μn) − 1
(21)

is the Bose-Einstein distribution describing the contact of
mode k with bath n = 1,N . This concludes our derivation
of the effective dissipator corresponding to the bath interac-
tions (3).

Equation (20) has several points worth discussing. We
began with a microscopic theory where only two sites were
coupled to the bath. However, we see here that since the
different sites interact, this coupling affects all normal modes
of the system. This is a global behavior and is expected for any
real heat bath. This nonlocal nature of the Lindblad dissipator
can also be viewed as a consequence of the noncommutativity
of the different terms in the Hamiltonian. In the limit where
the site interaction g tends to zero, we may find the dissipator
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FIG. 1. The effective system bath coupling γk in Eq. (24) for (a)
α = 1 and (b) α = 3. Each image contains curves for different values
of g/ε [as labeled in (b)].

by using instead Eq. (19). Retracing the same steps as above
we then find the local dissipators

Dn,local(ρ) = γn(1 + n̄n)
[
anρa†

n − 1
2 {a†

nan,ρ}]
+ γnn̄n

[
a†

nρan − 1
2 {ana

†
n,ρ}]. (22)

This is precisely the dissipators studied in Ref. [13]. We
therefore expect that all results that will be derive below should
tend to those of Ref. [13] in the limit g/ε 	 1 [30].

Moreover, we also see in Eq. (20) that the information
about which particle was initially coupled to the bath is
reduced only to the functions S2

n,k , which enter as an effective
system-bath coupling γn,k = S2

n,kγn(Ek) for each mode k. In
the derivation nowhere have we used the specific value of
these functions. Thus, one may also contemplate other types
of tight-binding models such as a disordered chain, where the
tunneling constants gn become inhomogeneous. In our case,
due to the symmetry of the problem, it follows from Eq. (15)
that S1,k and SN,k differ by at most a minus sign. Consequently,

S2
1,k = S2

N,k = 2

N + 1
sin2 k. (23)

The effective coupling of mode k to the heat bath is therefore
γn,k = 2

N+1 sin2 kγn(Ek). As discussed above, we will assume
for concreteness that the spectral density may be modeled as
γn(ω) = γn,0ω

αn , for some exponent αn for each bath. Thus
we will henceforth assume that

γn,k = γn,0
2

N + 1
sin2 k

(
1 − g

ε
cos k

)αn

, (24)

where the factor of ε in the denominator was adjusted simply
so that γn,0 continues to have units of frequency. This function
is illustrated in Fig. 1 for different values of g and α. As can be
seen, the coupling of the modes with k ∼ 0 and k ∼ π tends to
zero. Moreover, a higher value of α introduces an asymmetry
in the couplings. The mode occupations 〈η†

kηk〉 usually relax
toward thermal equilibrium proportionally to e−γkt . Thus, the
results in Fig. 1 illustrate the different relaxation time scales
of the normal modes.

Irrespective of the value of γk , when T1 = T2 = T and μ1 =
μ2 = μ, the master Eq. (6) with the microscopic dissipators
(20) will move the system toward the true thermal Gibbs state

ρeq =
∏
k

e−β(Ek−μ) η
†
kηk

Z
(25)

for any initial condition. Moreover, it can be shown [12] that
dissipators derived using the method of eigenoperators will
satisfy detailed balance. This is actually a consequence of the
Kubo-Martin-Schinger relation, which implies that �(ω) in
Eq. (11) will satisfy

�(−ω) = e−β(ω−μ)�(ω). (26)

A correct thermal target state and a relaxation dynamics which
obeys detailed balance are the two most fundamental proper-
ties one expects from a physical model of the interaction with
a heat bath. Hence, one expects that these dissipators should
provide an accurate modeling of the system bath interaction.
The results which will be discussed below corroborate this
expectation.

III. PROPERTIES OF THE STEADY STATE

A. Particle and energy currents

We now study the nonequilibrium steady-state (NESS)
produced by the master Eq. (6). As the first step, we establish
formulas for the particle and energy currents in the system.

Let

N =
∑

n

a†
nan =

∑
k

η
†
kηk (27)

be the total number of particles in the system. Using the master
equation (6) and noting that [H,N ] = 0, we find

d〈N 〉
dt

= tr{ND1(ρ)} + tr{NDN (ρ)}

:= JN1 − JNN
, (28)

which define the currents JN1 and JNN
, of particles entering site

1 toward the left bath and leaving site N toward the right bath.
In the steady state d〈N 〉/dt = 0 so that all particles entering
site 1 eventually leave site N :

JN1 = JNN
:= JN . (29)

Using Eq. (20) for D1 (or DN ) we find that JN may be written
as

JN =
∑

k

γ1,k(n̄1,k − 〈η†
kηk〉) = −

∑
k

γN,k(n̄N,k − 〈η†
kηk〉),

(30)

which is a convenient formula for the particle current.
We may proceed similarly with the energy current:

d〈H 〉
dt

= tr{HD1(ρ)} + tr{HDN (ρ)}

:= JE1 − JEN
. (31)

In the steady state

JE1 = JEN
:= JE. (32)

062143-4



MICROSCOPIC THEORY OF A NONEQUILIBRIUM OPEN . . . PHYSICAL REVIEW E 94, 062143 (2016)

Using Eqs. (16) and (20) we then find

JE =
∑

k

γ1,kEk(n̄1,k − 〈η†
kηk〉)

= −
∑

k

γN,kEk(n̄N,k − 〈η†
kηk〉). (33)

B. Steady-state occupation numbers

The time evolution of the correlation functions 〈η†
kηq〉 may

be readily obtained from the master Eq. (6). They read

d〈η†
kηq〉

dt
= − (γ1,k + γN,k + γ1,q + γN,q)

2
〈η†

kηq〉
+ δk,q(γ1,kn̄1,k + γN,kn̄N,k). (34)

We therefore see that, in the long-time limit the off-diagonal
terms 〈η†

kηq〉 (with q �= k) will vanish, whereas the diagonal
terms will tend to

〈η†
kηk〉 = γ1,kn̄1,k + γN,kn̄N,k

γ1,k + γN,k

. (35)

The occupation numbers in coordinate space are obtained
from Eq. (14) and read

〈a†
nan〉 =

∑
k,k′

Sn,kSn,k′ 〈η†
kηk′ 〉

= 2

N + 1

∑
k

sin2(nk)
γ1,kn̄1,k + γN,kn̄N,k

γ1,k + γN,k

.

(36)

If we assume that g/ε 	 1, then the energy levels become
roughly independent of k: Ek = ε − g cos k ∼ ε. Conse-
quently, so will n̄n,k and γn,k , which may thus be taken outside
the sum. The resulting sum is

∑
k sin2(nk) = (N + 1)/2. Thus,

we conclude that in the limit g/ε 	 1, the coordinate space
occupations will tend to

〈a†
nan〉 
 γ1n̄1 + γN n̄N

γ1 + γN

, (37)

which is a simple arithmetic average of the bath occupations.
This result agrees with the calculations in Ref. [13].

Substituting Eq. (35) in Eqs. (30) and (33) we get for the
particle and energy currents

JN =
∑

k

γ1,kγN,k

γ1,k + γN,k

(n̄1,k − n̄N,k), (38)

JE =
∑

k

γ1,kγN,k

γ1,k + γN,k

Ek(n̄1,k − n̄N,k). (39)

When γ1,k = γN,k = γk this simplifies to

JN = 1

2

∑
k

γk(n̄1,k − n̄N,k), (40)

JE = 1

2

∑
k

γkEk(n̄1,k − n̄N,k). (41)

The currents therefore are seen to have the structure of the
Landauer-Bütikker formula [4–8], with the spectral density γk

playing the role of the transfer integral; i.e., of the probability
to observe a tunneling of an excitation from the bath towards
the system, an interpretation which agrees intuitively with the
basic structure of the system-bath interaction (3). Putting it
differently, the heat baths play the role of the leads and the
chain, being harmonic, functions as a perfectly conducting
channel through which the excitations may flow.

In the limit g/ε 	 1 the occupation numbers become
independent of k and we get, using the same arguments as
above,

JN = γ0

2
(n̄1 − n̄N ), (42)

JE = γ0

2
ε (n̄1 − n̄N ). (43)

These results again coincide with those of Ref. [13].

C. Thermodynamic limit

In the thermodynamic limit we may replace the sum with an
integral using the recipe

∑
k → N

π

∫ π

0 dk. Using also Eq. (24)
to substitute for γk , we then find

JN = γ0

π

∫ π

0
dk sin2 k

(
1 − g

ε
cos k

)α

(n̄1,k − n̄N,k),

(44)

JE = γ0

π

∫ π

0
dk sin2 k

(
1 − g

ε
cos k

)α

Ek(n̄1,k − n̄N,k).

(45)

We may also assume infinitesimal temperature and chemical
potential imbalances; that is, we choose T1 = T + �T/2,
T2 = T − �T/2, μ1 = μ + �μ/2, and μ2 = μ − �μ/2,
where �T and �μ are assumed to be small quantities. This
allow us to write

n̄1,k − n̄N,k = ∂n̄k

∂T
�T + ∂n̄k

∂μ
�μ, (46)

where n̄k = (eβ(Ek−μ) − 1)−1. We then get

JN = ∂FN
∂T

�T + ∂FN
∂μ

�μ, (47)

JE = ∂FE

∂T
�T + ∂FE

∂μ
�μ, (48)

where

FN = γ0

π

∫ π

0
dk sin2 k

(
1 − g

ε
cos k

)α

n̄k, (49)

FE = γ0

π

∫ π

0
dk sin2 k

(
1 − g

ε
cos k

)α

Ekn̄k. (50)

It is also worth noting that, for these infinitesimal imbal-
ances in T and μ, the total number of particles becomes, up to
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FIG. 2. The chemical potential μ as a function of temperature,
computed numerically from Eq. (51), for different values of N = N0

and with g/ε = 0 (solid curves), g/ε = 0.3 (dashed curves), and
g/ε = 0.9 (dotted curvers).

terms quadratic in �T and �μ,

〈N 〉 =
∑

k

n̄k = N

π

∫ π

0

dk

eβ(Ek−μ) − 1
. (51)

This equation may be used to fix the average chemical potential
μ of the two baths in such a way that the total number of
particles in the chain remains fixed at a given value 〈N 〉 = N0.
In other words, for small imbalances (linear response) one may
study chemical potential gradients while keeping the number
of particles in the chain fixed. The chemical potential as a
function of T is illustrated in Fig. 2 for different choices
of g and N0 (with all energies measured in unites of ε).
For one dimension there is no Bose-Einstein condensation,
except at T → 0, where the chemical potential tends to ε − g.
Moreover, when g → 0 the integral in Eq. (51) becomes
independent of k, and we obtain

ε − μ = T ln

(
N + N0

N0

)
, (52)

which shows that μ decreases linearly with increasing tem-
perature. When g �= 0 this linear behavior is bent, as seen in
Fig. 2.

In Fig. 3 we present the behavior of the four contributions,
∂FN /∂μ, ∂FN /∂T , ∂FE/∂μ and ∂FE/∂T to the currents
in Eqs. (47) and (48), assuming a fixed average number of
particles N0 in the chain. The curves are for different values of
α [cf. Eq. (24)] and g, with fixed N0/N = 1. The currents in
the limit g/ε 	 1 are depicted by dotted green curves in each
figure.

D. Onsager coefficients

According to the first law, the energy current JE may be
decomposed into a heat current JQ and a particle current μJN .
This can be used to define the heat current through the system
as JQ = JE − μJN [2]. Following Onsager [31,32] we now
relate the particle and heat currents to the generalized forces
�μ/T and �T/T 2:

JN = �1,1
�μ

T
+ �1,2

�T

T 2
, (53)

JQ = �2,1
�μ

T
+ �2,2

�T

T 2
. (54)

FIG. 3. The different contributions to the particle and energy
fluxes, Eqs. (47) and (48) as a function of temperature for different
values of α [as shown in image (a)] and g/ε = 0.3 (solid curves) and
g/ε = 0.9 (dashed curves). The mean occupation number is fixed
at N0/N = 1, and all curves are given in units of γ0 = ε = 1. The
dotted green line denote the currents in the limit g/ε 	 1.

The Onsager coefficients �i,j may be read off directly from
Eqs. (47) and (48):

�1,1 = T
∂FN
∂μ

, (55)

�1,2 = T 2 ∂FN
∂T

, (56)

�2,1 = T

[
∂FE

∂μ
− μ

∂FN
∂μ

]
, (57)

�2,2 = T 2

[
∂FE

∂T
− μ

∂FN
∂T

]
. (58)

These coefficients are illustrated in Fig. 4 for the same
conditions as Fig. 3.

It is also possible to verify that, since

T
∂n̄k

∂T
= (Ek − μ)

∂n̄k

∂μ
,

it follows that

�1,2 = �2,1, (59)

which is Onsager’s reciprocity relation. This is an important
result. It corroborates the consistency of the nonequilibrium
behavior generated by the microscopic Lindblad dissipators
(20). Of course, this result is also expected in view of the
fact that these dissipators satisfy detailed balance, which is the
primary physical basis for Onsager’s relation.
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FIG. 4. The Onsager coefficients, Eqs. (55)–(58), for the same
conditions as Fig. 3.

The entropy production rate in the system is then given by
the quadratic form

	 =
(

�μ

T

�T

T 2

)(
�1,1 �1,2

�2,1 �2,2

)(
�μ

T

�T
T 2

)
. (60)

Its non-negativity will be ensured provided the Onsager matrix
L is positive semidefinite. This can be examined by looking
at the non-negativity of its determinant det(L) = �1,1�2,2 −
�1,2�2,1. This is illustrated in Fig. 5, where the non-negativity
is manifested. We also see in this figure a nonintuitive result.
When analyzing the currents in Fig. 3 we find that large values
of g (dashed curves) produce smaller currents. However, when
analyzing the Onsager matrix (which is essentially a measure
of the entropy production rate 	) we see that for certain
temperatures the situation is inverted, with larger values of
g producing more entropy.

IV. DISCUSSIONS AND CONCLUSIONS

The goal of this paper was to show how one may construct
Lindblad dissipators for a quantum many-body system. The
main idea is to start with a linear system-bath interaction and

FIG. 5. The determinant of the Onsager matrix det(L) =
�1,1�2,2 − �1,2�2,1 for the same conditions as Figs. 3 and 4.

then use the method of eigenoperators. The resulting dissipator
satisfy the two most important property one expects from
a system-bath interaction: (1) it correctly takes the system
toward the Gibbs thermal equilibrium state and (2) it does so
while satisfying detailed balance.

We have focused here on the case of a quadratic bosonic
chain. The reason behind this choice was as follows. First,
the bosonic nature of the chain makes it more natural to use
a linear system-bath coupling, of the form (3). For fermionic
systems, on the other hand, difficulties would arise concerning
the conservation of particles in the system. Second, the
quadratic nature of the chain was essential since it makes
the problem exactly diagonalizable. The main difficulty in the
entire procedure is the calculation of the eigenoperators, which
require one to know all eigenvalues and eigenvectors of the
system Hamiltonian. But for any system that is diagonalizable
in a quasiparticle picture, this becomes straightforward.

All calculations are readily extended to higher dimensions
and also to chains involving nonuniform couplings (which
may be interesting in the context of disordered systems). It
should also be possible to extend these results to interacting
theories within the mean-field approximation (which essen-
tially amounts to replacing the quartic terms by self-consistent
quadratics). We therefore view the present work as a first step
towards a more systematic approach of constructing Lindblad
dissipators for quantum many-body systems.
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