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Abstract.  The purely relaxational non-equilibrium dynamics of the quantum 
spherical model as described through a Lindblad equation  is analysed. It 
is shown that the phenomenological requirements of reproducing the exact 
quantum equilibrium state as stationary solution and the associated classical 
Langevin equation  in the classical limit g → 0 fix the form of the Lindblad 
dissipators, up to an overall time-scale. In the semi-classical limit, the models’ 
behaviour becomes eectively the one of the classical analogue, with a dynamical 
exponent z  =  2 indicating diusive transport, and an eective temperature Te, 
renormalised by the quantum coupling g. A dierent behaviour is found for a 
quantum quench, at zero temperature, deep into the ordered phase g � gc(d), 
for d  >  1 dimensions. Only for d  =  2 dimensions, a simple scaling behaviour 
holds true, with a dynamical exponent z  =  1 indicating ballistic transport, while 
for dimensions d �= 2, logarithmic corrections to scaling arise. The spin–spin 
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correlator, the growing length scale and the time-dependent susceptibility show 
the existence of several logarithmically dierent length scales.

Keywords: dissipative systems, quantum criticality, quantum dissipative 
systems, solvable lattice models
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1.  Introduction

The statistical mechanics of non-equilibrium open system continues to pose many 
challenges, related to the absence of a unified framework for their formulation. Here, 
we shall be concerned with non-equilibrium relaxations of open quantum systems. In 
the vicinity of equilibrium, linear-response theories such as the Kubo formula or the 
Landauer-Büttiker formalism may be used [49, 51, 56]. But such approaches cannot 
describe the system’s behaviour far from equilibrium, for instance after a quench from 
one physical phase into another. Studies on the physical ageing of glassy and non-glassy 
systems after such quenches have led to a precise understanding of the associated 
phenomena and in particular have made it clear that the competition between several 
distinct, but equivalent, equilibrium states may prevent the system to relax to an 
equilibrium state at all, even if the microscopic dynamics does satisfy detailed balance  
[23, 43, 44, 57, 58, 80].

Often-used phenomenological approaches to classical dissipative systems include 
master equations for the probability distributions or Langevin equations for the observ-
ables. Various types of critical dynamics have been identified [11, 46, 58, 80]. Here, 
we shall concentrate on purely relaxational dynamics, often referred to as model-A 
dynamics. A major distinction of quantum systems with respect to classical ones is the 
presence of a conjugate momentum pn for each classical observable sn, both to be con-
sidered as operators, such that canonical commutation relations [sn, pm] = i�δn,m hold 
true. From the point of view of a phenomenological classical description, this raises the 
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requirement to re-formulate the dynamics in such a way that these prescribed conser-
vation laws should be obeyed. Therefore, simplistic approaches such as phenomenologi-
cal Kramers equations, for the observables sn and the momenta pm, supplemented by 
phenomenological damping terms, are inadequate, since they lead to the violation of 
the canonical commutation relations, on time-scales of the order of the inverse damping 
rate, such that an eectively classical dynamics remains [17].

The open-system dynamics of a quantum system is most ideally studied using the 
concept of dynamical semi-groups and completely positive trace-preserving (CPTP) 
dynamics. In the Heisenberg picture, this may be implemented using the tools of 
quantum Langevin equations [37]. Conversely, in the Schrödinger picture, that is most 
readily accomplished using Lindblad master equations [10, 32, 55].

Formally, the Lindblad equation preserves the trace, the hermiticity and the posi-
tivity of the reduced density matrix ρ. On the other hand, it is not considered straight-
forward to write down explicit expressions for the Lindblad dissipators for generic 
many-body systems, although well-established formalisms exist for few-body systems, 
see e.g. [3, 4, 10, 74, 83, 85]. Finally, if such expressions have been obtained, actually 
solving a Lindblad equation is still far from obvious. Some results exist for one- or two-
body problems, see [10, 74, 85]. For fermionic many-body chains, exact solutions have 
been found by establishing relationships with 1D quantum integrability, see [50, 66, 
67] and [68] for a recent review. Indeed, integrable models are relevant for the under-
standing of a large range of experiments, see [6] for a recent review. But by their very 
mathematical nature, such techniques are limited to one-dimensional systems.

In order to provide insight beyond purely numerical studies, a versatile and non-
trivial exactly solvable model is sought. In equilibrium statistical mechanics, the so-
called spherical model of a ferromagnet (see section 2 for the precise definition) [7, 53] 
has since a long time served for such purposes. In the classical formulation with fer-
romagnetic nearest-neighbour interactions, it undergoes a continuous phase transition 
at a critical temperature Tc > 0 for spatial dimensions d  >  2 (d can be treated as a con-
tinuous parameter). For 2  <  d  <  4 dimensions, the critical exponents are distinct from 
those of mean-field theory. The standard formulation in terms of classical spins has 
the drawback that the third fundamental theorem of thermodynamics is not obeyed, 
since the specific heat ch  =  1 for temperatures T < Tc [7]. This can be cured however, 
by adjoining to each spin variable sn a canonically conjugate momentum pn and add-
ing a kinetic energy term, with a quantum coupling g, to the Hamiltonian H, thus 
arriving at the quantum spherical model (qsm) [61]. Then the specific heat ch vanishes 
indeed as T → 0, as it should be [60, 62, 73, 81]. The model’s properties near the criti-
cal temperature Tc(g) > 0 are the same as in the classical spherical model. However, 
at temperature T  =  0, there is for d  >  1 dimensions a quantum critical point, at some 
g = gc > 0, which is in the same universality class as the classical model in d  +  1 dimensions  
[9, 29, 41, 52, 60, 62, 73, 78, 81, 82]. The formulation of the spherical model contains 
the so-called ‘spherical constraint’. The exact solution of the model reduces to estab-
lishing the constraint equation for the associated Lagrange multiplier which at equi-
librium must be found from the solution of a transcendent equation. Turning to the 
dynamics, the kinetics of the classical spherical model can be described in terms of a 
Langevin equation, such that the spherical constraint reduces to a Volterra integral 
equation for the now time-dependent Lagrange multiplier [38, 72]. Many aspects of the 
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non-equilibrium dynamics of the model have been analysed in great detail, including 
extensions to the spherical spin glass and to the growth of interfaces [11, 20, 22, 27, 34, 
35, 36, 38, 45, 64, 72, 80].

Here, we shall explore aspects of the non-equilibrium quantum dynamics of the qsm. 
In order to construct the Lindblad dissipators, we shall require that these are chosen 
such that (i) the correct quantum equilibrium state emerges as the stationary state of 
the dynamics and (ii) in the classical limit g → 0, the correct classical Langevin dynam-
ics should be recovered7. As we shall see, this fixes the form of the Lindblad dissipators, 
up to the choice of an overall time scale. To do so, we recall in section 2 the definition 
of the quantum spherical model and the main properties of its equilibrium phase dia-
gram. In section 3, the Lindblad dissipators will be constructed in two dierent ways. 
First, we shall follow the traditional route of system-plus-reservoir methods [10, 74]. 
Inspired by recent constructions of free bosonic quantum systems [39, 75], we shall 
give an explicit description for the phonons which make up the reservoir. We also 
discuss how this construction must be amended to take the spherical constraint into 
account. In section 4, we derive the associated equations of motion for the observables. 
Independently of any specific model for the reservoir, we shall show how a comparison 
with the classical limit g → 0 (whenever available) determines the form of the Lindblad 
dissipators. This also clarifies further the interpretation of the phonon reservoir model. 
The formal closed-form solution for spin- and momentum-correlators will be derived. 
The most dicult part of any spherical-model calculation is the solution of the spheri-
cal constraint, which becomes in our case a highly non-trivial integro-dierential equa-
tion. Since a full solution of this equation  is very dicult, we shall focus on two 
special cases. First, in section 5, we analyse the semi-classical limit, which can be used 
to describe the leading quantum correction to the order-disorder phase transition at 
temperature T = Tc(g). By construction, the Lindblad equation does preserve quantum 
coherence. Still, we find from the explicitly computed spin–spin correlator that to lead-
ing order in g, the dynamical critical behaviour, for temperatures T > Tc(g), T = Tc(g) 
or T < Tc(g) is exactly the one of the classical (purely relaxational model-A) dynam-
ics, where quantum eects only manifest themselves through the appearance of a new 
eective temperature T �→ Teff(g). For quenches to T � Tc(g), dynamical scaling holds 
with a dynamical exponent z  =  2, which indicates diusive motion of the basic degrees 
of freedom. Having thus confirmed the consistency of the Lindblad formalism applied 
to the quantum spherical model, we analyse in section 6 what happens for a quantum 
quench deeply into the ordered phase, through an exact analysis of the leading long-
time and large-distance behaviour of the spin–spin and momentum-momentum correla-
tors. We find a very rich behaviour which subtly depends on the spatial dimension d. 
Indeed, for d  =  2, simple dynamical scaling holds true, while for d  >  2, several logarith-
mically dierent time-dependent length scales appear, which implies a multi-scaling 
phenomenology. This leading behaviour is independent of the damping γ and the limit 
γ → 0 of closed quantum systems can be taken. For d  <  2, logarithmic corrections to 
scaling appear as well, but are of a dierent nature since the model’s behaviour now 
depends on γ. The dynamical exponent is always z  =  1, up to eventual logarithmic cor-
rections, indicative of ballistic motion.

7 This classical dynamics is in the universality class of the O(n)-model in the n → ∞ limit with purely relaxational 
model-A dynamics [44, 46, 58, 80].
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The technical details of the calculations are covered in several appendices. Appendix 
A describes how to derive the equilibrium form of the quantum spherical constraint, 
appendix B gives the analysis of the eective Volterra equation in the semi-classical 
limit. Appendices C and D give the necessary mathematical details for reducing asymp-
totically the spherical constraint to a transcendental equation involving Humbert func-
tions, for the case of deep quantum quenches. This equation is solved asymptotically in 
appendices E and F. The scaling of the two-point correlator is analysed in appendix G.

2. Quantum spherical model: equilibrium

The spin-anisotropic quantum spherical model (saqsm) [82] is defined by a set of ‘spin 
operators’ sn = s†n, attached to the sites n of a d-dimensional hyper-cubic lattice 
L ⊂ Zd with N = Nd sites. For each spin variable we define the corresponding conju-
gated momentum pn = p†n [61], which satisfies the canonical commutation relations

[sn, pm] = i δn,m.� (2.1)
Throughout, we shall use units such that � = 1. For nearest-neighbour interactions, 
and with periodic boundary conditions, the Hamiltonian is

H =
∑
n∈L


g

2

(
p2n − 1− λ

2S
∑
〈n,m〉

pnpm

)
+ S

(
s2n − 1 + λ

2S
∑
〈n,m〉

snsm

)
� (2.2)

where 〈n,m〉 are pairs of nearest-neighbour sites m and n. The parameter λ describes 
the spin-anisotropy in the interactions (this can be seen explicitly by going over to 
bosonic degrees of freedom [82]) and the usually studied qsm [41, 62, 81] is the special 
case λ = 1. The parameter g is the quantum coupling, such that for λ = 1 and g → 0, 
the spin operators become real numbers sn ∈ R and one recovers the classical spherical 
model [7]. Finally, the spherical parameter S is a Lagrange multiplier, to be chosen self-
consistently in order to satisfy the so-called mean spherical constraint [53]∑

n∈L

〈
s2n

〉
= N .

� (2.3)

The quantum Hamiltonian is invariant under the duality transformation D  given by

λ ↔ −λ , sn ↔
√

g

2S
pn.� (2.4)

We shall strive to find a Lindblad dissipator which will preserve this symmetry. The 
equilibrium phases at temperature T  =  0, and the dimension-dependent transition lines 
gc(λ, d) are shown in figure 1. A re-entrant phase transition is seen for 1 < d � 2.065 
when λ is small enough, without a known counterpart in the fermionic analogues of the 
saqsm [82]. This illustrates the non-trivial nature of the ground state of H.

The Hamiltonian (2.2) is readily diagonalised by first going over to Fourier space. 

We define the (non-hermitian) operators qk = q†−k and πk = π†
−k, along with the inverse 

transformations

https://doi.org/10.1088/1742-5468/aa9f44
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qk := N−1/2
∑
n∈L

sn e−in·k , πk := N−1/2
∑
n∈L

pn ein·k
� (2.5a)

sn = N−1/2
∑
k∈B

qk e
in·k , pn = N−1/2

∑
k∈B

πk e
−in·k .

� (2.5b)

where the momentum k lies in the first Brillouin zone B := {k = (k1 . . . kd)|ki ∈ {− π
N
. . . π

N
}. 

These operators obey the canonical commutation relations

[qk, πk′ ] = i δk,k′� (2.6)
and the transformation (2.5a) casts the Hamiltonian (2.2) into the form

H =
∑
k∈B

[ g

2S
Λ2

−;k πkπ−k + Λ2
+;k qkq−k

]
� (2.7)

where

Λ±;k :=

√
S +

1± λ

4
(ωk − 2d) with ωk := 2

d∑
j=1

(1− cos kj).� (2.8)

In the same manner, the spherical constraint (2.3) is transformed as∑
k∈B

〈qkq−k〉 = N .
� (2.9)

The Hamiltonian (2.7) is now diagonalised by introducing the bosonic ladder operators

qk = αk

bk + b†−k√
2

, πk =
i

αk

b†k − b−k√
2

,� (2.10a)

Figure 1.  Equilibrium quantum phase diagram of the saqsm at T  =  0, for 
dimensions d  =  [1.3,1.5,2,2.5,3], from bottom to top. We show for each dimension 
the critical line gc(λ) below which the system is a quantum ferromagnet. Above 
these lines order is destroyed by quantum fluctuations. After [82].
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bk =
αk√
2

(
qk
α2
k

+ iπ−k

)
, b†k =

αk√
2

(
q−k

α2
k

− iπk

)
� (2.10b)

where

αk =
( g

2S

)1/4

√
Λ−;k

Λ+;k

.� (2.11)

The operators bk and b†k obey the usual Weyl-Heisenberg algebra 
[
bk, b

†
k′

]
= δk,k′. The 

Hamiltonian in equation (2.7) then becomes

H =
∑
k∈B

Ek

(
b†kbk +

1

2

)
, Ek =

√
2
g

S
Λ+;kΛ−;k .� (2.12)

2.1. The isotropic case

For technical simplicity, we shall focus on the Lindblad equation in the isotropic case 

λ = 1. Then, equation (2.8) reduces to Λ−;k =
√
S and

Λ+;k =: Λk =
√

S − d+ ωk/2 .� (2.13)

The energy Ek in equation (2.12) and the parameter αk in equation (2.11) simplify to

Ek =
√
2g · Λk =

√
g
√

2(S − d) + ωk , αk =
(g
2

)1/4 1√
Λk

.� (2.14)

In the long-wavelength limit we may expand the cosines and write

Ek �
√
2g

[√
S − d +

1

2

k2

√
S − d

]
� (2.15)

where k2 = k2
1 + . . .+ k2

d. The last term in (2.15) represents a non-relativistic massive 
dispersion relation, whereas the first term represents a chemical potential term. Clearly, 
thermodynamic stability is realised if S � d. Furthermore, the zero-momentum energy 
gaps vanish for S = d. In complete analogy with the equilibrium spherical model, clas-
sical [7] or quantum [41], this last condition defines the critical point.

3. Construction of the Lindblad master equation

Now, we discuss how to describe the dynamics of the qsm in contact with a heat bath. 
We shall explicitly admit the Markov property in the dynamics and the weak-coupling 
limit of the coupling between the system and the bath. It is well-established that under 
these hypotheses, the most general description of the quantum dynamics of a system 
interacting with a reservoir is a non-unitary time-evolution of the reduced density 
matrix ρ, via the Lindblad equation [10, 74]

∂tρ = −i [H, ρ] +D(ρ).� (3.1)

https://doi.org/10.1088/1742-5468/aa9f44
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Herein, the dissipator D(ρ) describes the relaxation towards equilibrium. In the case 
of a single harmonic oscillator, interacting with a thermal bath, made of a phonon or 
photon gas, at the fixed temperature T [10, 55, 74]

D(ρ) = γ(E)

(
(n̄+ 1)

[
bρb† − 1

2
{b†b, ρ}

]
+ n̄

[
b†ρb− 1

2
{bb†, ρ}

])
� (3.2)

where E is the energy of the oscillator, b and b† are the bosonic ladder operators of the 
system, {A, B}  =  AB  +  BA is the anti-commutator, γ(E) is the damping parameter 
which also depends substantially on the bath and

n̄ = n̄(E) =
(
eE/T − 1

)−1
� (3.3)

is the Bose–Einstein occupation number at bath temperature T. This quantum master 
equation (3.1) and (3.2) preserves essential properties of the density matrix ρ, namely 
trace, complete positivity and hermiticity [55]. In addition, the Schrödinger picture is 

used for the bosonic operators b, b†. Hence the commutator 
[
b, b†

]
= 1 is time-indepen-

dent and its conservation is an intrinsic property of the formalism [17].
For our many-body problem, further consistency requirements are necessary:

	 1.	 the quantum equilibrium state must be a stationary state of equations (3.1) and 
(3.2),

	 2.	 this should imply that in the g → 0 limit, the classical equilibrium state must be 
a stationary state,

	 3.	 the classical Langevin dynamics must follows in the limit g → 0, for all times.

It turns out that these requirements can all be met, in an essentially unique way. 
The final Lindblad equation of the saqsm will come out to read

∂tρ = − i
[
H, ρ

]
+ γ0

∑
k∈B

[(
1 + λ

2

)2

Λ2
−;k +

(
1− λ

2

)2

Λ2
+;k

]
Λ2

+;kΛ
2
−;k

S2

×
[
(n̄k + 1)

(
bkρb

†
k −

1

2
{b†kbk, ρ}

)
+ n̄k

(
b†kρbk −

1

2
{bkb†k, ρ}

)]
.

�

(3.4)

Herein, the only free parameter is the constant γ0 which sets the time-scale. Clearly, the 
dissipator does depend on the spherical parameter S. The derivation of (3.4) is made 
first for a free bosonic system, without taking the spherical constraint into account. 
At the end, through the spherical constraint which must hold at all times, S = S(t) 
becomes time-dependent. This will turn out to make the solution of the spherical con-
straint considerably more complicated than at equilibrium (and also with respect to the 
classical dynamics).

Two dierent ways of deriving (3.4) will be presented:

	 (i)	One may consider explicitly the system-reservoir coupling and go through the 
standard route, with the usual approximations [10]. The bath properties are taken 
into account through the explicit time-dependent phonon (or photon) correlators. 
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This gives a formal derivation of the Lindblad equation and will be carried out in 
the remainder of this section.

	 (ii)	For the purpose of model-building, an alternative and more phenomenological 
approach might be useful. As we shall show in section 4, one may start from a 
generic form of the dissipator, essentially a sum of terms of the form (3.2) for each 
mode, and with yet unspecified damping constants γk. We then derive quantum 
equations of motion for certain observables. Comparison of these equations of 
motion with the known classical g → 0 limit (if available) then fixes the γk.

At the end, both procedures lead to the same Lindblad equation (3.4).

3.1. General structure of the system-bath coupling

Now, largely following [10], but with the few adaptations required for the qsm, we 
introduce the open-system dynamics.

For clarity, we begin treating just a single spin, say sn, coupled to the bath. The 
coupling of several spins is readily obtained at the end. As usual, the bath will be 
modelled by an infinite number of bosonic ‘phonon’ degrees of freedom, with the bath 
hamiltonian

HB =
∑
�

Ω�η
†
�η�� (3.5)

with the bosonic operators η� and their corresponding frequencies Ω�. The system-bath 
interaction Hamiltonian is assumed to take the form

HI =
∑
�

f� An ⊗ (η� + η†�)� (3.6)

where f� ∈ R are coupling constants and An is a hermitian system operator. There is a 
certain freedom in the choice of An. Here, rather than a simplistic coupling to only the 
spin operator sn = s†n or only to the momentum operator pn = p†n, we prefer a coupling 
which preserves the invariance under the duality transformation D , see equation (2.4). 
The most general linear operator compatible with duality is

An =
1 + λ

2

sn√
g

+
1− λ

2

pn√
2S

.� (3.7)

In the weak-coupling limit, the action of the bath is described approximately by a 
Lindblad equation for the reduced density matrix ρ of the system

∂tρ = −i[H, ρ] +Dn(ρ)
� (3.8)

where the first term describes the unitary evolution and Dn(ρ) is the Lindblad dissipa-
tor corresponding to the interaction (3.6). The expression for Dn(ρ) is most commonly 
derived using the method of eigenoperators [10].

To make this presentation self-contained, we rapidly recall the main steps before 
applying it to the saqsm. Consider a Hamiltonian H with energy levels ε and let Pε 
denote the corresponding projection operator onto the subspace of eigenvectors that 
have energy ε. Moreover, assume that the system-bath coupling may be described by 
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an interaction Hamiltonian of the form HI  =  AB, see also (3.6), where A and B are 
hermitian system and bath operators, respectively. Define the eigenoperator A(ω) corre
sponding to A via the relation

A(ω) =
∑
ε,ε′

PεAPε′ δε′−ε,ω� (3.9)

where the sum is over all distinct energies ε, ε′ and δa,b is the Kronecker delta. It can 
be shown that

[H,A(ω)] = −ωA(ω) , A†(ω) = A(−ω) .� (3.10)

The quantities ω represent all allowed energy dierences that may be produced by the 
action of the operator A.

It follows that the Lindblad dissipator corresponding to the interaction HI  =  AB 
reads, in the Born-Markov and rotating wave approximations [10]

D(ρ) =
∑
ω

Γ(ω)

[
A(ω)ρA†(ω)− 1

2
{A†(ω)A(ω), ρ}

]
� (3.11)

where

Γ(ω) =

∫ ∞

−∞
dt eiωt〈B(t)B(0)〉� (3.12)

is the Fourier transform of the bath correlation functions. This method therefore allows 
one to readily write down the dissipator corresponding to a given system-bath interac-
tion. However, to do so we must compute the eigenoperator A(ω) from equation (3.9), 
which requires the full eigenstructure of the Hamiltonian. It is also worth noting that 
this method also produces a Lamb-shift correction to the Hamiltonian. However, this 
correction is usually small and, for simplicity, will be neglected.

3.2. Evaluation of bath correlation functions

Returning now to our problem, the interaction Hamiltonian (3.6) has A = An and 

B =
∑

� f�(η� + η†�). One must compute equation (3.12) for this choice of B. If the bath 
is in thermal equilibrium at a fixed temperature T, one has

〈B(t)B(0)〉 =
∑
�

f�f�

(
e−iΩ�t[n̄(Ω�) + 1] + eiΩ�tn̄(Ω�)

)
� (3.13)

with the Bose–Einstein distribution n̄ defined in equation  (3.3). Inserting this into 
equation (3.12) leads to

Γ(ω) = 2π
∑
�

f�f�

(
δω,Ω�

[n̄(Ω�) + 1] + δω,−Ω�
n̄(Ω�)

)
.� (3.14)

If the bath frequencies Ω� vary continuously in the interval [0,∞), one may convert the 
sum to an integral, leading to
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Γ(ω) =

∫ ∞

0

dΩ γ(Ω)

(
δω,Ω[n̄(Ω) + 1] + δω,−Ωn̄(Ω)

)
=

{
γ(ω)[n̄(ω) + 1] , if ω > 0

γ(|ω|)n̄(|ω|) , if ω < 0
� (3.15)

with the associated spectral density

γ(Ω) = 2π
∑
�

f 2
� δ(Ω− Ω�).� (3.16)

In order to have a definite prediction for the spectral density γ(ω), additional physi-
cal information about the distribution of bath frequencies is needed. In general, one 
expects that

γ(Ω) ∼ Ωκ
� (3.17)

for some exponent κ. The actual value of κ will depend sensibly on the microscopic 
details of the bath, which in our case we do not know. Instead, we shall be guided by 
the principle that the classical dynamics [38] should be recovered in an appropriate 
limit. As we shall show below, this turns out to imply the exponent κ = 3.

Interestingly, the value of this exponent also follows from another consideration 
which is common in the context of quantum optics. Suppose that our bath bosons have 
a linear dispersion linear relation (such as, for instance, photons or acoustic phonons). 
Then the index � is replaced by the momentum k and the dispersion relation is writ-
ten as Ωk = c|k| where c is the sound/light velocity. Transforming the sum in equa-
tion (3.16) into an integral gives

γ(Ω) ∼ f(Ω)2Ω2.� (3.18)

We now see that we recover the exponent κ = 3 if we assume that fk is proportional 
to 

√
Ωk . This turns out to be precisely the dipole approximation minimum coupling 

[10]. Thus, we conclude that we recover the classical Langevin dynamics if we assume 
a typical electric-field dipole coupling of the spins with the bath bosons. In summary, 
we emerge from this discussion with the result that

γ(Ω) = γ0Ω
3

� (3.19)

where the constant γ0 describes the strength of the system-bath coupling.

3.3. Calculation of the eigenoperators

To finish the construction of the dissipator (3.11) one must find the eigenoperators A(ω) 
corresponding to A = An. First, use equations (2.5b) and (2.10a) to write

An =
(g−3/2S) 1

4

√
2N

∑
k∈B

ein·k
(
ckbk + c∗kb

†
−k

)
with ck =

1 + λ

2

√
Λ−;k

Λ+;k

+ i
1− λ

2

√
Λ+;k

Λ−;k

.

� (3.20)

Next we note that, due to the diagonal structure of H in equation (2.12), it follows that 
[H, bk] = −Ekbk. Hence, comparison with equation (3.10) shows that bk is an eigenop-
erator of H with allowed transition frequency ω = Ek. The same is true for ckbk as well. 
The full eigenoperator therefore reads
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An(ω) =
(g−3/2S) 1

4

√
2N

∑
k∈B

ein·k
(
ckbkδEk,ω + c∗kb

†
−kδEk,−ω

)
.� (3.21)

The dissipator (3.11) corresponding to An being coupled to the bath, will then be

Dn(ρ) =
∑
ω

Γ(ω)

[
An(ω)ρA

†
n(ω)−

1

2
{A†

n(ω)An(ω), ρ}
]
.� (3.22)

This expression may be simplified further. To do that, it suces to look only at the 
first term
∑
ω

Γ(ω)An(ω)ρA
†
n(ω)

=
∑
ω,k,k′

ein·(k−k′)

2 N
Γ(ω)

√
g−3

2S

(
ckbkδEk,ω + c∗kb

†
−kδEk,−ω

)
ρ

(
c∗k′b†k′δEk′ ,ω

+ ck′b†−k′δEk′ ,−ω

)
.

Since Ek  >  0, see equation  (2.12), the only terms which will survive the constraints 
imposed by the δ’s are those with Ek = Ek′. Since the energies may be degenerate, this 
does not necessarily imply that k = k′. But if we carry out the sum over ω and use 
equation (3.15), we obtain∑

ω

Γ(ω)An(ω)ρA
†
n(ω)

=

√
g−3

8S
∑
k,k′

δEk,Ek′

ein·(k−k′)

N
γ(Ek)

[
ckc

∗
k′(n̄k + 1)bkρb

†
k′ + c∗kck′n̄kb

†
kρbk′

]
.

The structure of the other terms in equation (3.22) will be similar. Finally, we define

γ
(n)

k,k′ =

√
g−3

8S
γ(Ek)

ein·(k−k′)

N
ckc

∗
k′ .� (3.23)

The final single-site dissipator (3.22) reads

Dn(ρ) =
∑
k,k′

δEk,Ek′

(
(n̄k + 1)γ

(n)

k,k′

[
bkρb

†
k′ −

1

2
{b†k′bk, ρ}

]
+ γ

(n)

k′,kn̄k

[
b†kρbk′ − 1

2
{bk′b†k, ρ}

])

�

(3.24)

and describes the action of coupling a single degree of freedom to the heat bath. It 
couples to all normal modes bk. Furthermore, it is well-known that dissipators of this 
form will let evolve the system towards the correct thermal Gibbs state ρ ∼ e−H/T , 
although only a single spin was coupled to the bath [10].

The information which site n is coupled to the bath is contained in the factor γ
(n)

k,k′.

3.4. Eect of coupling the entire system to the bath

We now extend this to the case where all spins are coupled to the bath. In this case, for 
each degree of freedom, at site n, we shall have a dissipator Dn(ρ) appearing in equa-
tion (3.8). But if we look at equation (3.24) we see that n only appears in the quantities 

γ
(n)

k,k′. Thus if we sum all dissipators Dn(ρ) we will get a result with a structure identical 

to equation (3.24), but with γ
(n)

k,k′ replaced by
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∑
n

γ
(n)

k,k′ =

√
1

8g3S
γ(Ek) |ck|2 δk,k′ =: δk,k′ γk� (3.25)

where, using also equation (3.19) along with (2.12) and (3.20), we find

γk = γ0

[(
1 + λ

2

)2

Λ2
−;k +

(
1− λ

2

)2

Λ2
+;k

]
Λ2

+;kΛ
2
−;k

S2
.� (3.26)

Specific calculations will only be carried out for the isotropic case λ = 1 for which (3.26) 
simplifies to

γk = γ0Λ
2
k� (3.27a)

see also equation (2.13). The final dissipator, after having summed over n, reads

D(ρ) =
∑
k∈B

γk

(
(n̄k + 1)

[
bkρb

†
k −

1

2
{b†kbk, ρ}

]
+ n̄k

[
b†kρbk −

1

2
{bkb†k, ρ}

])

�

(3.27b)

This is our final result (3.4) for the microscopic derivation of the Lindblad dissipator.
Recall that this dissipator satisfies detailed balance, as shown in [10]. Therefore, modulo 

an ergodicity assumption, the Lindblad equation (3.4) will thermalise the system, irrespective 
of the initial condition, to the unique steady-state with reduced density matrix ρ ∼ e−H/T .

This entire discussion did not take into account the spherical constraint (2.9). If 
one uses it in an ad hoc fashion, one would consider S = S(t) as time-dependent. Then 
either the couplings to the bath or the bath properties themselves, described by γk, 
n̄k and the operators bk must be considered time-dependent. Pragmatically, one con-
siders an eectively time-dependent dissipator Dt which will always have as its tar-
get state the instantaneous Hamiltonian H = H(t) of the system, such that formally 
Dt(e

−βH(t)) = 0. Physically, that means that the time-dependent changes in H should 
be slow enough, which in turn should be the case if the changes in S(t) should be more 
slow than the typical bath correlation times. Since the eventual applications we are 
interested in concern the slow power-law relaxations after a quantum quench into the 
two-phase coexistence regime with formally infinite relaxation times, we expect that 
these kinds of physical requirements should be satisfied.

More systematically, one should not have imposed a spherical constraint, but rather 
have considered a second bath in order to implement it, at least on average. Since we 
expect that for suciently long times, the eective equations of motion should become 
the same as those we are going to study in the next section, we have not carried out 
this explicitly. At the present time, we consider it more urgent to arrive at some under-
standing of the qualitative consequences of the equations of motion on the long-time 
behaviour of the non-equilibrium correlators.

4. Dynamical equations for observables

In this section, we shall examine the dynamical equations governing the evolution of 
certain important observables under the influence of the heat bath. For any observable 
O, the time-dependent average 〈O〉 = 〈O〉 (t) is found from
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d

dt
〈O〉 = tr(O ∂tρ) + tr(ρ ∂tO).� (4.1)

In principle, all quantities αk, Ek, γk and n̄k should be considered as being time-
dependent, if the spherical constraint is taken into account. These explicit time-
dependencies come from the second term on the right-hand-side in (4.1). For the 
sake of simplicity of the presentation, we shall discard it for the moment but shall 
re-introduce it later.

Therefore, for any observable O not depending explicitly on time, hence ∂tO = 0, 
inserting the Lindblad equation (3.8) into (4.1) gives

d

dt
〈O〉 = −i〈[O,H]〉+ 〈D̄(O)〉� (4.2)

with the adjoint dissipator

D̄(O) =
∑
k∈B

γk

(
(n̄k + 1)

[
b†kObk −

1

2
{b†kbk,O}

]
+ n̄k

[
bkOb†k −

1

2
{bkb†k,O}

])
.

�

(4.3)

Although the form of the γk was discussed in the previous section, we shall keep 
them here in a generic form. This will allow an alternative derivation of the Lindblad 
equation (3.4).

In order to understand how this adjoint dissipator arises, consider the second term 

as an example, namely D2(ρ) = γn̄
(
b†ρb− 1

2

{
b†b, ρ

})
, for a single mode. Then

tr (OD2) = γn̄tr

(
Ob†ρb− 1

2
Ob†bρ− 1

2
Oρb†b

)

= γn̄tr

(
ρ

(
bOb† − 1

2
Ob†b− 1

2
b†bO

))
= γn̄

〈
bOb† − 1

2
Ob†b− 1

2
b†bO

〉

which produces the second term in (4.3). The first term is obtained similarly.

For the single-particle observables O ∈ {bk, b†k, qk, πk}, we find from (4.1)–(4.3)
d

dt
〈bk〉 = −

(
γk
2

+ iEk

)
〈bk〉+ 〈∂tbk〉,

d

dt
〈b†k〉 = −

(
γk
2

− iEk

)
〈b†k〉+ 〈∂tb†k〉

� (4.4a)
d

dt
〈qk〉 = −γk

2
〈qk〉+

g

S
Λ2

−;k〈π−k〉,
d

dt
〈π−k〉 = −γk

2
〈π−k〉 − 2Λ2

+;k〈qk〉� (4.4b)

where we also used the fact that Ek, αk and γk are all even in k. In particular, the 
time-dependent magnetisation is expressed as

M =
∑
n∈L

〈sn〉 =
√
N 〈q0〉� (4.5)

where use was made of the orthogonality of the Fourier series.
Next, we turn to two-body correlators. We find, again using equations (4.1)–(4.3),

d

dt
〈b†kbk′〉 = 〈∂tb†kbk′〉+

[
i(Ek − Ek′)− γk + γk′

2

]
〈b†kbk′〉+ γkn̄kδk,k′� (4.6a)

https://doi.org/10.1088/1742-5468/aa9f44


Lindblad dynamics of the quantum spherical model

16https://doi.org/10.1088/1742-5468/aa9f44

J. S
tat. M

ech. (2018) 013103

d

dt
〈bkbk′〉 = 〈∂tbkbk′〉+

[
− i(Ek + Ek′)− γk + γk′

2

]
〈bkbk′〉� (4.6b)

From these equations we may also compute dynamical equations for the two-point 
correlators

Qk(t) := 〈qkq−k〉, Πk(t) := 〈πkπ−k〉, Ξk(t) :=
1

2
〈qkπk + π−kq−k〉.� (4.7)

The spherical constraint (2.9) then becomes in the N → ∞ limit

∑
k∈B

Qk(t) = N ⇔
∫

B

dk

(2π)d
Qk(t) = 1� (4.8)

and we find the eqs of motion for the two-point correlators

dQk

dt
= −γk

[
Qk(t)−

1

4

√
2g

S
Λ−;k

Λ+;k

(2n̄k + 1)

]
+ 2

g

S
Λ2

−;kΞk(t)� (4.9a)

dΞk

dt
= −γk · Ξk(t) +

g

S
Λ2

−;k · Πk(t)− 2Λ2
+;k ·Qk(t)� (4.9b)

dΠk

dt
= −γk

[
Πk(t)−

√
S
2g

Λ+;k

Λ−;k

(2n̄k + 1)

]
− 4Λ2

+;k · Ξk(t)� (4.9c)

At this point we would like to stress again that the canonical commutation relation 
[qk, πk′ ] = iδk,k′ is preserved due to the fact that qk and πk′ are Schrödinger operators. 
In particular, this is connected to the trace-preserving property of the dynamics as

∂t 〈[qk, πk′ ]〉 = tr

(
[qk, πk′ ] ∂tρ

)
= iδk,k′∂ttr ρ = 0 .� (4.10)

Along with this, the commutation relation between the bosonic ladder operators is 
preserved since they present the same underlying algebra as

[
bk, b

†
k′

]
= − i

2

(
αk′

αk

[qk, πk′ ]− αk

αk′
[π−k′ , q−k]

)
= δk,k′ .� (4.11)

Having completed these formal calculations, we must now take the spherical con-
straint (2.9) and (4.8) into account. From (4.9a), this becomes an integro-dierential 
equation  for the time-dependent spherical parameter S = S(t). It follows that the 
parameter αk = αk(t), defined in (2.11), becomes time-dependent as well. It describes 

the transformation (2.10a) between the bosonic operators bk, b
†
k and the spins qk and 

momenta πk. Therefore, one must decide whether either the pair (bk, b
†
k) or else the pair 

(qk, πk) is taken to be time-independent, and hence is described by the Schrödinger 
picture.

We choose (qk, πk) as time-independent operators. The Lindblad formalism then 
implies the time-independent commutator (2.6). Furthermore, the equations of motion 
equations (4.4b) and (4.9) remain valid. They will form the basis for our analysis of the 
dynamics of the qsm.
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In consequence, in equations  (4.4a) and (4.6) the contributions coming from the 
second term in (4.1) must be worked out. For example, the first equation of motion in 
(4.4a) now becomes, where the dot indicates the time derivative

d

dt
〈bk〉 = −

(
γk
2

+ iEk

)
〈bk〉 −

α̇k

αk

〈b†−k〉.� (4.12)

The other equations can be generalised similarly, but we shall not require them in this 
work.

Before we analyse the dynamics produced by equations (4.9), we shall first consider 
their steady-state properties.

4.1. Stationary solution and equilibrium properties

The correlators in equation (4.9) will relax to their stationary values, namely Ξk(∞) = 0 
and

Qk(∞) =
1

4

√
2g

S
Λ−;k

Λ+;k

(2n̄k + 1), Πk(∞) =

√
S
2g

Λ+;k

Λ−;k

(2n̄k + 1).� (4.13)

These are precisely the equilibrium values expected from the saqsm [82]. To see that 
more clearly, we substitute these results into the spherical constraint (2.9) and find

1 =

√
g

8S
1

N
∑
k∈B

Λ−;k

Λ+;k

(2n̄k + 1)
N↗∞−→

√
g

8S

∫

B

dk

(2π)d
Λ−;k

Λ+;k

coth(Ek/2T ).� (4.14)

This is indeed the spin-anisotropic spherical constraint at equilibrium. The derivation, 
through a canonical transformation, is given in appendix A. In view of the re-entrant 
phase diagram for a non-isotropic interaction with λ �= 1, this is a non-trivial check of 
the formalism.

We have therefore confirmed that the equilibrium state of the SAQSM is a stationary  
solution of the Lindblad equation. Details on the form of the γk are not required to verify 
this.

In the isotropic case λ = 1, it is useful to let z := 2(S − d). Then (4.14) reduces to 
the familiar form [62]

√
g

2

∫

B

dk

(2π)d
1√

z+ ωk

coth

(√
g

2T

√
z+ ωk

)
= 1 .� (4.15)

In the following sections, we shall mainly concentrate on either the semi-classical limit 
g → 0 or else on the the zero-temperature equilibrium limit T  =  0. In these limit cases, 
the spherical constraint reduces to


1− g

12T
� T

∫
B

dk
(2π)d

[
1

z+ωk
+O(g2)

]
, for g → 0

1 =
√

g
4

∫
B

dk
(2π)d

1√
z+ωk

, for T = 0
� (4.16)

The upper case in (4.16) reduces to the familiar classical form of the equilibrium 
spherical constraint [7, 53], where the temperature T �→ Teff(g) = T/(1− g

12T
) is replaced 
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by an eective temperature. This also shows that in the g → 0 limit, one recovers the 
classical equilibrium state. The lower case in (4.16) is the spherical constraint for the 
quantum phase transition at T  =  0 [41, 62, 81]. For illustration, in figure 2 we show 
the Lagrange multiplier z = z(d,T , g). In the classical limit g  =  0 (left panel), the criti-
cal value z = 0 is reached for d � 2 only for a vanishing temperature T  =  0 and there 
is no phase transition. On the other hand, for d  >  2, the line z = 0 is already reached 
for a finite value T = Tc(d) > 0 which defines the critical temperature. A qualitatively 
analogous behaviour is seen for the quantum phase transition at T  =  0 (right panel 
of figure 2). While for d  =  1, the critical line z = 0 is only reached for g  =  0, for any 
dimension d  >  1 one finds a finite critical value gc(d) > 0. A more detailed comparison 
reveals that the classical transition in d  +  1 dimensions, at g  =  0 and Tc > 0 and the 
quantum transition in d dimensions at T  =  0 and gc(d) > 0, are in the same equilibrium 
universality class [41, 62, 81, 82].

4.2. Formal solution of the non-equilibrium problem

To complete the microscopic derivation of the Lindblad dissipator, we now give a 
phenomenological discussion of how to chose the dissipator in a physically motivated 
fashion in order to include the correct classical many-body dynamics. To do so, we 
begin by writing down the formal solution of equations (4.9a)–(4.9c). This system can 
be re-written in a matrix form

d

dt




Qk(t)

Ξk(t)

Πk(t)


 = −mλ

k(t)




Qk(t)

Ξk(t)

Πk(t)


+ uλ

k(t)� (4.17)

with the matrices

mλ
k(t) =




γk(t) −2 g
SΛ

2
−;k 0

2Λ2
+;k γk(t) − g

SΛ
2
−;k

0 4Λ2
+;k γk(t)


 , uλ

k = γk(t)(2n̄k + 1)




−
√

g
8S

Λ−;k

Λ+;k

0
√

S
2g

Λ+;k

Λ−;k


 .

� (4.18)
Here we suppressed the explicit time-dependence of the spherical parameter S = S(t) 
of Λ±;k = Λ±;k(t) for readability of the equation. Some more comments are in order:

	•	 For a phenomenological discussion the damping rates γk were left unspecified. 
Since spin-anisotropy is a quantum-mechanical eect, this discussion must be 
carried out in the isotropic case λ = 1. Only at the end, we shall compare with 
the dissipator (3.27) derived form microscopic considerations in section 3.

	•	 The time-dependence of the spherical parameter S(t) is to be found self-consist-
ently from the formal solution and the spherical constraint 

∑
k∈B Qk(t) = N .

	•	 Already the isotropic case λ = 1 turns out to be considerably more dicult than 
the classical non-equilibrium dynamics, so that we leave the non-isotropic case 
λ �= 1 for future work.
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Concentrating from now on only on the isotropic case λ = 1, we can simplify the matri-
ces (4.18) by using the relations (2.13) and (3.27a) and find

mk(t) =




γk(t) −2g 0

2Λ2
k γk(t) −g

0 4Λ2
k γk(t)


 , uλ

k = γk(t)(2n̄k + 1)




1
4

√
2g

Λk

0

Λk√
2g


 .� (4.19)

4.2.1. Choice of the damping parameters  For λ = 1, a well-defined classical limit g → 0 
exists, and can be brought to coincide with the well-known purely relaxational model-
A dynamics of the O(n) model in the n → ∞ limit [11, 38, 44, 46, 72, 80], as we shall 
now see. Then, the equation of motion for the spin correlator Qk decouples and leads 
to (recall z = 2(S − d))

d

dt
Qk(t) = −γk(t)Qk(t) + γk(t)

T

z(t) + ωk

.� (4.20a)

We stress that this equation  of motion is qualitatively dierent from the classical 
Kramers equation (see [83] for more details) since thermal fluctuations occur not just 
in the equation of motion of the momenta but already in the equation for the spins. 
The second term of the r.h.s. of equation  (4.20a) comes from the assumed Lindblad 
dissipator and generates a coherent quantum dynamics. For an initial state at infinite 
temperature Qk(0) = 1. Then the formal solution of (4.20a) reads

Qk(t) = e−
∫ t
0dτ γk(τ)

(
1 + T

∫ t

0

dt′
γk(t

′)

z(t′) + ωk

e
∫ t′
0 dτ γk(τ)

)
� (4.20b)

We now compare this with the known dynamics of the classical model [38, equa-
tion (2.18)]. The spin–spin correlator obeys the following equation of motion, which can 
be derived from the Langevin equation of the classical spherical model

d

dt
Qk(t) = −2

(
z(t) + ωk

)
Qk(t) + 2T� (4.21a)

Figure 2.  Spherical parameter z = z(d,T , g) as a function of d, the temperature 
T and the coupling g. Left panel: classical limit g  =  0. Right panel: quantum 
transition at T  =  0.
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and has the solution

Qk(t) = e−2tωk−2
∫ t
0dτ z(τ)

(
1 + 2T

∫ t

0

dt′ e−2t′ωk−2
∫ t′
0 dτ z(τ)

)
� (4.21b)

Our requirement that the g → 0 limit should reduce to the classical Langevin equa-
tion means that equations (4.20) and (4.21) must be consistent. This is achieved if we 
choose

γk(t) = 2Λ2
k(t) = 2 (z(t) + ωk)� (4.22)

and includes an implicit fixing of the time-scale in the classical dynamics [38]. 
Remarkably, the condition (4.22) is identical to the result equation (3.27a) obtained 
from the microscopic derivation of the Lindblad dissipator (3.27), up to a choice of the 
overall damping constant γ0. In particular, this sheds a dierent light on the heuristic 
argument we used above in order to fix the phenomenological exponent κ = 3.

Therefore, we have seen that the requirements of reproducing (i) the correct quantum 
equilibrium state and (ii) the full classical dynamics in the limit g → 0 are enough to fix 
the precise form of the Lindblad dissipator, up to an overall choice of the time scale.

4.2.2. Closed formal solution  With the final choice (4.22), we return to the dynamics 
for g �= 0, but keep λ = 1. The formal solution of equation (4.17) is




Qk(t)

Ξk(t)

Πk(t)


 = eMk(t)




Qk(0)

Ξk(0)

Πk(0)


+ γ

∫ t

0

dτ eMk(t)−Mk(τ)(2n̄k(τ) + 1)




√
g
2
Λk

0
√

2
g
Λ3

k




� (4.23)
where

Mk(t) =

∫ t

0

dτ mk(τ) = −
(
Z(t) + tωk

)


γ 0 0

1 γ 0

0 2 γ


+ gt



0 2 0

0 0 1

0 0 0


� (4.24)

and we defined the integrated spherical parameter

Z(t) :=

∫ t

0

dτ z(τ).� (4.25)

At equilibrium, thermodynamic stability requires z = zeq � 0, as we have seen in 
section 2.

Here, we are interested in the non-equilibrium dynamics after the systems under-
goes a quench from an initial disordered state to a state characterised by certain values 
of (T , g). Since then the initial values 〈qk〉(0) = 〈πk〉(0) = 0, the noise-averaged global 
magnetisation remains zero at all times, although fluctuations around this will be pres-
ent. We therefore focus on two-body correlators. By analogy with classical dynamics we 
expect that if that quench goes towards a state in the disordered phase, with a single 
ground state of the Hamiltonian H, a rapid relaxation, with a finite relaxation time, 
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should occur towards that quantum equilibrium state. For suciently large times, 
z(t) > 0 is expected. On the other hand, for quenches either onto a critical point or 
else into the ordered phase (with at least two distinct, but equivalent ground states), 
the formal relaxation times become infinite. Then z(t) may evolve dierently. For the 
classical spherical model, quenched from a fully disordered high-temperature state to a 
temperature T, one finds for long times the leading behaviour [38, 72]

Zcl(t) ∼ �
2
ln t , � =




−1

2
(4− d) ; if T = Tc and d < 4

0 ; if T = Tc and d > 4

−d
2

; if T < Tc

� (4.26)

In contrast to the equilibrium situation, this is non-positive and by itself gives a clear 
indication that after a quench to T � Tc, the system never reaches equilibrium. In the 
next two sections, we shall work out what happens in the case of quantum dynam-
ics. As we shall show, Z(t) < 0 may occur for non-equilibrium quantum quenches, but 
the time-dependence can be quite dierent from the classical result, in particular for 
quenches deep into the ordered phase.

In order to study what happens after a quench from the disordered phase, the sys-
tem must be prepared by choosing initial two-point correlators. For a quantum equi-
librium initial state, this requires Ξk(0) = 0 and Qk(0) =: Ak and Πk(0) = Ck, where 
Ak = Ak(T0, g0) and Ck = Ck(T0, g0) are chosen to specify the initial state further. The 
quench amounts to changing T0 �→ T  and g0 �→ g to their final values which are kept 
fixed during the system’s evolution. The two-point correlators are found from the sys-
tem (4.23) by evaluating the matrix exponential which finally gives

Qk(t) = e−
γ
g
∆t

[
Ak cos

2
√

t∆t + Ckg2t
sin2

√
t∆t

∆t

]

+
γ

2

∫ t

0

dτ
√

∆′
τ

([
cos

√
t∆t sin

√
τ∆τ√

∆τ/(τ∆′
τ )

− sin
√
t∆t cos

√
τ∆τ√

∆t/(t∆′
τ )

]2

+

[
cos

√
t∆t cos

√
τ∆τ −

sin
√
t∆t sin

√
τ∆τ√

(∆t/t)/(∆τ/τ)

]2)
e

γ
g
(∆τ−∆t) coth

√
∆′

τ

2T

� (4.27a)

Πk(t) = e−
γ
g
∆t

[
Akg

2t
sin2

√
t∆t

∆t

+ Ck cos2
√
t∆t

]

+
γ

2g2

∫ t

0

dτ
√

∆′
τ

([
sin

√
t∆t sin

√
τ∆τ√

t/∆t

+
cos

√
t∆t cos

√
τ∆τ√

τ/∆τ

]2

+

[
sin

√
t∆t cos

√
τ∆τ√

t/∆t

− cos
√
t∆t sin

√
τ∆τ√

τ/∆τ

]2)
e

γ
g
(∆τ−∆t) coth

√
∆′

τ

2T

� (4.27b)
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Ξk(t) = e−
γ
g
∆t

[
Ckg√
∆t

−Ak

√
∆t

]
sin 2

√
t∆t +

γ

g

∫ t

0

dτ e
γ
g
(∆τ−∆t) coth

√
∆′

τ

2T

×
√
∆τ

(√
t

τ

[
cos

√
t∆t cos

√
τ∆τ

4
√

(∆τ/τ)/(∆t/t))
+

sin
√
t∆t sin

√
τ∆τ

4
√
(∆t/t)/(∆τ/τ))

][
sin

√
t∆t cos

√
τ∆τ

4
√
(∆τ/τ)/(∆t/t))

+
cos

√
t∆t sin

√
τ∆τ

4
√
(∆t/t)/(∆τ/τ))

]
+

τ∆′
τ√

∆τ

√
t

τ

[
sin

√
t∆t cos

√
τ∆τ

4
√

(∆τ/τ)/(∆t/t))
− cos

√
t∆t sin

√
τ∆τ

4
√

(∆t/t)/(∆τ/τ))

]

×
[
cos

√
t∆t sin

√
τ∆τ

4
√

(∆τ/τ)/(∆t/t))
− sin

√
t∆t cos

√
τ∆τ

4
√

(∆t/t)/(∆τ/τ))

])

�

(4.27c)

with the definition (the k-dependence is suppressed for readability)
∆t := g(Z(t) + tωk) .� (4.28)

and the notation ∆′
t =

d∆t

dt
. This gives the full solution of the quantum problem and 

must be evaluated by using the the spherical constraint (4.8), viz. 
∫
B

dk
(2π)d

Qk(t) = 1. 

This leads to a formidable integro-dierential equation for spherical parameter z(t).

4.2.3. Remark on the relaxation towards equilibrium  In order to arrive at the first 
understanding of the correlator (4.27a), let us assume that there exists a finite relax-
ation time tr such that the system is stationary for times t � tr. For such times, we can 
write z = z∞ � Z(t)/t. Furthermore, the integration in (4.27a) can be split according to 
[0, t] = [0, tr] ∪ [tr, t]. In the limit t → ∞ we would have

Qk(∞) =
1

2

√
g

√
z∞ + ωk

coth

[√
g

2T

√
z∞ + ωk

]
� (4.29)

and this is consistent with the equilibrium correlator equation (4.13). We can then con-
clude: If the system relaxes towards a stationary state with a positive spherical parameter 
z∞ > 0, this stationary state has to be the unique thermodynamic equilibrium.

5. Semi-classsical limit

Equations (4.27) contain two contributions of a dierent physical nature. The first 
one contains the contributions from the fluctuations in the initial state, while the 
second one describes the fluctuations generated by the coupling to the external bath. 
These latter contributions appear far too formidable to yield to a direct approach. 
We therefore restrict to the study of two limiting cases. In this section, we shall pres-
ent a quasi-classical limit designed to reduce the complexity of the interaction with 
the bath considerably, so that it can be treated. In the next section, we consider a 
quench deep into the ordered phase, where the bath interactions are expected to pro-
duce only sub-leading terms in the long-time limit. The spin–spin correlator, equa-
tion (4.27a), contains complicated terms depending on ∆t, which in turn depends on 
the quantum coupling g. This suggests that a semi-classical description should mean 
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that the quantum fluctuations generated by such terms should be small and could be 
achieved by letting ∆t → 0. Simplifying, equation (4.27a) would then reduce to

Qk(t) �
e−γtωk

G(t)
+ γ

√
g

4

∫ t

0

dτ
G(τ)

G(t)
e−γ(t−τ)ωk

√
z(τ) + ωk coth

[√
g

2T

√
z(τ) + ωk

]

� (5.1)
with the definition

G(t) := eγZ(t).� (5.2)

Inserted into the spherical constraint 
∫
B

dk
(2π)d

Qk(t) = 1, this gives a still complicated 

integro-dierential equation for G(t). Manageable expressions can be found by expand-
ing the thermal occupation. We introduce as a small parameter

ε =

√
g

T
.� (5.3)

which measures the relative importance of quantum and thermal fluctuations. For 
ε → 0

coth

(
ε

√
z(τ) + ωk

4T

)
=

1

ε

√
4T

z(τ) + ωk

+
ε

3

√
z(τ) + ωk

4T
+O(ε3).� (5.4)

The first term in this expansion reproduces the classical model while the higher-order 
terms give successive quantum corrections.

5.1. Classical limit

Stopping at the first term in the expansion (5.4) and choosing Qk(0) = 1 for an infinite-
temperature initial state gives the classical spin–spin correlator

Qk(t) =
1

G(t)

(
e−γtωk + γT

∫ t

0

dτ G(τ)e−γ(t−τ)ωk

)
.� (5.5)

From the spherical constraint equation (4.8), in the N → ∞ limit, one finds a Volterra 
integral equation for G(t)

G(t) = F (t) + γT

∫ t

0

dτ G(τ)F (t− τ) = F (t) + γT (F � G)(t)� (5.6)

where � denotes a convolution and with the integral kernel

F (t) =

∫

B

dk

(2π)d
e−γtωk =

(
e−2γtI0(2γt)

)d
� (5.7)

and I0(x) is a modified Bessel function [1]. Up to a rescaling 1
2
γT �→ T  of temperature, 

this reproduces the dynamical spherical constraint of the classical model, see [38, equa-
tion (2.23)]. Of course, this was to be expected from our derivation of the Lindblad 
dissipator (3.27).

For a deep quench to temperatures T � Tc(d) (or T  =  0), the solution of (5.6) trivi-
ally is G(t) � F (t), up to corrections to scaling. As we shall see in section 6, the solution 
of the analogous deep quantum quench is far from being trivial.
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5.2. Leading quantum correction

New insight beyond the classical limit is found if one includes the first quantum correc-
tion from the expansion (5.4) in equation (5.1). We then get

Qk(t) �
e−γtωk

G(t)
+ γ

∫ t

0

dτ

[
T +

g

12T
(z(τ) + ωk)

]
G(τ)

G(t)
e−γ(t−τ)ωk .� (5.8)

The spherical constraint (4.8) becomes again a Volterra-integral equation for G(t). This 
is seen as follows. From the definitions (5.7) and (5.2) we have

dF (t)

dt
= −γ

∫

B

dk

(2π)d
ωk e

−γtωk ,
dG(t)

dt
= γz(t)G(t).

Integrating (5.8) gives

G(t) = F (t) + γT (G � F ) (t) +
g

12T

∫ t

0

dτ

[
dG(τ)

dτ
F (t− τ) +G(τ)

dF (t− τ)

dτ

]

= F (t) + γT (G � F ) (t) +
g

12T

∫ t

0

dτ
d

dτ
(G(τ)F (t− τ))

and using the initial values G(0) = F (0) = 1, this can be recast as

G(t)
(
1− g

12T

)
= F (t)

(
1− g

12T

)
+ γT (G � F ) (t).

The spherical constraint can now be written as

G(t) = F (t) + γT �

∫ t

0

dτ G(τ)F (t− τ)� (5.9)

which is identical to the classical constraint equation (5.6), if one introduces an eective 
temperature

T � = T �(g) =
T

1− g
12T

� T
(
1 +

g

12T

)
.� (5.10)

Remarkably, T �(g) = Teff(g) is exactly the eective temperature found in section 4 for 
the semi-classical equilibrium qsm, see equation (4.16). In figure 3 we show the phase 
diagram of the 3D isotropic qsm (λ = 1). There is an ordered ferromagnetic and a dis
ordered paramagnetic phase. The quantum phase transition occurs on the horizontal 
axis T  =  0 and the purely thermal phase transition is on the vertical axis g  =  0. Clearly, 
the eective temperature T �(g) reproduces the exact critical line to first order in g. 
As expected, quantum fluctuations reduce the critical temperature Tc(g) � Tc(0) with 
respect to the value of the classical model.

The identity Teff(g) = T �(g) of the eective temperatures from the equilibrium and 
dynamical analysis corroborates the correctness of our proposed Lindblad formalism. 
On the other hand, we see that the eective long-time dynamics of the semi-classical 
spherical model becomes purely classical, although the underlying microscopic dynam-
ics is described by a Lindblad equation and explicitly preserves quantum coherence. 
Quantum eects on the dynamics will only appear in second or higher order in g.
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5.3. Equal-time spin–spin correlator

The analysis of the Volterra equation  (5.9) is standard, with results identical to 
the ones for the classical O(n)-model with model-A dynamics, in the n → ∞ limit  
(see appendix B for details).

We have already seen that the formal expression for the single-time spin–spin  
correlator is

Qk(t) =
e−γtωk

G(t)
+

g

12T

[
1− e−γtωk

G(t)

]
+

γT

G(t)

∫ t

0

dτ G(τ)e−γ(t−τ)ωk .� (5.11)

Its long-time behaviour depends both on the dimension d and on the eective temper
ature T � = T �(g).

	 1.	T � > T �
c . This corresponds to the paramagnetic phase at equilibrium and in par

ticular to d  <  2. The system relaxes within a finite time-scale τeq towards its 
(quantum) equilibrium state. For d  >  2, the critical temperature T �

c > 0 and

γτeq
T �→T �

c�

[
T �2
c

T � − T �
c

|Γ(1− d
2
)|

(4π)
d
2

]2/(d−2)

.� (5.12)

		 The limiting correlation function becomes rapidly constant in time and takes 
essentially an Ornstein-Zernicke form

Qk(t) → Qk(∞) =
g

12T
+

T

ωk + ξ−2
eq

� (5.13)

		 with the equilibrium correlation length ξ2eq = γτeq. We also note a hard-core term, 
absent in the classical limit g → 0 and which in direct space would give a contrib
ution  ∼ g

12T
δ(r).

	 2.	T � < T �
c . For d  >  2 dimensions, the critical point T �

c > 0 and there is a ferromagn
etic phase. In the scaling limit where t → ∞ and k → 0 such that ωkt remains 
finite, we find the dynamical scaling form

Qk(t) �
g

12T
+ e−γtk2

(4πγt)d/2
(
1− g

12T

)
m2.� (5.14)

		 Fourier-transforming to direct space gives the spin–spin correlator

C(t, r) � g

12T
δ(r) +

(
1− g

12T

)
m2 e−

r2

4γt� (5.15)

		  and with the short-hand m2 = 1− T �

T �
c
� 1− T

Tc
, suciently close to the critical 

point. Indeed, up to the hard-core term, and a small g-dependent modification 
of the scaling amplitude, this has the same long-time behaviour as the clas-
sical spherical model [38, 72] to which one reverts when taking the limit g → 0.  
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The gaussian shape of the time-space correlator is a known property of the 
spherical model.

	 3.	T � = T �
c . For quenches onto the critical line, we find the dynamical scaling form

Qk(t) =

{
g

12Tc
+ 2γTc

d−2
t 1F1

(
1, d

2
;−γωkt

)
; if 2 < d < 4

g
12Tc

+ Tc

ωk
(1− e−γωkt) ; if 4 < d.� (5.16)

		 Apart from the hard-core term, this agrees with what is known in the classical 
model.

In particular, we recover for T � � T �
c  the dynamical exponent z  =  2, characteristic for 

diusive dynamics of the basic degrees of freedom.

6. Disorder-driven dynamics after a deep quench

We now turn to a dierent quench where quantum eects should be dominant for the 
long-time behaviour. The two-point correlators (4.9) contain contributions (i) from the 
fluctuations of the initial state and (ii) fluctuations which come from the exchange with 
the bath. In classical systems, the second term dominates for quenches onto the critical 
point, but only generates corrections to scaling for quenches into the two-phase coex-
istence region, where the first contribution dominates. Indeed, for classical systems the 
long-time scaling behaviour in the entire two-phase region is the same as for the deep 
quenches to zero temperature T  =  0. We anticipate that a similar result should also 
hold true for quantum systems, quenched deep into the ordered phase with g � gc(d). 

Figure 3.  Phase diagram of the isotropic quantum spherical model in d  =  3 
dimensions. The black curve is the exact critical line [62] which separates the 
paramagnetic and ferromagnetic phases. The red curve shows the critical line 
T �
c (g) according to equation (5.10), to first order in g.
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At T  =  0, this is possible for dimensions d  >  1, where gc(d) > 0. Therefore, instead of 
equations (4.9) or their formal solutions (4.27), we shall rather consider the correlators

Qk(t) = e−
γ
g
∆t

[
Ak cos

2
√
t∆t + Ckg2t

sin2
√
t∆t

∆t

]
� (6.1a)

Πk(t) = e−
γ
g
∆t

[
Akg

2t
sin2

√
t∆t

∆t

+ Ck cos2
√
t∆t

]
� (6.1b)

Ξk(t) = e−
γ
g
∆t

[
Ckg√
∆t

−Ak

√
∆t

]
sin 2

√
t∆t� (6.1c)

along with ∆t := g(Z(t) + tωk). The terms neglected therein, with respect to (4.9), should 
for weak bath coupling γ and for a quench deep into the ordered phase only account for 
corrections to the leading scaling we seek. In our exploration of the coherent dynamics of 
the qsm, we conjecture that this is so and we shall inquire in particular whether a dynam-
ical behaviour distinct from the one found in the quasi-classical case can be obtained.

As we shall see, and in contrast to the classical model, the solution of the dynamics 
is non-trivial.

6.1. Spherical constraint and asymptotic behaviour of the spherical parameter

Accepting the reduced form (6.1) for the two-point correlators, we concentrate on 
their dissipative dynamics, dominated by the initial disorder. The spherical constraint 
simplifies to

1 =

∫

B

dk

(2π)d
e−γ(Z(t)+tωk)

(
Ak cos

2
√

t∆t + Ckgt
sin2

√
t∆t

Z(t) + tωk

)
� (6.2)

and the initial conditions are characterised by the constants Ck and Ak. This is still a 
dicult integro-dierential equation without an obvious solution.

6.1.1.  Initial conditions  Consider a strongly disordered equilibrium initial state, 
situated far away from criticality. Then the equilibrium correlators are known [82]. 
Especially, Ξk(0) = 0 and the spherical parameter z0 � 1. We call this an infinitely 
disordered state. Such states are characterised by an equal occupation number of all 
modes k, such that the equilibrium correlators equation (4.13) simplify to

Qk(0) �
√

g0
4z0

coth

(√
z0g0
4T 2

0

)
!
= 1 , Πk(0) �

√
z0
4g0

coth

(√
z0g0
4T 2

0

)
=

z0
g0

=: C

�

(6.3)

where the first relation follows from the spherical constraint. Hence the single constant 
C characterises the infinitely disordered initial state. Since z(T0, g0) is defined self-
consistently by the spherical constraint, no explicit expression C(g0,T0) is available. 
Solving (6.3) numerically, the parameter C = C(g0/T0) is traced in figure 4. Two limit 
cases can be identified, which are both obtained for z0 � 1.

	 1.	 the strong classical-disorder limit (scdl), defined by the condition g0 � T 2
0 , along 

with z0 � 1. A first-order Taylor series of coth gives
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C � T0

g0
� 1.� (6.4)

		 The scdl is obtained when C is becoming large and positive.
	 2.	 the strong quantum-disorder limit (sqdl), defined by the condition g0 � T 2

0 , along 
with z0 � 1. An asymptotic expansion now gives

C � 1

4
� (6.5)

		 which is the smallest admissible value for C for a quantum equilibrium initial 
state.

Clearly, more general initial conditions interpolate between the limiting cases equa-
tions (6.4) and (6.5). It is conceptually significant that initial momentum correlators 
must be present.

At first sight, one might have appealed to an analogy with classical initial dis
ordered states and expected that C = 0 would be possible, but figure 4 shows that such 
a state does not correspond to a quantum disordered equilibrium state. Choosing C = 0 
means that one is considering an ‘artificial’ initial state, inconsistent with the laws of 
quantum mechanics.

We consequently parametrise our disordered initial state by

Qk(0) = 1, Πk(0) = C� (6.6)
and then quench the system to temperature T  =  0 and a small coupling g � gc(T ) far 
below the quantum critical point.

6.2. The spin–spin correlator

Our first task is to solve the spherical constraint. This requires in turn to cast the spin–
spin correlator into a more manageable form. In the deep-quench scenario just defined, 
the spin–spin correlator becomes

Qk(t) = e−γ(Z(t)+tωk)

[
cos2

(√
gt(Z(t) + tωk)

)
+

Cgt
Z(t) + ωk

sin2
(√

gt(Z(t) + tωk)
)]

.

� (6.7)
Recall from the classical dynamics that Zcl(t) � −d

2
ln t for t → ∞ at T  =  0. In order to 

prepare for the possibility that Z(t) < 0 also in the quantum case, it will turn out to be 
advantageous to rewrite the correlator in terms of a hyper-geometric function8

Qk(t) =
1

2

[
1 +

Cgt
Z + tωk

+

(
1− Cgt

Z + tωk

)
0F1

(
1

2
;−gt(Z + tωk)

)]
e−γ(Z+tωk)

=

[
1 +

1

2

(
1− Cgt

Z + tωk

) ∞∑
n=1

(−gt)n(
1
2

)
n

(Z + tωk)
n

Γ(n+ 1)

]
e−γ(Z+tωk)

�

(6.8)

8 We suppress the explicit time-dependence of Z = Z(t).
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where (a)n = Γ(a+n)
Γ(a)

 denotes the Pochhammer symbol. The evaluation of the spherical 

constraint becomes more simple if all dependence on k is brought into the exponential. 
This will allow to derive factorised representations which in turn will permit to rewrite 
the expressions where the dimension d becomes a parameter which then can be gener-
alised and considered as real d ∈ R. This is easily achieved as

Qk(t) =

[
1 +

1

2

∞∑
n=1

(
∂n
γ + Cgt∂n−1

γ

) 1(
1
2

)
n

(gt)n

n!

]
e−γ(Z+tωk).� (6.9)

6.3. The spherical constraint

We recall the spherical constraint (4.8), written as 1 =
∫
B

dk
(2π)d

Qk, and define9

f(γ) :=

∫

B

dk

(2π)d
e−γ(Z+tωk) = e−γZ

(
e−2γtI0(2γt)

)d t→∞� e−γZ(4πγt)−
d
2 .� (6.10)

Thus, we can rewrite the constraint using equation (6.9) as10

1 = f(γ) +
∞∑
n=1

(gt)n

2
Γ

[
1
2

n+ 1
2

n+ 1

] (
∂n
γ + Cgt∂n−1

γ

)
f(γ).� (6.11)

It is shown in appendix C that in the long-time limit, the derivative can be written as

∂n
γ f(γ) � (−1)nf(γ)

n∑
k=0

Γ

[
n+ 1 d

2
+ k

d
2

n− k + 1 k + 1

]
γ−kZn−k.� (6.12)

Figure 4.  The initial parameter C = C(g0/T0) and the two limits of scdl and sqdl.

9 In the short-hand f = f(γ), the dependence on Z and t is suppressed.

10 We use throughout the notation Γ

[
a1 . . . an
b1 . . . bm

]
= Γ(a1)···Γ(an)

Γ(b1)···Γ(bm)
.
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At this point, we have achieved a first goal: d merely enters as a parameter and from 
now, we can treat it as continuous by means of an analytic continuation. Consequently, 
the spherical constraint can be cast in the form

1 =
f(γ)

2
(1 + s1 + s2)� (6.13)

with the two double sums (see appendix D for the derivation)

s1 :=
∞∑
n=0

n∑
k=0

Γ

[
1
2

d
2
+ k

n+ 1
2

d
2

n− k + 1 k + 1

](
−gt

γ

)n

(γZ)n−k

= Φ3

(
d

2
;
1

2
;−gtZ,−g

γ
t

)

�

(6.14)

s2 := −γCgt
∞∑
n=1

n−1∑
k=0

Γ

[
1
2

d
2
+ k

n+ 1
2

d
2

n− k k + 1

]
1

n

(
−gt

γ

)n

(γZ)n−1−k

= 2Cg2t2
∫ 1

0

dw Φ3

(
d

2
;
3

2
;−gt

γ
w,−gtZw

)

�

(6.15)

that can be expressed in terms of the Humbert function Φ3 [47, 48]. This function is a 
confluent of one of Appell’s generalisations F3 [2] of Gauss’ hyper-geometric function 
to two independent variables [79]. The analysis of the spherical constraint requires the 
asymptotics of these functions when the absolute values of both arguments become 
simultaneously large. Since no information on these appears to be known in the math-
ematical literature, we shall derive it, as is outlined in appendix D. Indeed, very similar 
methods can be applied to dierent, but related confluents of the Appell function F3 
and will be presented elsewhere [84]. For our purposes, we simply state the main result: 
both sums can be expressed exactly as Laplace convolutions

s1 = Γ

[
1
2

1
2
− ε ε

]√
t

∫ t

0

dv
1F1

(
d
2
; 1
2
− ε;− g

γ
v
)

v
1
2
−ε

0F1 (ε;−gZ(t− v))

(t− v)1−ε

�

(6.16)

s2 = Cg2t3/2Γ
[

1
2

3
2
− ε ε

] ∫ 1

0

dw

∫ t

0

dv
1F1

(
d
2
; 3
2
− ε;− g

γ
wv

)

vε−
1
2

0F1 (ε;−gZw(t− v))

(t− v)1−ε

�

(6.17)

(where 0 < ε < 1
2
 in s1 and 0 < ε < 3

2
 in s2). In appendix D, we first show how these 

integrals can be de-convoluted and then how their asymptotic limit for t → ∞ can be 
found, using Tauberian theorems [33]. We then arrive at the following expression for 
the spherical constraint

1 � f(γ)

2

{
1 +

[
1 + C gt

Z

(
eγZ − 1

)]( γ

gt

) d
2

0F1

(
1−d
2
;−gtZ

)

Γ
(
1−d
2

)
/
√
π

+ γCgt
[
1F1

(
1; 2− d

2
; γZ

)
d
2
− 1

+

(
gt

γ

)1− d
2

1F2

(
1− d

2
; 2− d

2
, 3−d

2
;−gtZ

)
eγZ(

1− d
2

)
Γ
(
3−d
2

)
/
√
π

]}

�

(6.18)
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and recall f(γ) from (6.10). This representation, which depends on the initial condition 
through the parameter C and contains the dimension d as a continuous parameter, will 
be the basis of our analysis of the physics contained in quantum spherical constraint.

We must solve this equation for Z = Z(t), in the asymptotic limit t → ∞, and for 
fixed parameters γ, g and C and for a given dimension d  >  1. The most simple case is 
given by the initial condition C = 0 and serves as an illustration on how to solve the 
spherical constraint. We then have

2eγZ (4πγt)d/2 = 1 +

(
γ

gt

)d/2
0F1

(
1−d
2
;−gtZ

)

Γ
(
1−d
2

)
/
√
π

= 1 + γd/2 (πgt)1/2
(
|Z|
gt

)(d+1)/4

I−(d+1)/2

(
2
√
gt|Z|

)
�

(6.19)

where we anticipated that the solution is negative Z = −|Z(t)| < 0 and Iν is a modified 
Bessel function [1]. To illustrate this point, we display in figure 5 a typical example of 
the numerical solution Z = Z(t) of (6.18) with C = 0. Indeed, the solution is negative 
and we also observe that Z(t) → 0 for t → ∞. The asymptotic form of Iν then leads to 
the following simplified form

2 (4πg)d/2 =

(
γ2|Z|
gt

)d/4

e2
√

gt|Z|

which has the solution

|Z(t)| = d2

16gt
W 2

(π
d
16

1+d
d gt2

)
� d2

16g

ln2 t

t
� (6.20)

where W  =  W0 denotes the principal branch of the Lambert-W function [21]11. The 
agreement with the numerical solution is illustrated in figure 5. Clearly, this solution 
applies to all values of d and is distinct from the classical result (4.26). The logarith-
mic factor indicates corrections to a simple power-law scaling. We also notice that it is 
independent of the coupling γ between the system and the bath.

Any equilibrium initial state must have C � 1
4
. Clearly, equation (6.18) with C �= 0 

is still too complicated for an explicit solution. However, it turns out that a case dis-
tinction between the dimensions 1  <  d  <  2, d  =  2 and d  >  2 leads to more manageable 
forms. The details of the calculations are given in appendix E for d  =  2 and appendix 
F for d �= 2. Here, we quote the results.

	 A.	For d  >  2, Z = −|Z(t)| < 0 turns out to be negative, in such a way that t|Z| 
becomes large for large t. We have the equation

2 eγZ(4πγt)d/2 � 1 +
1

2
γd/2

(
1 + C gt

|Z|

)(
|Z|
gt

) d
4

e2
√

gt|Z|; for d > 2.� (6.21a)

11 Asymptotically, W (x) � ln x− ln ln x+ o(1) for x → ∞.
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	 B.	For d  =  2, we find again Z = −|Z(t)| < 0 for large times, but now such that 
t|Z| → ϕ tends to a constant. This constant is given by the transcendent equation

4π

Cg2
= ϕ 2F3

(
1, 1;

3

2
, 2, 2; gϕ

)
; for d = 2.� (6.21b)

	 C.	Finally, for 1  <  d  <  2, the integrated Lagrange multiplier Z = Z(t) > 0 becomes 
positive for large enough times and it increases with increasing t beyond any 
bound. Its value is determined from

2 (4πγt)d/2 =
Cgt
Z

e−γZ +
dCγd/2

2

(
Z

gt

)d/4−1

×

[
3(d+ 2)(4− d)

64

cos
(
2
√
gtZ + πd

4

)
Z

−
sin

(
2
√
gtZ + πd

4

)
√
gtZ

]
; for 1 < d < 2

�
(6.21c)

		 However, we also find an intermediate regime, with large but not enormous 
times, where Z(t) < 0 is still negative. In that regime the eective behaviour is 
analogous to the one found above for d  >  2.

Summarising, for large times, the leading asymptotics of the solutions of equa-
tions (6.21) become

|Z(t)| �





(d−2)2

4g
ln2 t
t

, d > 2

ϕ t−1 , d = 2
(
1− d

2

)
γ−1 ln t , 4

3
< d < 2

� (6.22)

Figure 5.  Time-dependence of the integrated Lagrange multiplier Z(t), in d  =  2 
dimensions and for the parameters g  =  0.2, γ = 0.1 and C = 0. The full curve is 
the asymptotic form equation (6.20) and the dots come from solving numerically 
(6.18).
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where ϕ is given by (6.21b). Recall that Z(t) is negative for d � 2 and positive for 

1  <  d  <  2. More precisely, for 43 < d < 2, the large-time behaviour is given by

Z(t) �
(
1− d

2

)
γ−1 ln γt+ B(d) cos

(
2
√

gtZ +
πd

4

)
t1−3d/4

ln2−d/4 γt
� (6.23)

and where B(d) is a known dimension-dependent amplitude. Hence the oscillatory term 

can no longer be treated as a mere correction for d < 4
3
12.

The intermediate regime seen for dimensions 1  <  d  <  2 for large, but not enormous 

times where Z(t) < 0, is eectively described by |Z(t)| ≈ (d−2)2

4g
ln2 t
t .

In figure 6, we illustrate the solution for d  >  2.
Several comments are in order:

	 1.	Although the toy initial condition C = 0 does indeed reproduce one instance of the 
long-time behaviour found from the physically more sensible equilibrium initial 

states with C � 1
4
, it does not capture the full complexity of possible behaviours.

	 2.	For equilibrium initial states, in d  =  2 dimensions there is a qualitative change in 
the long-time behaviour of the solution Z(t).

	 3.	For d  <  2 where the saqsm undergoes a quantum phase transition at T  =  0 but 
where the thermal critical temperature Tc(d) = 0 vanishes, the behaviour of Z(t) 
is analogous to the one of the classical solution (4.26), although with the opposite 
sign. The Lagrange multiplier z(t) ∼ t−1 has a simple algebraic behaviour.

		 Very large times are required to see this regime. In addition, we find an inter-
mediate regime of large, but not enormous times, where the system behaves 
eectively as for dimensions d  >  2, up to an amplitude.

	 4.	For d  >  2 where the system also has a finite critical temperature Tc(d) > 0, strong 
logarithmic corrections modify the leading scaling behaviour, which is distinct 
from the classical one.

	 5.	The case d  =  2 is intermediate between the two, with a simple power-law scaling 
behaviour |Z(t)| ∼ t−1.

	 6.	Surprisingly, the influence of the coupling of the coupling γ with the bath is also 
dimension-dependent. For d � 2 dimensions, γ disappears from the leading long-time 
behaviour of Z(t), while it is present for d  <  2. Therefore, for d � 2 dimensions, as 
well as in the intermediate regime for d  <  2, the limit γ → 0 can be formally taken.

The physical meaning of these properties will be understood by analysing the behav-
iour of the two-point correlators.

6.4. Correlation function and relevant length scales

For the deep-quench dynamics the spin–spin correlation function in Fourier space reads

12 The occurrence of such a second ‘critical dimension’ which a qualitative change in the systems’ behaviour is a 
little reminiscent of the classical reaction-diusion process reactions 2A → ∅ and A → 3A, which has the critical 

dimensions dc = 2 and d′c � 4
3 [15, 16].
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Qk(t) =
1

2

[
1 +

Cgt
Z + tωk

+

(
1− Cgt

Z + tωk

)
0F1

(
1

2
,−gt(Z + tωk)

)]
e−γ(Z+tωk).

�

(6.24)

We are now interested in transforming this expression back to real space and studying 
the large-distance behaviour of the correlation. This is routinely revealed by a small-|k| 
expansion and in figure 7 we see on the 2D example that such an expansion is more 
than reasonable in the asymptotic limit t → ∞. We consequently write ωk ≈ |k|2 = k2 
and observe that Qk solely depends on k = |k|. This leads to the following simplified 
expression for the d-dimensional inverse Fourier transform

f(R) ∝ R1− d
2

∫ ∞

0

dk k
d
2J d

2
−1(kR)f̂(k)� (6.25)

	 A.	We start the investigation with the case d  =  2. In figure 7 we show a typical 
structure factor Qk in 2D for dierent times and observe that the distribution 
is peaked around the zero momentum mode k  =  0 and the peak sharpens for 
larger times. One can argue that the main contribution is given by the interval 
[0,k*] where k* is the mode where the argument of the hyper-geometric function 
changes signs and 0F1 reduces from an exponential contribution to a geometric 
function at this point. We can thus write

C(R) ∝
∫ k∗

0

dk
1

2

[
1 +

Cgt
Z + tk2

+

(
1− Cgt

Z + tk2

)
0F1

(
1

2
,−gt(Z + tk2)

)]
e−γ(Z+tk2)kJ0(kR).

� (6.26)

		 By introducing the scaling variable � :=
√
ϕR

t
 where ϕ is the solution to equa-

tion  (6.21b), we find in a straightforward fashion using the variable transform 

µ = |Z|−tk2

|Z|  the scaling form

Figure 6. Left panel: integrated Lagrange multiplier Z(t) as a function of time t 
obtained by solving equation  (6.18) numerically, for d  =  [2.1,2.4,2.7,3,3.3], from 
top to bottom, and for the parameters γ = 1, g  =  0.2, C = 1. Right panel: integrated 
Lagrange multiplier t|Z(t)|, normalised to unity at t  =  1000, as a function of time 
and for d  =  [2.1,2.4,2.7,3,3.3], from bottom to top, and the same parameters.
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C(R) ∝ Cg
∫ 1

0

dµ
0F1

(
1
2
; gϕµ

)
− 1

µ
J0

(
�
√

1− µ
)
=: CgW(�).� (6.27)

		 This shows explicitly the dynamical scaling behaviour of the spin–spin correlator 
with the dynamical exponent z  =  1. In figure 8 we show the behaviour of the 
scaling function W for dierent ranges of �. For small � the scaling function 
decays in a Gaussian fashion (left hand side) while it shows decaying oscillations 
for larger values. It is instructive to compare with the dynamical scaling seen in 
the classical spherical model, quenched to temperature T � Tc(d). For a purely 
relaxational dynamics without any conservation law (model A), dynamical scaling 
is found [38, 72], whereas in the case of a conserved order-parameter (model B), 
the existence to two logarithmically distinct length scales was established long 
ago [20]. This logarithmic breaking of scale-invariance for conserved dynamics 
was later shown to be a peculiarity of the spherical model, see e.g. [58]. The 
quantum dynamics we are considering here actually has an infinite number of 
prescribed conservation laws, namely all canonical commutators between the 
spherical spins sn and their conjugate moment pn. Our finding that at least for 
d  =  2 a standard dynamical scaling is found clearly suggests that the qsm should 
not be considered to be as special as its classical counterpart. Any breaking of 
dynamical scaling which we may find for dierent values cannot be as readily 
dismissed as a specific model property but could rather be a typical feature for 
more general models.

	 B.	 In the case d  >  2 the treatment is similar to the case d  =  2 since the argument of 
the hyper-geometric function presents once again a change of signs. However we 
have to respect that ϕ is no longer a constant but diverges logarithmically as it 
is shown in equation (6.22). This leads to a modified multi-scaling behaviour

C(R) ∝ CgR2−d

∫ 1

0

dµ
0F1

(
1
2
; (d−2)2

4
µ ln2 t

)
− 1

µ

(
�
√
1− µ

) d
2
−1

J d
2
−1

(
�
√

1− µ
)

︸ ︷︷ ︸
=:V(�,t)

� (6.28)
		  since � �

d
2
−1
√
g
R ln(t)/t which is illustrated in figure 9. The explicit logarithmic 

terms do break simple scale-invariance and point towards the existence of sev-
eral length scales, which are distinguished by logarithmic factors. We observe a 
behaviour in terms of ρ which is is qualitatively not too dierent from the case 
d  =  2. However, the functional dependence on ρ changes strongly when the time 
is increased which is a manifest of breaking of simple scaling behaviour.

		 Phenomenologically, this looks analogous to the well-known behaviour of the 
classical spherical model with conserved order-parameter (model B) [20] but here 
we obtain this breaking of dynamical scaling by a mere change of the dimension 
d. Such a feature has never been seen before, to the best of our knowledge.
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3
< d < 2 spatial dimensions the situation is dierent since the spherical 

parameter is Z  >  0 positive and there is no intrinsic cut-o for the integral. 
We investigate first the structure factor Qk by pointing out that the contrib
ution  ∼Cgt is leading for large times.

Qk � 1

2

Cgt
Z + tk2

[
1−0 F1

(
1

2
;−gt(Z + tk2)

)]
e−γ(Z+tk2).� (6.29)

		 We show in appendix G that this expression can be rewritten as

Qk � Cg2t2 1F2

(
1;

3

2
, 2;−gt(Z + tk2)

)
e−γ(Z+tk2).� (6.30)

Figure 7.  Structure factor Qk in d  =  2 dimensions shown in the first Brillouin zone 
for the parameter values c = 1; g = 0.1; γ = 0.1; t = 500 (orange); 1000 (blue). We 
observe that the function is sharply peaked around the centre of the Brillouin zone 
with the peak sharpening with time increasing.

Figure 8.  Illustration of the scaling function W in d  =  2 dimensions for dierent 
ranges of the scaling variable �.
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		 Hence, its Fourier transform is readily cast in the form13

C(R) ∝ Cg2

R
d
2
−1

∫ ∞

0

dµ µ
d−2
4 J d

2
+1 (

√
µR/t)1 F2

(
1;

3

2
, 2;−g(tZ + µ)

)
e−γµ/t .

� (6.31)
		 We observe that the integral is exponentially cut o and thus only small μ values 

contribute. Thus, we can omit the μ contribution in 1F2 since tZ → ∞ and the 
integral can be evaluated explicitly [69, equation (2.12.9.3)]

C(R) ∝ Cg
(2γ)d/2

sin2
(√

gtZ
)

Z
exp

[
− R2

4γt

]
� (6.32)

		  revealing the dynamical exponent z  =  2.

On the other hand, we can study a very large fixed time for which the exponential 
cuto does not matter any more (t → ∞ such that R/t = cste.) In this scenario, one 
can introduce a cuto C  to regularise the integral and find

C(R) ∝ Cg2

R
d
2
−1

sin2
(√

gtZ
)

Z

∫ C

0

dµ µ
d−2
4 J d

2
+1 (

√
µR/t)

=
Cg2

R−2

sin2
(√

gtZ
)

Z

(
C

2t

) d+2
2

1F2

(
d

2
+ 1;

d

2
+ 2,

d

2
+ 2;−R2C

4t2

)
.

�
(6.33)

This implies a dynamical exponent z  =  1 and we thus conclude that depending on the 
particular limit, the dynamical exponent varies between z  =  1 and z  =  2, an eect that 
will become more apparent in the following analysis of the relevant length scales.

Figure 9.  Functional dependence of the correlation function for d  =  3 and g  =  0.1. 
We do not find a single scaling function but rather find a dependence on the 
variable � and the time t.

13 One simply uses the change of variables µ = t2k2.
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Having completed the analysis of the spin correlation function we mention that 
the momentum correlation function can be obtained from the spin correlator by sim-
ply exchanging Ak and Ck in equtaion (6.1). We thus expect a qualitatively analogous 
behaviour. The o-coherence Ξk(t) will be considered below in section 6.7.

Having studied the real-space correlation function, we now investigate the relevant 
length scale given by

L2(t) ∼ −∂2
kQk

Qk

∣∣∣∣
k=0

.� (6.34)

This is readily evaluated to

L2 ∼ 2t

Z

(Cgt
[
1 + γZ − (1 + γZ)0F1

(
1
2
,−gtZ

)
− 2gt Z0F1

(
3
2
,−gtZ

)]

Cgt
[
1− 0F1

(
1
2
,−gtZ

)]
+ Z

[
1 +0 F1

(
1
2
,−gtZ

)]

+
γZ2

[
1 + 0F1

(
1
2
;−gtZ

)
+ 2 g

γ
t 0F1

(
3
2
,−gtZ

)]

Cgt
[
1− 0F1

(
1
2
,−gtZ

)]
+ Z

[
1 +0 F1

(
1
2
,−gtZ

)]
)
.

�

(6.35)

For a vanishing quantum coupling g → 0, the relevant length scale reduces to a purely 
diusive behaviour introduced by the heat bath

L2
γ ∼ 2γt .� (6.36)

The length scale allows to read of the dynamical exponent z according to L2 ∼ t2/z 
and we deduce from equation  (6.35) z  =  2, as expected for the classical dynamics  
[38, 44]. A first impression on the dierent behaviour in the quantum case comes 
from the toy initial condition C = 0. Simplifying equation (6.35), we find, for large 
enough times

L2 � 4gt2
tanh 2

√
gt|Z|

2
√
gt|Z|

∼ t2

ln t� (6.37)

hence a logarithmic correction to a dynamical exponent z  =  1, typical of quantum 
dynamics. In order to evaluate accurately the intrinsic length-scale, taking into account 
the quantum eects, we have to distinguish, once more the cases

	 A.	d  =  2: Here Z is negative and we can rewrite the hyper-geometric functions as 
hyperbolic functions. Moreover the correlation function obeys a clean scaling 
behaviour and we find

L2 � 2t

(
γ +

√
gt

|Z|

)
= 2γt+ 2

√
g

ϕ
t2

�

(6.38)

		  indicating a crossover from diusive to ballistic transport. The dynamical critical 
exponent crosses from z  =  2 to z  =  1 as we expect for a true quantum dynamics14 
[12, 24, 28, 29].

14 An exception from the fast ballistic transport are many-body localised systems where information spreads much 
slower [5, 63]. Such slow transport has as well been observed in translation-invariant 1D quantum lattice models [59].
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		 More commonly, quenches exactly onto the quantum critical point are studied. 
In these situations, one finds with increasing times a crossover from ballistic 
to diusive transport, see e.g. [29]. Here, on the contrary we study a quantum 
quench from a totally disordered system deep into the quantum ordered region. 
Heuristically, the system should order locally and should from ‘bubbles’ which 
are locally in one of the equivalent quantum ground states, and whose size should 
increase with time. As long as these bubbles remain small enough, they should 
spread like single quantum particles for which one expects an eective diusive 
behaviour. At later times, when the dierent ‘bubbles’ will interact which each 
other, many-body quantum properties should dominate and lead to ballistic 
transport.

	 B.	d  >  2: This case can be treated analogously to the case A since Z is still negative. 
Nevertheless, we do not have a clean scaling behaviour and logarithmic correc-
tions are present in the long-time limit. The length scale reads

L2 � 2t

(
γ +

√
gt

|Z|

)
= 2γt+ 2g(d− 2)

t2

ln t
�

(6.39)

		  and up to logarithmic corrections, we observe the same diusive to ballistic 
crossover as for d  =  2 with z  =  1.

	 C.	 4
3
< d < 2: In this case, the spherical parameter is positive and the hyper-geometric 

functions reduce to trigonometric contributions. The length scale then reduces to

L2 � 2γt− 2

√
gt

Z

Cgt2 sin 2
√
gtZ

Cgt sin2
√
gtZ + Z cos2

√
gtZ

� (6.40)

		  and can be recast up to a removable singularity as

L2 � 2γt− 4Cgt2
√

gt

Z

tan
√
gtZ

Cgt tan2
√
gtZ + Z

.� (6.41)

		 This length scale shows an oscillatory behaviour which is shown in the left panel 
of figure 10 to which we shall come back later. For now we want to focus on the 
right panel where we show L2/t2 as a function of time. We see that the peaks 
are rather constant and |L/t| remains bound for all times what indicates that the 
dynamical exponent should be z � 1. The specific value of z will depend strongly 
on the specific time window.

Furthermore, we observe a strongly kinked oscillatory behaviour that even renders 
L2 negative. This can be better understood by referring to simple correlation functions 
as

C1 = e−R/ξ cos(R/Λ), C2 = e−(R/ξ)2 cos(R/Λ).� (6.42)
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For simplicity, we refer to d  =  1 here, since dimensionality is not changing the key 
aspect and it is straightforward to generalise the calculation. The characteristic length 
scale L2

i  with i  =  1,2 associated with the correlation function Ci is readily obtained from 
the scales second moment

L2
1 � 2Λ2 (Λ/ξ)2 − 3

(1 + (Λ/ξ)2)2
, L2

2 �
Λ2

4

1

(Λ/ξ)2

(
2− 1

(Λ/ξ)2

)
.� (6.43)

While the overall time-dependence of this eective length scale can still be used to 
extract the dynamical exponent from the scaling relation L2

i (t) ∼ t2/z, the sign of the 
amplitude does depend on the ratio Λ/ξ. This change of sign, according to equa-
tion (6.43), is illustrated in figure 11.

Hence the change of signs in the eective squared length L2(t) can be attributed 
to oscillating correlators, and the competition between the two distinct length scales 
ξ and Λ. While L(t) itself can no longer be interpreted as a length scale, it should still 
be possible to read o the value of the dynamical exponent. The oscillatory nature of 
equation  (6.40) indicates consequently a competition between at least two dierent 
length scales in the system.

6.5. Dynamic susceptibility

By means of equation (6.22) we can calculate the dynamic susceptibility which is essen-
tially proportional to Q0

χ ∼ Q0 =
1

2

[
1 +

Cgt
Z

+

(
1− Cgt

Z

)
0F1

(
1

2
,−gtZ

)]
e−γZ .� (6.44)

We find for the leading contribution for large times

χ(t) ∼





Cg/ϕ sinh2(
√
gϕ) t2, d = 2

Cg2
(d−2)2

td/ ln2 t, d > 2

Cgγ
2−d

t2−
d
2

ln t
sin2

(√
g/γ(1− d/2)t ln t

)
, 4

3
< d < 2

.� (6.45)

In general, for systems with simple scaling, one expects χ(t) ∼ L(t)d ∼ td/z, or said in 
words, the susceptibility is proportional to the volume explored up to time t [38]. In 
d  =  2 dimensions, this expectation, is fully confirmed by our exact solution, since

χ2D(t) ∼ t2 ∼ L2
� (6.46)

and in particular, we see once more that indeed z  =  1, in contrast to classical dynamics. 
For dimensions, d  >  2, this scaling expectation for χ(t) is again confirmed, but only up 
to logarithmic corrections. In addition, the eective length scale Leff(t) ∼ t (ln t) −2/d is 
dierent from the length scale extracted above from the second moment.

Finally, for d  <  2, not only does the exponent of the leading time-dependence devi-
ate from the expected value (to say nothing on the logarithmic correction), but further-
more, a strong time-dependent modulation of χ(t) is found.
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We can understand this as a further justification of the strong competition between 
dierent length scales as we already discussed in the previous section.

6.6. O-coherences

We now want to study the o-coherence term and which reads

Ξk(t) = e−
γ
g
∆t

[
Cg√
∆t

−
√
∆t

]
sin 2

√
t∆t� (6.47)

with ∆t = g(Z(t) + tωk).

	 A.	For d  =  2 we know that Z  <  0 and thus ∆t changes signs from negative to posi-
tive for after a time t* for fixed k �= 0. Consequently, all Ξk → 0 for k �= 0 due to 
the exponential damping. For the zero mode we find

Ξ0 � C
√

g

ϕ
sinh(2

√
gϕ)

√
t

t→∞→ ∞� (6.48)

		  and see a diverging o-coherence. This is a strong indicator that the system 
will not relax towards its thermal equilibrium but will rather stay in a non-
equilibrium state for all times. It seems possible that this is a hint that the model 
should undergo physical ageing. Of course, a definite assertion would require a 
test of the three defining properties of physical ageing (slow dynamics, breaking 
of time-translation invariance, dynamical scaling) [44] and this requires at least 
an analysis of two-time correlators. We hope to return to an analysis of physical 
ageing in the qsm elsewhere.

	 B.	For d  >  2 the situation is, up to logarithmic corrections, similar to d  =  2. We find 
immediately

Ξ0 �
Cg

d− 2

td−
3
2

ln t
� (6.49)

Figure 10.  left panel: eective characteristic length L2 for d  =  1.5, γ = 1, g  =  0.1 
and C = 1. right panel: (L/t)2 for the same parameters as in the left panel.
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		 while all non-zero mode o-coherences vanish in the asymptotic limit.

	 C.	 In 43 < d < 2 the behaviour is qualitatively dierent. While it remains true, that 
all non-zero mode o-coherences vanish, we find for the zero mode

Ξ0 ∼ t−(1−
d
2) ln t� (6.50)

		 which decays to zero and thus at least indicates that a relaxation into thermal 
equilibrium might be possible. Moreover, we observe that in this scenario the 
solution Z(t) depends on the bath quantity γ while for d � 2 the bath scales 
entirely out. All these observations point towards the fact that the actual cou-
pling to the reservoir becomes less important in higher-dimensional open quantum 
dynamics.

7. Conclusions

We studied the qsm as a simple exactly solvable model in order to explore exact 
quantum dynamics and compare classical to quantum dynamical properties. We used 
certain consistency criteria, in order to construct the precise form of the Lindblad mas-
ter equation, namely (i) the quantum equilibrium is a stationary state of the chosen 
dynamics and (ii) the classical Langevin dynamics is included in the limit g → 0. This 
guarantees that the equilibrium state is a stationary solution and that the canonical 
commutator relations are obeyed. As in equilibrium, for the qsm the full N-body prob-
lem reduces to solving to a single integro-dierential equation, for the time-dependent 
spherical parameter. The full solution of this equation  is still an open and dicult 
problem.

Figure 11.  Eective squared length scale L2
i (t), i  =  1,2 as a function of Λ/ξ for a 

modulated exponential correlator (blue) and a modulated Gaussian correlator (red) 
introduced in equation (6.42).
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We have focussed in this work on two special cases. First, we considered weakly 
quantum dynamics and calculated the leading quantum corrections to the classical 
dynamics. It turns out that the eective quantum dynamics is classical and quantum 
eects only renormalise the temperature and produce a hard-core eect in the spin–
spin correlator. Therefore, the heuristic expectation that the thermal noise should 
wash out the quantum properties of the long-time dynamics is indeed confirmed and 
the dynamics is equivalent to the purely relaxational classical model-A dynamics. This 
confirmation serves as a useful consistency check of the formalism we set up to describe 
the open quantum dynamics of the spherical model.

Second, we studied the true quantum dynamics driven by the initial disorder for 
a quantum quench across the critical point and deep into the ordered phase. In this 
regime, not explored before to the best of our knowledge, the model’s long-time behav-
iour is distinct from any heuristic expectation. We found that the conserved canonical 
quantum commutators lead to profound modifications of the dynamics, with respect 
to its classical limit. In order to carry out this analysis, we explored new mathemati-
cal methods that are related to asymptotic expansions of confluent hyper-geometric 
functions in two variables. It turns out that the long-time behaviour of the integrated 
spherical parameter Z(t) is extremely complex to deduce and that it depends on the 
spatial dimension in a non-trivial fashion. We have found

|Z(t)| �





(d−2)2

4g
ln2 t
t

, d > 2

ϕ t−1 , d = 2
(
1− d

2

)
γ−1 ln t , 4

3
< d < 2

.� (7.1)

This behaviour is qualitatively dierent from the classical case where simply |Zcl(t)| ∼ ln t.
Due to this strong dependence on the dimensionality of the system, we observed 

prominent dierences in the scaling behaviour. In d  =  2 dimensions we find a regu-
lar scaling with a unique characteristic length scale. Thus, the qsm is able to reliably 
predict general qualitative properties. In d �= 2 dimensions, we find strong logarithmic 
corrections which destroy a simple scaling behaviour, through the presence of several 
time-dependent length scales with dier by power of ln t. One might be tempted to 
view these corrections as a peculiarity of the sm, as found long ago for the classical 
spherical model with a conserved order parameter [20, 58] and interpreted in a multi-
scaling scenario. However, since we find a clean scaling in d  =  2 dimensions, we believe 
that the logarithmic corrections through several logarithmically dierent length scales 
should not be too readily dismissed as a peculiarity of the qsm. These results are 
asymptotically independent of the damping rate γ such that the limit γ → 0 towards 
closed quantum systems may be taken. The dynamical exponent turns out to be z  =  1, 
indicative of ballistic motion, as seen before in the quantum dynamics of models with 
fermionic degrees of freedom. While ballistic motion is common for quantum systems 
near their quantum critical point [13, 14, 29, 31, 87] and actually is expected to occur 
for very general reasons [24], here we find it for quenches deeply into the two-phase 
ordered region, and so far unstudied with field-theoretical methods. For dimensions 
d  <  2 we find again logarithmic corrections to scaling, but of a dierent kind, and in 
addition strong time-dependent modulations of the spin–spin correlator C(R) in terms 
of the distance R. Here, the damping constant γ does appear in the scaling amplitudes.
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These features are confirmed and strengthened through an analysis of the leading 
long-time behaviour of the characteristic length scale L(t)2 and of the time-dependent 
susceptibility χ(t). They show simple power-law scaling for d  =  2, with associated loga-
rithmic corrections whenever d �= 2 and thereby confirm the existence of several loga-
rithmically dierent length scales.

This work should be seen as a first, tentative, exploration of non-equilibrium 
quantum dynamics, far from a critical point, of an interacting many-body system such 
as the qsm. Several essential assumptions and hypotheses were admitted throughout in 
our exploration. First of these, are the intrinsic Born approximation and the Markov 
property which underlie the Lindblad approach. Second, the main new results come 
from our study of the deep quantum quenches into the ordered phase. Our results cru-
cially depend on the conjecture that the integral term in equation (4.27a) is irrelevant, 
hence will give rise only to finite-time corrections to scaling. Testing this conjecture 
remains a dicult open problem. Another aspect which should be further analysed is 
the precise nature of the relaxation process. Is the quantum relaxation in the qsm in 
some way reminiscent to the physical ageing seen in the classical analogues? Although 
we have found some preliminary indications which might point into this direction, a 
full testing of this will require to analyse the behaviour of two-time correlators, via 
the quantum regression theorem [10, 74], or even to include an external field and look 
at two-time response functions. We hope to return to this elsewhere. It would also be 
important to compare our results with what can be found from dierent approaches, 
notably Keldysh field-theory [76, 77] or the generalised hydrodynamics of strongly 
interacting non-equilibrium quantum systems [8, 18, 19, 25, 26, 65].

An attractive feature of the qsm is that the rôle of the dimension d can be anal-
ysed explicitly. Our result suggest, to the extend that the qsm is a reliable guide for 
collective quantum dynamical behaviour, that 2D quenched quantum systems should 
show simple dynamical scaling, with an easily achieved data-collapse, whereas in 3D 
quenched quantum systems it should only be possible to find a data-collapse in small 
time-dependent windows with eective time-dependent exponents. To what extent 
such an expectation is borne out in more general quantum models remains an impor-
tant challenge for the future.
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Appendix A. Equilibrium quantum spherical constraint

We present the exact derivation of the quantum spherical constraint in the equilibrium  
saqsm, by diagonalising the hamiltonian via canonical transformations. Consider the 

following hamiltonian, with bosonic operators an such that [an, a
†
m] = δn,m
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H =
∑

n,m∈L

[
a†nAnmam − 1

2
(anBnmam + h.c.)

]
+
∑
n∈L

Cn

(
an + a†n

)
� (A.1)

which for a specific choice of the matrices A,B reduces to the hamiltonian (2.2) of the 
saqsm. In addition, the vector C allows to consider the eects of an external field. We 
shall present an exact derivation of the equilibrium spherical constraint, which should 
also arise from the stationary state (t → ∞ limit) of the dynamics. Many aspects of the 
treatment are analogous to the one of free fermion hamiltonians, see e.g. [42, 54]. For 
the sake of notational simplicity, we only treat the 1D case explicitly, the generalisation 
to any d  >  1 being obvious.

Define the harmonic oscillator ladder operators [82]

sn =
( g

8S

)1/4 (
an + a†n

)
, pn = −i

(
S
2g

)1/4 (
an − a†n

)
� (A.2)

and the spherical constraint is then

N

√
8S
g

=
∑
n∈L

(〈
anan

〉
+
〈
a†na

†
n

〉
+ 2

〈
a†nan

〉
+ 1

)

=
∣∣〈a〉∣∣2 + ∣∣〈a†〉∣∣2 + 2

〈
a† · a

〉
+N ,

�
(A.3)

where we have introduced the vector a = (a1, a2, . . . , aN−1, aN ) and its element-wise 
adjoint. We now apply the canonical transformation, used for the diagonalisation in 
[82]

a = r + vtb− wtb†� (A.4)
to the spherical constraint and find

N

√
8S
g

=4 |r|2 + 4r · (v − w)t
〈
b+ b†

〉

+
∑
lmn

(vmlvnl − 2vmlwnl + wmlwnl) 〈bmbn〉

+
∑
lmn

(wmlwnl − 2wmlvnl + vmlvnl)
〈
b†mb

†
n

〉

+
∑
lmn

(2vmlvnl − vmlwnl + wmlvnl)
〈
b†mbn

〉

+
∑
lmn

(2wmlwnl − vmlwnl + wmlvnl)
〈
bnb

†
m

〉
+N .

�

(A.5)

Following [82], we define the matrix

Ψ := (v − w)t� (A.6)
with the eigenvectors Ψn of (A− B)(A+ B) as column entries, see (A.1). Analogously, 
we define
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Φ := (A+ B)Ψ� (A.7)
(for a full analysis of the diagonalisation of H via canonical transformations, see [82, 
appendix A]).

Since [bn, bm] =
[
b†n, b

†
m

]
= 0, we can exchange the indices m and n in line 2 and 3 

of equation (A.5) to find the same prefactor for 〈bmbn〉 and 
〈
b†mb

†
n

〉
. In the fifth line we 

use the commutation relation to achieve a normal order and estimate the prefactor of 〈
b†mbn

〉
 from this and the fourth line. We find

2N

√
S
g
= N + 4 |r|2 + 4r ·Ψ

〈
b+ b†

〉
+
∑
n

(
|Ψn|2 −Ψn ·Φn

)

+
∑
mn

Ψm ·Ψn

(〈
b̂mbn

〉
+
〈
b†mb

†
n

〉
+ 2

〈
b†mbn

〉)
.

Using the property Φn ·Ψn = 1 [82], we can rewrite the spherical constraint as

N
2

√
S
g
= |r|2 + r ·Ψ

〈
b+ b†

〉
+
∑
mn

Ψm.Ψn

4

(
〈bmbn〉+

〈
b†mb

†
n

〉
+ 2

〈
b†mbn

〉
+ δnm

)
.

�
(A.8)

Finally, we use the orthogonality of the eigenvectors of Toeplitz matrices to find

N
2

√
S
g
= |r|2 + r ·Ψ

〈
b+ b†

〉
+
∑
n

|Ψn|2

4

(
〈bnbn〉+

〈
b†nb

†
n

〉
+ 2

〈
b†nbn

〉
+ 1

)
.

�

(A.9)

For systems without an external magnetic field r = 0 which we shall admit from now 
on. The absolute value of the eigenvectors was found in [82] to be

|Ψn|2 =
Λ−

k

Λ+
k

=

√
S − 1−λ

2
cos k

S − 1+λ
2

cos k
.� (A.10)

With this result we can write the final result, in zero external field√
8

g

√
S =

∫

B

dk

2π

Λ−,k

Λ+,k

(
〈bkbk〉+

〈
b†kb

†
k

〉
+ 2

〈
b†kbk

〉
+ 1

)
� (A.11)

which is easily generalised to d dimensions.

In equilibrium, the o-diagonal averages 〈bkbk〉 =
〈
b†kb

†
k

〉
→ 0 decay to zero and the 

number operator 
〈
b†kbk

〉
 is given by the thermal occupation of the corresponding mode√

8

g
S1/2 =

∫

B

dk

(2π)d
Λ−,k

Λ+,k

(2nk + 1)� (A.12)

which is equivalent to equation (4.14) in the main text.

Appendix B. Analysis of the Volterra equation

Solving the linear Volterra equation (5.9), at an eective temperature T �, is standard, 
e.g. [22, 38, 45, 72]. Define the Laplace transform
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f( p) =

∫ ∞

0

dt f(t)e−pt
� (B.1)

such that the Laplace-transformed equation (5.9) reads simply

G( p) =
F ( p)

1− γT � F ( p)
.� (B.2)

Tauberian theorems [33, ch. XIII] permit to extract the long-time behaviour of G(t) 

from the behaviour of G( p) for p → 0. We require F ( p) = F uni( p) + F reg( p), for p 
small, conveniently decomposed into an universal and a regular part, which have been 
derived countless times before

F uni( p)
p→0
≈

Γ
(
1− d

2

)

γ(4π)
d
2

(
p

γ

) d
2
−1

, F reg( p) =
1

γ

(
A1 − A2

p

γ
+ A3

(
p

γ

)2

∓ . . .

)

�

(B.3)

where the last expansion can only be carried to the point where the coecients

An =

∫

B

dk

(2π)d
1

ωn
k

.� (B.4)

exist (B = [−π, π]d is the Brillouin zone). For example, even A1 does not exist for d � 2 
and A2 only exists for d  >  4. We conclude that

F ( p)
p→0
≈ 1

γ





Γ
(
1− d

2

)
(4π)−

d
2 ( p/γ)

d
2
−1 , if 0 < d < 2

A1 −
∣∣Γ (

1− d
2

)∣∣ (4π)− d
2 ( p/γ)

d
2
−1 , if 2 < d < 4

A1 − A2 p/γ −
∣∣Γ (

1− d
2

)∣∣ (4π)− d
2 ( p/γ)

d
2
−1 , if 4 < d < 6

�

(B.5)

In the last, we included the regular term which dominates for d  <  6. Inserting into (B.2) 
gives G( p) which in turn must inserted into the generic expression (5.11) for the spin–
spin correlator, which we repeat here for convenience

Qk(t) =
e−γtωk

G(t)
+

g

12T

[
1− e−γtωk

G(t)

]
+ γT

1

G(t)

∫ t

0

dτ G(τ)e−γ(t−τ)ωk .� (B.6)

We shall now study the three cases from (B.5) separately.

B.1. 0  <  d  <  2

In this case, F ( p) is a monotonous and surjective function on the interval (0,∞), hence 
the equation 1− γT �F ( p) = 0 always has a solution at p  =  p0. Hence G( p) has a simple 

pole at some p0 = t−1
eq , for all T � > 0. The leading long-time behaviour of G(t) is expo-

nential, with the explicit relaxation time

G(t) ∼ et/teq , teq = γ−1

[
T �Γ

(
1− d

2

)
(4π)−d/2

]− 2
d−2

.� (B.7)

Inserting this into (B.6) leads straightforwardly to (5.13).

https://doi.org/10.1088/1742-5468/aa9f44


Lindblad dynamics of the quantum spherical model

48https://doi.org/10.1088/1742-5468/aa9f44

J. S
tat. M

ech. (2018) 013103

B.2. 2  <  d  <  4

Since for dimensions d  >  2 the coecient A1 is finite, its value can be used to define a 
critical temperature

T �
c =

1

A1

.� (B.8)

Then three distinct situations can arise: (i) The case T � > T �
c  is treated analogously to 

the case d  <  2. Here, the relaxation time is modified, because the phase transition does 
occurs at finite temperature, according to

teq = γ−1

[
T � − T �

c

T �T �
c

|Γ
(
1− d

2

)
|(4π)−d/2

]− 2
d−2

� (B.9)

but the correlator retains the form (5.13).

(ii) For T � < T �
c  we have to analyse equation (B.2) carefully. Define the short-hand

m2 = 1− T �/T �
c� (B.10)

and expand G( p) to lowest non-trivial order in p to find

G( p) =
1

γ

A1 − (4π)−d/2
∣∣Γ (

1− d
2

)∣∣ ( p/γ)d/2−1

m2 + T �(4π)−d/2
∣∣Γ (

1− d
2

)∣∣ ( p/γ)d/2−1

p→0
� 1

γ

[
A1

m2
− (4π)−d/2

m4

∣∣∣∣Γ
(
1− d

2

)∣∣∣∣
(
p

γ

) d
2
−1
]
+ . . . .

�

(B.11)

A Tauberian theorem [33] then gives the long-time behaviour of G(t) by a formal 
inverse Laplace transform (δ(t) is the Dirac distribution)

G(t) � 1

m2γT �
c

δ(t) +
(4πγt)−d/2

m4
, for t → ∞ and 2 < d < 4.� (B.12)

The singular term therein, of course, does not appear in the long-time limit, but is 
required to evaluate the correlator. Following [45], we insert into (B.6) and obtain

Qk(t) = e−γωktm4(4πγt)d/2
(
1− g

12T

)
+

g

12T

+ e−γωktm4(4πγt)d/2
γT

m2γT �
c

+ γT td/2L −1

(
Γ(1− d/2) p1−d/2 1

p+ γωk

)
(t)

= e−γωktm4(4πγt)d/2
(
1− g

12T
+

1

m2

T

T �
c

)
+

g

12T

+ γT t
1

1− d/2
1F1

(
1, 2− d

2
;−γωkt

)

= e−γωktm2(4πγt)d/2
(
1− g

12T

)
+

g

12T

+
γT

1− d/2
t e−γωkt

1F1

(
1− d

2
, 2− d

2
; γωkt

)
.

�

(B.13)
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Herein, in the first two lines the terms proportional to T come from the integral in 
(B.6). The first of those in the contribution from the singular term in (B.12) and the 
other is cast into an inverse Laplace transformation. In the next step, this inverse 
transformation is found using [71, equation (2.1.2.1)] and the coecient of the other 
term is simplified using the definitions of m2 and of T �. Finally, we used the identity [1, 
equation (13.1.27)]. We are interested in the limit k → 0, t → ∞ such that ωkt remains 
finite. Then the last term is sub-dominant and we arrive at (5.14).

(iii) For T � = T �
c = 1/A1, the leading terms in small-p expansion are

G( p) =
1

γ

(
1

T �
c

)2
(4π)d/2∣∣Γ(1− d

2
)
∣∣
(
p

γ

)1−d/2

− 1

γT �
c

+ o( p)� (B.14)

hence

G(t) = Gdt
d/2−2 − 1

γT �
c

δ(t)� (B.15)

where Gd is a known constant whose value will not be required. Inserting into (B.6) and 
taking into account the contribution of the singular term in the integral gives

Qk(t) =
e−γωktt2−d/2

Gd

(
1− g

12Tc

− Tc

T �
c

)

︸ ︷︷ ︸
=0

+
g

12Tc

+ γTct
2−d/2Γ(d/2− 1)L −1

(
p1−d/2 1

p+ γωk

)
(t)

=
g

12Tc

+
γT

d/2− 1
1F1

(
1,

d

2
;−γωkt

)
t.

�

(B.16)

Herein, the first term vanishes because of the definition of T � and we re-used [71, equa-
tion (2.1.2.1)]. This gives the first equation (5.16).

B.3. d  >  4

The discussion is analogous to the previous ones. At T � = T �
c , expansion gives for small 

p gives G( p) � 1
T �
c
2A2

1
p
− 1

γT �
c
, hence

G(t) � − 1

γT �
c

δ(t) +
1

(T �
c )

2A2

.� (B.17)

Inserting this into (B.6) leads to

Qk(t) = (T �
c )

2A2e
−γωkt

(
1− g

12Tc

+
Tc

T �
c

)

︸ ︷︷ ︸
=0

+
g

12Tc

+
Tc

ωk

(
1− e−γωkt

)
� (B.18)

where we used again the definition of T � and have thus found the second equation (5.16). 
Finally, below criticality, we must expand up to the first universal term. We obtain for 
p small (as it stands, this holds for d  <  6, but extensions are obvious)
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G( p) � 1

γ

A1 − A2
p
γ
− |F|1

(
p
γ

)d/2−1

m2 + T �A2
p
γ
+ γT �|F1

(
p
γ

)d/2−1
� 1

γ

(
A1

m2
− A2

m4

p

γ

)
− |F|1

m4

(
p

γ

)d/2−1

�

(B.19)

which gives for large times

G(t) � 1

m2γT �
c

δ(t)− A2

m4γ2
δ′(t) +

(4πγt)−d/2

m4� (B.20)

and from which one readily arrives again at equation (5.14).
We remark that the small-p expansions must be carried up to including (i) even-

tual constant terms and (ii) the leading universal contribution. The first contribution 
is required for the correct evaluation of the correlator (unless one prefers to derive 
sum rules instead, as carried out in [38]) and the second contribution gives the leading 
time-dependence.

We did not discuss the case d  =  4 explicitly, although this can be done without 
much extra diculty [30, 40, 45]. Below criticality, there is no dimension-dependent 
singularity and one may simply set d  =  4 in the final result (5.14) and at criticality, 
additional logarithmic singularities will appear.

Appendix C. Proof of an identity

We prove the asymptotic identity equation (6.12).

Lemma.  The function f(γ) = e−γZ(4πγt)−d/2 obeys for all d  >  0 and all Z,t the identity

∂n
γ f(γ) = (−1)nf(γ)

n∑
k=0

Γ

[
n+ 1 d

2
+ k

d
2

n− k + 1 k + 1

]
γ−kZn−k

� (C.1)

Proof.  This proceeds via mathematical induction, with the habitual two steps.

	•	 Basis n  =  1: it suces to calculate the first derivative and compare with (C.1). 
We find straightforwardly, in both cases

∂γf(γ) = −f(γ)

[
Z +

d

2γ

]
.� (C.2)

	•	 Step n → n+ 1: We write

∂n+1
γ f(γ) = ∂γ∂

n
γ f(γ)� (C.3)

and use the expression (C.1) to find
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∂n+1
γ f(γ) = (−1)n+1f(γ)

n∑
k=0

Γ

[
n+ 1 d

2
+ k

d
2

k + 1 n− k + 1

]
γ−kZn−k

{
Z +

d

2γ
+

k

γ

}
.

� (C.4)
Shifting the index n to n  +  1 produces

∂n+1
γ f(γ) = (−1)n+1f(γ)

n+1∑
k=0

{
Γ

[
n+ 2 d

2
+ k

d
2

k + 1 n− k + 2

]
γ−kZn+1−k

×
[
1− k

n+ 1

] [
1 +

d

2Zγ
+

k

Zγ

]}
.

Herein, the first line is already the sought expression for the (n+ 1)st derivative. It only 
remains to show that the residual terms

n+1∑
k=0

Γ

[
n+ 2 d

2
+ k

d
2

k + 1 n− k + 2

]
γ−kZn+1−k

{
d

2Zγ
+

k

Zγ
− k

n+ 1

[
1 +

d

2Zγ
+

k

Zγ

]}

� (C.5)
cancel. For simplicity we omit non-zero multiplicative factors and consider15

n+1∑
k=0

Γ

[
d
2
+ k

k + 1 n− k + 2

]
(γZ)−k

[(
d

2
+ k

)
(n+ 1− k) + kγZ

]

=
n∑

k=0

Γ

[
d
2
+ k + 1

k + 1 n− k + 1

]
(γZ)−k −

n∑
k=1

Γ

[
d
2
+ k

k n− k + 2

]
(γZ)−k−1 = 0

�

(C.6)

which completes the proof.� □ 

Appendix D. Asymptotic analysis of some double series

In the main text, we introduced two double series

s1 :=
∞∑
n=0

n∑
k=0

Γ

[
1
2

d
2
+ k

n+ 1
2

d
2

n− k + 1 k + 1

](
−gt

γ

)n

(γZ)n−k

�

(D.1)

s2 := −γCgt
∞∑
n=1

n−1∑
k=0

Γ

[
1
2

d
2
+ k

n+ 1
2

d
2

n− k k + 1

]
1

n

(
−gt

γ

)n

(γZ)n−1−k

�

(D.2)

and we require their asymptotic behaviour for t � 1 large, where Z is either being kept 
fixed or varies slowly with t.

	 1.	We start our analysis with the treatment of s1. Begin with (D.1) and exchange 
the order of summation, followed by a shift in the second summation variable. 
This results in

15 In (C.5), bring the curly bracket to the common denominator, which does not depend on k and hence can be 
dropped.
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s1 =
∞∑
k=0

∞∑
n=k

Γ

[
1
2

d
2
+ k

n+ 1
2

d
2

n− k + 1 k + 1

](
−gt

γ

)n

(γZ)n−k

=
∞∑
k=0

∞∑
n=0

Γ

[
1
2

d
2
+ k

n+ k + 1
2

d
2

n+ 1 k + 1

](
−gt

γ

)n+k

(γZ)n

�

(D.3a)

=
Γ(1

2
)

Γ(d
2
)

∞∑
k=0

∞∑
n=0

Γ(k + d
2
)

Γ(k + n+ 1
2
)

(−gt/γ)k

k!

(−gtZ)n

n!� (D.3b)

		 Recalling the definition of the Humbert function [47, 48]

Φ3 (β; γ; x, y) =
∞∑

m=0

∞∑
n=0

(β)m
(γ)m+n

xm

m!

yn

n!� (D.4)

		 we can identify s1 = Φ3

(
d
2
; 1
2
;−gtZ,−gt

γ

)
, as stated in (6.14) in the main text.

		 Sums such as (D.3a) would be easy to evaluate if they would factorise, but in 

fact they are coupled by the factor Γ
(
n+ k + 1

2

)
 in the denominator. In order to 

achieve a factorisation, we use the following identity, which involves Euler’s Beta 

function, with an arbitrary constant 0 < ε < 1
2

1

Γ
(
n+ k + 1

2

) =
B(n+ ε, 1

2
+ k − ε)

Γ(ε+ n)Γ(1
2
− ε+ k)

=
t
1
2
−n−k

Γ(ε+ n)Γ(1
2
− ε+ k)

∫ t

0

dx xk−ε− 1
2 (t− x)n+ε−1

� (D.5)

		 which is obtained from equations  (6.2.1) and (6.2.2) in [1]. Now, insert this 
identity into (D.3a) such that the sums over n and k decouple. We then find

s1 = Γ

[
1
2

1
2
− ε, ε

]√
t (u1 � v1) (t)� (D.6)

		 with 0 < ε < 1
2
 and the functions

u1(x) = x− 1
2
−ε

1F1

(
d

2
;
1

2
− ε;−g

γ
x

)
, v1(x) = xε−1

0F1 (ε;−gZx) .� (D.7)

		  Inserting the functions from (D.7) then gives the exact representation of s1 as 
a Laplace convolution, stated in (6.16) in the main text, where the Laplace 
transform is defined as

h( p) := L (h)( p) =

∫ ∞

0

dx h(x)e−px.� (D.8)
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		 The Laplace convolution theorem states (u1 � v1)(t) = L −1 (u1( p)v1( p)) (t).

		  In addition, combining the representation (6.16) and (D.6) with the Laplace con-
volution theorem gives access to the large-t asymptotics of s1, via a Tauberian 
theorem [33]: find the small-p behaviour for u1( p) and v1( p) and then carry out 
the inverse Laplace transform. Therefore, we use equation (3.38.1.1) from [70] and 
find

u1( p) = Γ

(
1

2
− ε

)
pε−

1
2

(
1 +

g

γp

)−d/2

, v1( p) = Γ(ε) p−εe−
gZ
p .� (D.9)

		 The small-p expansion of the product u1( p)v1( p) yields16

s1
p↘0
�

√
πt

(
γ

g

) d
2

L −1

(
p

d−1
2 e−

gZ
p

)
(t)� (D.10)

		  and the inverse Laplace transform can be extracted from equation (2.2.2.1) in [71]

s1 �
√
π

(
γ

gt

) d
2

0F1

(
1−d
2
;−gtZ

)

Γ
(
1−d
2

) .� (D.11)

	 2.	For s2 our approach is analogous. Starting from (D.2), we shift variables and 
exchange the order of summation to arrive at

s2 = −γCgt
∞∑
n=1

n∑
k=1

Γ

[
1
2

d
2
− 1 + k

n+ 1
2

d
2

n− k + 1 k

]
1

n

(
−gt

γ

)n

(γZ)n−k

= −γCgt
∞∑
k=1

∞∑
n=k

Γ

[
1
2

d
2
− 1 + k

n+ 1
2

d
2

n− k + 1 k

]
1

n

(
−gt

γ

)n

(γZ)n−k

= −γCgt
∞∑
k=0

∞∑
n=0

Γ

[
1
2

d
2
+ k

n+ 1 d
2

n+ k + 3
2

k + 1

]
1

n+ k + 1

(
−gt

γ

)n+k

(γZ)n

= γCg2t2
∫ ∞

0

dv e−v

∞∑
k=0

∞∑
n=0

Γ

[
1
2

d
2
+ k

d
2

n+ k + 3
2

]
(−gte−v/γ)

k

k!

(−gtZe−v)n

n!
.

�

(D.12)

		 With the definition (D.4) of the Humbert function Φ3, we can also identify

		  s2 = 2Cg2t2
∫ 1

0
dw Φ3

(
d
2
; 3
2
;−gt

γ
w,−gtZw

)
, as stated in (6.15) in the main text.

		 The two sums can be decoupled via the identity, with 0 < ε < 3
2

1

Γ
(
n+ k + 3

2

) =
t
1
2
−n−k

Γ(ε+ n)Γ(3
2
− ε+ k)

∫ t

0

dx xk−ε− 3
2 (t− x)n+ε−1

� (D.13)

16 Here we explicitly treat the quantum case g �= 0. Admitting g  =  0 leads to a dierent small-p expansion that 
results in the well-known classical zero-temperature quench dynamics [38].
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such that we finally recast the double sum into an integrated convolution

s2 = Cg2t
3
2Γ

[
1
2

3
2
− ε, ε

] 1∫

0

dw (u2 � v2)(t)� (D.14)

with

u2(x) = x
1
2
−ε

1F1

(
d

2
,
3

2
− ε,−g

γ
wx

)
, v2(x) = xε−1

0F1 (ε,−gZwx)� (D.15)

as stated in (6.17) in the main text. Finally, the asymptotics for t → ∞ is found as 
before from a Tauberian theorem. The Laplace transforms of the above functions read 
[70, 3.38.1.1]

u2( p) = Γ

(
3

2
− ε

)
pε−

3
2

(
1 +

gw

γp

)− d
2

, v2( p) = Γ(ε) p−εe−gZ w
p .� (D.16)

Inserting leads to the expression

s2 = Cg2
√
πt3L −1

(
p

d−3
2

∫ 1

0

dw

(
p+

g

γ
w

)− d
2

e−gwZ/p

)
(t).� (D.17)

The w-integration can be expressed exactly as an incomplete Gamma function [1]

s2 = γCg
√
πt3(γZ)

d
2
−1eγZL −1

[
Γ

(
1− d

2
, γZ

)
1
√
p
− 1

√
p
Γ

(
1− d

2
,Z

g

p
+ γZ

)]
(t).

� (D.18)
Since we now want to study this expression in the p → 0 limit, it is adequate to use 
an asymptotic expansion for the last term, which we extract from equation [1, 6.5.30]

Γ(a, x+ y)
x→∞� Γ(a, x)− e−xxa−1

(
1− e−y

)
.� (D.19)

In order to evaluate the inverse Laplace transform, we consult equations  (2.2.2.1), 
(3.10.2.2) and (2.1.1.3) in [71] and find

s2 � γCgt
{

1F1

(
1; 2− d

2
; γZ

)
d
2
− 1

+
√
π

(
γ

gt

) d
2
−1 [

1F2

(
1− d

2
; 2− d

2
, 3−d

2
;−gtZ

)
(
1− d

2

)
Γ
(
3−d
2

) eγZ

+
eγZ − 1

gtZ

0F1

(
1−d
2
;−gtZ

)

Γ
(
1− d

2

)
]}

.

�

(D.20)

Finally, combining equations (D.11) and (D.20) and inserting into the constraint (6.13), 
we arrive at the asymptotic form (6.18) of the spherical constraint.

Similar methods can be applied to find the asymptotics of several confluents of 
Appell’s hyper-geometric function F3 [2, 79], when both arguments become large. This 
will be presented elsewhere [84].

https://doi.org/10.1088/1742-5468/aa9f44


Lindblad dynamics of the quantum spherical model

55https://doi.org/10.1088/1742-5468/aa9f44

J. S
tat. M

ech. (2018) 013103

Appendix E. Spherical constraint in two spatial dimensions

The constraint (6.13) requires a special analysis in two spatial dimensions, due to appar-
ent divergences in equation (D.20) for d → 2. We carry this out by writing d = 2(1 + ε) 
and studying the limit ε → 0. We want to show that equation (D.20) is indeed well-
defined in the d → 2 limit and to find this limit.

The critical sum is s2, which may be rewritten as

s2 � Cgtγ
[
eγZ

(
1

ε
− 1F2

(
−ε; 1, 1

2
;−gtZ

)
ε

)
+

eγZ − 1

gtZ

√
π

0F1

(
−1

2
;−gtZ

)

Γ
(
−1

2

)
]
.

�

(E.1)

The limit where ε goes to zero can be taken using the formula (derived below)

lim
ε→0

(
1

ε
− 1F2

(
−ε; 1, 1

2
; x
)

ε

)
= 2x 2F3

(
1, 1;

3

2
, 2, 2; x

)
� (E.2)

and renders the sum s2 into the form

s2 � Cgtγ
[
− eγZ2gtZ 2F3

(
1, 1;

3

2
, 2, 2;−gtZ

)
− 2

eγZ − 1

gtZ
0F1

(
−1

2
;−gtZ

)]
.

�

(E.3)

Recalling (D.11), we can now study the constraint (6.13) in 2D. Solving the spherical 
constraint numerically, see figure E1, we remark that the observations Z = −|Z| < 0 
and Z → 0 still hold true in the long-time limit t → ∞. However, an asymptotic expan-
sion for t|Z| → ∞ fails. Therefore, we must consider t|Z| =: ϕ → cste. and proceed to 
determine this constant. Asymptotically, the constraint (6.13) reads

8πγt � 1−
√

1

4t

γ

g
0F1

(
−1

2
; gϕ

)
+ Cgγt

[
2gϕ 2F3

(
1, 1;

3

2
, 2, 2; gϕ

)
− 2γ

gt
0F1

(
−1

2
; gϕ

)]

� (E.4)
where we replaced eγZ �→ 1. We also observe that the first and the last term on the 
right-hand site are sub-dominant. For the constant ϕ we thus find the transcendental 
equation

4π

Cg2
= ϕ 2F3

(
1, 1;

3

2
, 2, 2; gϕ

)
� (E.5)

which is equation (6.21b) in the main text. It always has an unique solution since the 
image of the right-hand side is R+ and the function is monotonous. The spherical 
parameter then reads Z � −ϕ/t.

In the limit of an extreme scdl with C → ∞, see figure 4, we have simply ϕC = 4πg−2. 

The opposite limit of an extreme sqdl with C = 1
4
 gives an upper bound for the admis-

sible values of ϕ.

https://doi.org/10.1088/1742-5468/aa9f44


Lindblad dynamics of the quantum spherical model

56https://doi.org/10.1088/1742-5468/aa9f44

J. S
tat. M

ech. (2018) 013103

Proof of equation (B.2).  Insert the expansion Γ(n− ε)/Γ(−ε) � −Γ(n)ε+O(ε2) into

1

ε

[
1− 1F2

(
−ε; 1,

1

2
; x

)]
= −1

ε

∞∑
n=1

xn

n! (1)n(
1
2
)n

Γ(n− ε)

Γ(−ε)

�
∞∑
n=0

xn+1

n!

n! (1)n
(2)n(2)n(

3
2
)n

1
2

+O(ε) = 2x 2F3

(
1, 1; 2, 2,

3

2
; x

)
+O(ε)

by also using (a)n+1 = (a+ 1)n
Γ(a+1)
Γ(a)

.� □ 

Appendix F. Analysis of the spherical constraint for d �= 2

We present the asymptotic analysis of the spherical constraint (6.18) in generic dimen-
sions d �= 2.

F.1. d  >  2

In order to define the goals of an asymptotic analysis, we first consider the qualitative 
behaviour of the numerical solution Z = Z(t), illustrated in figure F1. Therein, both the 
left-hand side (lhs) and the right-hand-side (rhs) are displayed as a function of Z, for 
certain values of t, and for typical values of C, g and γ. The solution Z = Z(t) is given 
by the intersections of the black and one of the coloured lines, respectively. For large 
times and for dimensions d  >  2, the numerical examples suggest the following proper-
ties, which we shall need for our further analysis:

	 1.	The solution to the spherical constraint is unique and negative, which is clear 
from figure F117.

	 2.	 In the asymptotic limit where t → ∞, the solution tends to Z → 0−. This is 
apparent in figure F1 and further shown in the left panel of figure 6 in the main 
text.

Figure E1.  Solution Z(t) of the spherical constraint for d  =  2, g  =  0.1, γ = 1 and 
C = 1/4. The full curve is from equation (E.5) and the dots are numerical data. 
The left and right panel display dierent intervals for t.

17 We have checked numerically that Z  <  0 f or times up to t ≈ 1051.
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	 3.	 the decay of Z is slower than O(t−1), such that t|Z(t)| still increases with t, as 
further illustrated in the right panel of figure 6.

In figure 6 in the main text, the time-dependence of Z(t) is further illustrated for the 
generic spatial dimensions d �= 2. The qualitative shape of these curves does not depend 
much on the specific values of the other parameters. Therefore, these examples suggest 
that the sought long-time behaviour can be obtained by studying the asymptotics for 
t|Z(t)| → ∞ in (6.18), at least when d �= 2. A more detailed study further suggests that 
this growth is more slow than any power-law.

Therefore, we need the following expansions of the various hyper-geometric func-
tions in (6.18) for t|Z(t)| � 1 and |Z(t)| � 1. This is achieved by the asymptotic identi-
ties, see [1] and especially [86, 07.22.06.0005.01]

1F2

(
1− d

2
; 2− d

2
,
3− d

2
; gt|Z|

)
� −

(
1− d

2

)
Γ(3

2
− d

2
)

Γ(−1
2
)

e2
√

gt|Z|

(gt|Z|)1−d/4� (F.1a)

0F1

(
1− d

2
; gt|Z|

)
� −

Γ(1
2
− d

2
)

Γ(−1
2
)

(gt|Z|)d/4 e2
√

gt|Z|
� (F.1b)

1F1

(
1; 2− d

2
; γZ

)
� 1 +

γZ

2− d
2

� (F.1c)

which simplify the constraint (6.18) to the following form

eγZ(4πγt)d/2 � 1

2
+

(
1 + Cgtγ

[
1 +

1

γ|Z|

])(
γ2|Z|
gt

) d
4 e2

√
gt|Z|

4
+

γCgt
d− 2

[
1 +

4

d− 4
γ|Z|

]
.

� (F.2)
Herein, the last term on the right-hand site is sub-dominant. We can therefore neglect 
it and arrive at the following final form of the constraint

2 eγZ(4πγt)d/2 �

[
1 +

γ
d
2

2

(
1 + C gt

|Z|

)(
|Z|
gt

) d
4

e2
√

gt|Z|

]
� (F.3)

which is equation  (6.21a) in the main text. As before in the toy case where C = 0 
and analysed in the main text, the constraint can be solved explicitly in terms of 
W-functions, but some care is needed to select the correct real-valued branch [21], 
which is either W0 or W−1, such that positive values for |Z(t)| are produced. We find

t|Z(t)| � (d− 4)2

16g





W 2
−1

(
2g
d−4

[
(8π)d

C2

] 1
d−4

t2
d−2
d−4

)
, d < 4

(
2

d−4

)2
ln2

(
(8πt)2

C

)
, d = 4

W 2
0

(
2g
d−4

[
(8π)d

C2

] 1
d−4

t2
d−2
d−4

)
, d > 4

� (F.4)
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The leading behaviour is found from the known asymptotics of the W-function18 to be

|Z(t)| � (d− 2)2

4g

ln2 t

t
� (F.5)

for all dimensions d  >  2. This asymptotic result does neither depend explicitly on the 
initial condition C nor on the coupling γ to the bath.

F.2. 1  <  d  <  2

Again, we try to identify the correct mathematical setting by looking at some 
numerical solutions of the constraint (6.18). We illustrate in figure F2 some typi-
cal behaviour, for several values of d. Clearly, the left panel shows that for d  <  2 
the qualitative behaviour is dierent from what was seen for d  >  2. We observe as 
generic features

	 1.	For large enough times, the solution to the spherical constraint becomes positive.
	 2.	 In the asymptotic limit t → ∞, the solution Z(t) grows beyond all bounds, but 

its growth is very slow compared to t.
	 3.	Strong oscillations are superposed onto this growth, the frequency of whom 

apparently increase with t, while the amplitude decreases.
	 4.	There is a regime of large intermediate times, where the solution Z = −|Z(t)| < 0 

is negative and qualitatively behaves as seen above for dimensions d  >  2. This is 
illustrated in the middle panel of figure F2, which is very similar to figure F1. In 
the right panel, it is further shown that for truly enormous times the final true 
asymptotic regime with Z  >  0 is reached.

Therefore, for intermediate times, we can take over the analysis for d  >  2 and recover 
equation (F.5) as an eective description19. One can estimate the order of the time-scale 

18 One uses W−1(x) � ln(−x)− ln(− ln(−x)) + o(1) for x → 0− [21].
19 Equation (F.4) with d  <  4 applies.

Figure F1.  Solving the constraint (6.18) as a function of Z: the lhs is shown in black 
and the rhs is shown for dierent times t = [1000, 4000, 7000, 10 000] corresponding 
to the blue, red, green and orange lines, from left to right. The other parameters 
are C = 1, γ = 0.1 and g  =  0.1. Dierent frames correspond to dierent dimensions: 
left panel d  =  2.1, middle panel d  =  3.1, right panel d  =  4.1.
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t× where this cross-over happens by setting Z  =  0 in the constraint (6.18). For d = 2− ε 

dimensions, we find t× ≈ γ
g
e8π/Cg which for the chosen parameters can become very 

large indeed.
In order to find the true final asymptotics for really large values of t, we must re-

analyse (6.18) in the limit where t → ∞ and Z � 1. We then require the following 
asymptotic expansions, see [1] and [86, 07.22.06.0011.01]
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1; 2− d

2
; γZ

)
=
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(F.6a)
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(gtZ)d/4−3/2 d(d− 6)

16
�

(F.6c)

and where Jν is a Bessel function and Γ(a, x) an incomplete Gamma function [1]. 
Inserting these expansions into (6.18), several leading terms cancel. The constraint 
takes the form

2 (4πγt)d/2 =
Cgt
Z

e−γZ +
dCγd/2

2

(
Z

gt

)d/4−1

×

[
3(d+ 2)(4− d)

64

cos
(
2
√
gtZ + πd

4

)
Z

−
sin

(
2
√
gtZ + πd

4

)
√
gtZ

]

�

(F.7)

which is equation (6.21) in the main text. In order to solve this equation, consider first 
only the first term on the right-hand side. If one assumes that asymptotically eγZ ∼ tα, 

matching the left-hand side with the right-hand side gives α = 1− d
2
. Then, the second 

term on the right-hand side is of the order t1−d/4+α, up to logarithmic or oscillating 

factors. If α < d/4, this second term merely generates a correction. This is so for d > 4
3. 

Similarly, the third term is of the order t1/2−d/4+α, hence it only generates a finite-time 
correction for d  >  1.
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Hence, for 43 < d < 2, it is enough to concentrate on the first term on the right-hand-
side in (F.7). Analogously to previous cases, the constraint is solved via the Lambert-W 
function

γZ = W

(
Cg

2d+1πd/2
(γt)1−d/2

)
�

(
1− d

2

)
ln γt+O(ln ln t).� (F.8)

For a better approximation, one can re-inject this solution into the second and third 
terms on the right-hand-side of (F.7). Then one obtains an oscillatory correction, of the 
form quoted in the main text.

Appendix G. Structure factor for 4/3  <  d  <  2

We derive the identity equation (6.30). We neglect all prefactors, focus on the func-
tional dependence and treat the expression

Qk ∝ 1−0 F1(1/2;−x)

x
� (G.1)

where x  =  gt(Z  +  tk2). Clearly, replacing the hyper-geometric function by its series  
representation gives

1−0 F1(1/2;−x)

x
=

∞∑
n=1

1

(1/2)n

(−x)n−1

n!
=

∞∑
n=0

1

(1/2)n+1

(−x)n

(n+ 1)!
.� (G.2)

We now rewrite

1

(1/2)n+1

1

(n+ 1)!
= Γ

[
n+ 1 3/2 2 1/2

1 n+ 3/2 n+ 2 2 3/2

]
1

n!
= 2

(1)n
(3/2)n(2)n

1

n!
�

(G.3)

Figure F2.  Solving the constraint (6.18) as a function of Z: the lhs is shown in 
black and the rhs is shown for dierent times t = [10 000, 40 000, 70 000, 100 000] 
corresponding to the blue, red, green and orange lines, from left to right, in the left 
and middle panels. In the right panel, the rhs with t = [1, 4, 7, 10] · 1040 corresponds 
to the blue, red, green and orange dashed lines, from left to right. The other 
parameters are C = 1, γ = 0.1 and g  =  0.1. Dierent frames correspond to dierent 
dimensions: left panel d  =  1.5, middle and right panels d  =  1.9.
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and can consequently recast equation (G.2) as

1−0 F1(1/2;−x)

x
= 2

∞∑
n=0

(1)n
(3/2)n(2)n

(−x)n

n!
= 2 1F2(1; 3/2, 2;−x)� (G.4)

which is the representation used in the main text.
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