
PHYSICAL REVIEW E 95, 042108 (2017)

Thermal conductance of a two-level atom coupled to two quantum harmonic oscillators
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We have determined the thermal conductance of a system consisting of a two-level atom coupled to two
quantum harmonic oscillators in contact with heat reservoirs at distinct temperatures. The calculation of the
heat flux as well as the atomic population and the rate of entropy production are obtained by the use of a
quantum Fokker-Planck-Kramers equation and by a Lindblad master equation. The calculations are performed
for small values of the coupling constant. The results coming from both approaches show that the conductance
is proportional to the coupling constant squared and that, at high temperatures, it is proportional to the inverse of
temperature.
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I. INTRODUCTION

The simplest model for the interaction of atoms with
radiation is given by the Rabi model [1–7], which predicts
interesting properties such as the quantum Rabi oscillations
[2,8]. It has a variety of applications, for instance, in quantum
optics [2], quantum information [8], and the polaron problem
[9]. The Rabi model model couples a two-level atom to a single
mode field and is represented by the quantum Hamiltonian

H = h̄ωa†a + h̄g(a† + a)σx + h̄�

2
σz, (1)

where � is the atomic transition frequency, ω is the mode field
frequency, and g is the coupling parameter. The operators a†

and a are the usual raising and lowering operators, and we are
using the notation σx , σy , and σz for the Pauli matrices.

The Rabi model can be extended to the case of two-
mode field by coupling the two-level atom to two harmonic
oscillators. In this case the quantum Hamiltonian reads [10]

H = h̄ω(a†
1a1 + a

†
2a2) + h̄g(a†

1 + a1 + a
†
2 + a2)σx + h̄�

2
σz,

(2)

where we are considering the two modes with the same
frequency ω. The raising and lowering operators obey the com-
mutation relation [ai,a

†
i ] = 1. In addition to the description of

the interaction of matter with radiation, the Hamiltonian (2)
may have other interpretations. For instance, in the context
of superconducting circuits [11], it describes the coupling
between a Josephson junction [12–14], represented by the
two-level atom, and two transmission lines [15], represented
by the two harmonic oscillators.

The Hamiltonian (2) can also be written in terms of space
and momentum variables in the equivalent form

H = 1

2m

(
p2

1 + p2
2

) + mω2

2

(
x2

1 + x2
2

)

+h̄ε(x1 + x2)σx + h̄�

2
σz, (3)

where xi and pi are the pair of canonical conjugated variables,
which are related to the lowering and raising operators ai and
a
†
i by xi = (h̄/2mω)1/2(a†

i + ai) and pi = i(h̄mω/2)1/2(a†
i −

ai), which obey the commutation relation [xi,pi] = ih̄. The
parameter ε is related to the coupling constant g by g =
(h̄/2mω)1/2ε.

Here we will consider the system described by the Hamil-
tonian (2), or its equivalent form (3), as being coupled to
heat reservoirs at distinct temperatures. More precisely one
oscillator is in contact with a heat reservoir at a higher
temperature and the other oscillator is in contact with a heat
reservoir at a lower temperature. This arrangement allows
us to calculate the thermal conductance [16–19] as well as
the rate of the entropy production [18–21] and the atomic
population [2], which are the main purpose of the present
study. This calculation is achieved by the use of a quantum
Fokker-Planck-Kramers (FPK) equation [19], understood as
the canonical quantization of the ordinary FKP equation. The
calculation of the conductance and the atomic population
were also performed by the use of a master equation in the
Lindblad form [17,22]. In both approaches the calculations
were performed for small values of the coupling constant. It
is found that the conductance is proportional to the square
of the coupling constant and that, at high temperatures, it is
proportional to the inverse of temperature.

II. QUANTUM FPK EQUATION

A. Contact with heat reservoirs

The contact of the system described by the Hamiltonian (3)
to heat reservoirs at temperatures Ti is described by the use of
the quantum FPK equation [19]

ih̄
dρ

dt
= [H,ρ] −

∑
i

[xi,Ji(ρ)], (4)

where ρ is the density matrix and

Ji(ρ) = −γ

2
(ρ Gi + G

†
i ρ) − γm

ih̄βi

[xi,ρ], (5)

and γ is the dissipation constant, βi = 1/kBTi , and Gi is the
operator [19]

Gi = − m

ih̄βi

(eβiHxie
−βiH − xi). (6)

Notice that, in this description, each oscillator is in contact with
one heat reservoir. When the temperatures of the reservoirs
are the same, it follows that the equilibrium Gibbs distribution
ρ0 = (1/Z)e−βH is the stationary solution of Eq. (4) because
Ji(ρ0) = 0 and because ρ0 commutes with H. In other
words, the quantum FPK equation (4) guarantees the correct
thermalization of the system.
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From the quantum FPK equation one can determine the
time derivative of the average of energy U = 〈H〉 = Tr{Hρ},
which is given by

dU

dt
= −

∑
i

φi, (7)

where φi is the heat flux from the system to the reservoir i,

φi = 1

ih̄
Tr{[xi,Ji]H} = − 1

m
Tr{piJi}. (8)

From the expression of Ji , given by (5), we get the heat flux
in term of averages,

φi = γ

2m
〈Gipi + piG

†
i 〉 − γ

βi

. (9)

We can also determine the time derivative of the entropy of
the system S = −kBTrρ ln ρ, which is given by

dS

dt
= 
 − �, (10)

where 
 is the rate of entropy production [19],


 = kB

ih̄

∑
i

Tr{[xi,Ji](ln ρ + βiH)}, (11)

and � is the flux of entropy from the system to the reservoirs,

� =
∑

i

φi

Ti

. (12)

In the case of two reservoirs at temperatures T1 and T2, and
in the stationary state, φ1 + φ2 = 0 and 
 = �, which allow
us to write the entropy production rate in the form


 = φ

(
1

T2
− 1

T1

)
, (13)

where φ = −φ1 = φ2 is interpreted as the heat flux from
reservoir 1 to the system and equal to the heat flux from the
system to the reservoir 2.

When the temperatures are the same the expression (11)
reduces to


 = kB

ih̄

∑
i

Tr{[xi,Ji](ln ρ − ln ρ0)}, (14)

where ρ0 is the equilibrium distribution ρ0 = (1/Z)e−βH.

B. Thermal conductance

The calculation of Gi from Hamiltonian (3) is not an easy
task. However, for small values of the coupling constant ε,
the calculation is straightforward, although cumbersome, and
gives

Gi = cipi + ibixi + ε(μiσy + iλiσx), (15)

where

ci = sinh βih̄ω

βih̄ω
, (16)

bi = m

βih̄
(cosh βih̄ω − 1), (17)

μi = h̄�



(
− sinh βih̄�

βih̄�
+ sinh βih̄ω

βih̄ω

)
, (18)

λi = 1

βi
(cosh βih̄� − cosh βih̄ω), (19)

and  = �2 − ω2.

Given Gi , the next task is to solve the quantum FPK
equation (4) in the stationary state. However, instead of solving
for ρ, we will solve for the correlations, such as 〈xiσx〉,
〈piσx〉, 〈xiσy〉, 〈piσy〉, and 〈σz〉; that is, from Eq. (4) we set
up evolution equations for these quantities and solve them
in the stationary regime. If 〈A〉 = Tr{Aρ} is one of these
correlations, then from the quantum FPK equation (4) we reach
the following formula for the time evolution:

ih̄
d

dt
〈A〉 = 〈[A,H]〉

+
∑

i

(
γ

2
〈GiBi + BiG

†
i 〉 + γm

ih̄βi

〈[Bi,xi]〉
)

,

(20)

where Bi denotes the commutator Bi = [A,xi]. Using Eq. (20)
and the expression (15) for Gi , we have obtained the evolution
equations for the correlations 〈xiσx〉, 〈xiσy〉, 〈piσx〉, 〈piσy〉,
and 〈σz〉. In the stationary state these equations yields the
following set of equations:

〈x1σy〉 + 〈x2σy〉 = 0, (21)

mω2〈xiσx〉 + h̄ε + �〈piσy〉 + γ ci〈piσx〉 = 0, (22)

〈piσx〉 − m�〈xiσy〉 = 0, (23)

mω2〈xiσy〉−�〈piσx〉 + γ ci〈piσy〉 + γ εμi − γ ελi〈σz〉 = 0,

(24)

〈piσy〉 + m�〈xiσx〉 − 2ε
ui

ω2
〈σz〉 = 0, (25)

where

ui = h̄ω

(
1

eβih̄ω − 1
+ 1

2

)
. (26)

Equations (21), (22), (23), (24), and (25), constitute a set of
nine equations because the last four are valid for i = 1,2. It
is a closed set of nine equations for the nine variables 〈σz〉,
〈x1σx〉, 〈x2σx〉, 〈x1σy〉, 〈x2σy〉, 〈p1σx〉, 〈p2σx〉, 〈p1σy〉, 〈p2σy〉
and is valid for small values of the coupling constant ε. With
the exception of 〈σz〉, all variables are of the order ε. Up to
the first order in ε, on the other hand, the variable 〈σz〉 is
independent of ε and is finite as we shall see. The solution of
the set of equations above is straightforward and gives all the
nine quantities in closed forms.

To determine the heat flux, we should use Eq. (9). However,
instead of doing so, we use a simpler form, obtained as follows.
From Eq. (20), the evolution equation for 〈p2

i 〉/2m is

1

2m

d

dt

〈
p2

i

〉 = −ω2

2
〈pixi + xipi〉 − h̄ε

m
〈piσx〉 − φi, (27)

where φi is given by (9). In the stationary state, the left-hand
side vanishes, 〈pixi + xipi〉 = 0, and we are left with the
simpler form for the heat flux φ = (h̄ε/m)〈p1σx〉. Using
〈p1σx〉 obtained from the solution of the set of Eqs. (21),
(22), (23), (24), and (25), we find

φ = 2g2γ�2h̄ω ψ1ψ2(v1 − v2)(
�2

1 + 2
)
ψ2v2 + (

�2
2 + 2

)
ψ1v1

, (28)
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where

�i = γ�ci, (29)

vi = h̄�

2
coth

βih̄�

2
, (30)

ψi = sinh βih̄�

βih̄�
. (31)

We have also used the relation g = (h̄/2mω)1/2ε. From
expression (28) we see that the entropy production rate 
,
given by Eq. (13), is positive. Indeed, if T1 > T2 then β1 < β2

and v1 > v2 implying φ > 0 and 
 > 0. The same conclusion
follows if T1 < T2.

It is worth to write down the average 〈σz〉, which is related
to the atomic population n by n = (1 + 〈σz〉)/2. It is given by

〈σz〉 = −h̄�

2

(
�2

1 + 2
)
ψ2 + (

�2
2 + 2

)
ψ1(

�2
1 + 2

)
ψ2v2 + (

�2
2 + 2

)
ψ1v1

, (32)

valid up to linear terms in the coupling ε.
To find the conductance κ we start by writing T1 = T +

�T/2 and T2 = T − �T/2. The conductance is obtained from
κ = φ/�T by taking the limit �T → 0 and is given by

κ = g2γ�2h̄ω

(γ 2�2c2 + 2)T
, (33)

where

c = sinh βh̄ω

βh̄ω
. (34)

When � � ω, the regime where the transitions of the two-level
atom is decoupled from the oscillators, it turns out that the
conductance is suppressed. This can be seen in Eq. (33) where
κ vanishes in the limit ω/� → 0.

When �T → 0, the average 〈σz〉, given by (32), approaches
the value

〈σz〉 = − tanh
βh̄�

2
, (35)

which is precisely the result we expect to obtain when
the temperatures of the reservoirs are the same, that is, in
thermodynamic equilibrium.

It is worth mentioning that in the high-temperature limit the
conductance reduces to

κ = g2γ�2h̄ω

(γ 2�2 + 2)T
, (36)

because in this limit, c → 1. On the other regime, that is, at
low temperatures, we get

κ = kB

4g2

γ
(βh̄ω)3e−2βh̄ω, (37)

and κ vanishes when T → 0.
The thermal conductance κ is shown in Fig. 1 as a function

of temperature. We see that κT approaches a constant when
T → ∞, in accordance with expression (36) which shows
that, at high temperatures, κ is proportional to the inverse of
temperature.

0 0.5 1 1.5 2 2.5 3

T

0

0.2

0.4

0.6

0.8

1

κT

ω /Ω  = 1

ω /Ω = 2

FIG. 1. Thermal conductance κ times temperature T as a function
of T according to the quantum FPK approach (33) for two values of
the ratio ω/�. The parameters and constants g, γ , �, h̄, and kB are
taken to be equal to unity.

III. LINDBLAD MASTER EQUATION

A. Contact with heat reservoirs

In this approach, the master equation, which gives the time
evolution of the density matrix ρ, is given by [17,22]

dρ

dt
= 1

ih̄
[H,ρ] + D1(ρ) + D2(ρ), (38)

where here H is given by Eq. (2), and Di(ρ) is the dissipator,
which is a sum of Lindblad operators,

Di(ρ) = γ (n̄i + 1)
(
aiρa

†
i − 1

2a
†
i aiρ − 1

2ρa
†
i ai

)
+ γ n̄i

(
a
†
i ρai − 1

2aia
†
i ρ − 1

2ρaia
†
i

)
(39)

and

n̄i = 1

eβih̄ω − 1
(40)

is the Bose-Einstein distribution. We remark that Di are local
Lindblad dissipators and that Eq. (39) gives an adequate de-
scription of the system only in the regime of weak interactions,
which is precisely the regime considered here.

From the Lindblad master equation, one can calculate again
the time evolution of the average energy U = 〈H〉 = Tr{Hρ}
given by Eq. (7), where the heat flux φi now reads

φi = −Tr{DiH}. (41)

To find an expression for the entropy production rate we
start by postulating that the flux of entropy related to each
reservoir is the heat flux divided by its temperature. Therefore
the total entropy heat flux is

� =
∑

i

φi

Ti

. (42)

Next we determine the time derivative of the entropy
of the system S = −kBTrρ ln ρ and use the expression
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dS/dt = 
 − � to find the rate of entropy production,


 = −kB

∑
i

Tr{Di(ln ρ + βiH)}. (43)

In the stationary state, 
 = �, and we may use expression
(42) to write

� = φ

(
1

T2
− 1

T1

)
, (44)

where φ = −φ1 = φ2.
When the temperatures are the same, expression (43)

reduces to


 = −kB

∑
i

Tr{Di(ln ρ − ln ρ0)}, (45)

where ρ0 = (1/Z)e−βH is the equilibrium Gibbs distribution.
Equation (45) gives the usual expression for the rate of entropy
production associated to master equation of the Lindblad type
[22].

The establishment of Eqs. (42) and (43) for the heat flux
and the entropy production rate requires that the equilibrium
solution of the master equation is the Gibbs state ρ0 =
(1/Z)e−βH, otherwise the entropy production rate will not
vanish in equilibrium. This requirement means to say that
Di(ρ0) should vanish when the temperatures are the same.
However, the local Lindblad dissipators of the type (39)
do not hold this property and should thus be understood
as approximations, valid, in the present case, in the regime
of weak interactions. The calculations of the heat flux and
the entropy flux by Eqs. (41) and (42) should therefore be
understood as approximate results, but this is only because the
local dissipators (39) are approximations.

B. Thermal conductance

From the master equation we can again determine the time
evolution of the quantities 〈aiσx〉, 〈aiσy〉, 〈a†

i σx〉, 〈a†
i σy〉, and

〈σz〉. If 〈A〉 = Tr{Aρ} is one of these quantities, then from
the master Lindblad equation we may obtain the following
formula for its time evolution:

d

dt
〈A〉 = 1

ih̄
〈[A,H]〉 +

∑
i

Tr{ADi}. (46)

Using these equation and the definition (39) ofDi , we obtained
the evolution of the quantities of interest. In the stationary state,
these equations give the following set of equations:

〈a1σy〉 + 〈a†
1σy〉 = 〈a2σy〉 + 〈a†

2σy〉, (47)

α〈aiσx〉 + �〈aiσy〉 + ig = 0, (48)

α∗〈a†
i σx〉 + �〈a†

i σy〉 − ig = 0, (49)

α〈aiσy〉 − �〈aiσx〉 + g(2n̄ + 1)〈σz〉 = 0, (50)

α∗〈a†
i σy〉 − �〈a†

i σx〉 + g(2n̄ + 1)〈σz〉 = 0, (51)

where α = γ /2 + iω. This is a closed set of nine equations
in the variables 〈σz〉, 〈a1σx〉, 〈a2σx〉, 〈a1σy〉, 〈a2σy〉, 〈a†

1σx〉,
〈a†

2σx〉, 〈a†
1σy〉, and 〈a†

2σy〉. Notice the last four equation are

valid for i = 1,2. The set of equation is valid for small values
of the coupling constant g and is easily solved to get the
correlations in closed forms. Notice that, with the exception of
the variable 〈σz〉, all variables are proportional to the coupling
constant g whereas 〈σz〉 does not depend on g.

To obtain an expression for the heat flux, we replace the
definition of Di , given by Eq. (39), into Eq. (41),

φi = −h̄ωTr{a†
i aiDi} + h̄gγ

2
〈(a†

i + ai)σx〉. (52)

Now, the evolution equation for the quantity 〈a†
i ai〉 is

d

dt
〈a†

i ai〉 = −ig〈(a†
i − ai)σx〉 + Tr{a†

i aiDi}. (53)

In the stationary state, the left-hand side vanishes. Summing up
these two last equations, we obtain the the heat flux φ = −φ1

in the form

φ = ih̄ωg〈(a†
1 − a1)σx〉 − h̄gγ

2
〈(a†

1 + a1)σx〉. (54)

From 〈a1σx〉 and 〈a†
1σx〉, obtained from the stationary

solution, we get the heat flux

φ = 32g2γ�2h̄ω

γ 4 + 8γ 2(ω2 + �2) + 162

n̄1 − n̄2

1 + n̄1 + n̄2
. (55)

As we did in the previous approach, it is worthwhile to write
the mean atomic population

〈σz〉 = − 8ω�

γ 2 + 4(ω2 + �2)

1

1 + n̄1 + n̄2
. (56)

By writing again the temperatures as T1 = T + �T/2
and T2 = T − �T/2, it is possible to obtain the thermal
conductance κ . In this case it reads

κ = 16g2γ�2h̄ω

γ 4 + 8γ 2(ω2 + �2) + 162

1

cT
. (57)

In this case, the quantity 〈σz〉 becomes

〈σz〉 = − 8ω�

γ 2 + 4(ω2 + �2)
tanh

βh̄ω

2
, (58)

which, as we can see, does not correspond to the correct
result for the thermodynamic equilibrium. This incorrect result
is to be expected because local phenomenological Lindblad
master equations do not lead to proper thermalization; that is,
the Gibbs probability distribution ρ0 = (1/Z)e−βH is not the
stationary solution of the Lindblad master equation (38).

In the high-temperature limit, the thermal conductance
reduces to

κ = 16g2γ�2h̄ω

γ 4 + 8γ 2(ω2 + �2) + 162

1

T
, (59)

because c → 1 in this limit. At low temperatures, on the other
hand, the thermal conductance becomes

κ = kB

32g2γ�2(βh̄ω)2

γ 4 + 8γ 2(ω2 + �2) + 162
e−βh̄ω, (60)

and κ vanishes when T → 0.
The thermal conductance κ is shown in Fig. 2 as a function

of temperature. We see that κT approaches a constant when
T → ∞, in accordance with expression (59), which shows
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FIG. 2. Thermal conductance κ times temperature T as a function
of T according to the Lindblad master equation approach (57) for two
values of the ratio ω/�. The parameters and constants g, γ , �, h̄,
and kB are taken to be equal to unity.

that, at high temperatures, κ is proportional to the inverse of
temperature. In this respect, the two approaches give similar
results.

IV. DISCUSSION

We have determined the quantum conductance of a sys-
tem consisting of two-level atom coupled to two harmonic
oscillators by the use of two distinct methods. These two
methods should be understood as two distinct theories about
open quantum systems which differ in the way the contact
of the system with the heat bath is treated. In the case of the
quantum FPK, the contact with a heat bath is advanced in terms
of a dissipation-fluctuation approach, described by each term
[xi,Ji] on the summation on the right-hand side of Eq. (4). In

both cases we have set up equations for the correlations which
were determined in closed form. From these correlations we
have obtained the heat flux and the conductance, which is
found to be proportional to coupling constant squared. At high
temperature the conductance were found to be proportional to
the inverse of temperature, κ ∼ T −1 for both cases. We point
out that, at resonance, ω = �, and assuming γ much smaller
that ω, both approaches yields the same result κ = g2h̄ω/γ T .
At low temperature the conductance vanishes with temperature
as κ ∼ e−k/T /T n with n = 3 for the first method and n = 2
for the second method. All calculations were performed for
small values of the coupling constant.

We have also determined the atomic population, n = (1 +
〈σz〉)/2. Up to linear order in the coupling constant, it is finite
and, when the difference in the temperatures of the reservoirs
vanish, it should be identical to the equilibrium value. Indeed
this is what happens when we use the quantum FPK approach,
as can be seen in Eq. (32). However, this is not the case when
we use the phenomenological Lindblad master equation with
local dissipators (38). In this case, the atomic population 〈σz〉,
given by (58), differs from the equilibrium value.

We have also determined the rate of entropy production for
the case of the quantum FPK approach. In this approach, the
rate of entropy production, according to Ref. [19], is defined by
Eq. (11). Using this definition, we obtain Eq. (13), which shows
that the rate of entropy production is a product of the heat flux
φ and the thermodynamic force (T −1

2 − T −1
1 ), and proven to

be positive as expected. For small values of �T = T1 − T2, we
may write 
 = κ(�T/T )2, which is clearly positive because
κ is positive.
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