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In classical mechanics, external constraints on the dynamical variables can be easily implemented within
the Lagrangian formulation. Conversely, the extension of this idea to the quantum realm, which dates back
to Dirac, has proven notoriously difficult due to the noncommutativity of observables. Motivated by recent
progress in the experimental control of quantum systems, we propose a framework for the implementation of
quantum constraints based on the idea of work protocols, which are dynamically engineered to enforce the
constraints. As a proof of principle, we consider the dynamical mean-field approach of the many-body quantum
spherical model, which takes the form of a quantum harmonic oscillator plus constraints on the first and second
moments of one of its quadratures. The constraints of the model are implemented by the combination of two
work protocols, coupling together the first and second moments of the quadrature operators. We find that such
constraints affect the equations of motion in a highly nontrivial way, inducing nonlinear behavior and even
classical chaos. Interestingly, Gaussianity is preserved at all times. A discussion concerning the robustness of
this approach to possible experimental errors is also presented.
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I. INTRODUCTION

Since the conception of quantum mechanics, the imple-
mentation of nontrivial dynamical effects that go beyond
the linearity of Schrödinger’s equation has been a recurring
topic of research. Recently, this search has seen a renewed
interest, particularly due to developments in quantum plat-
forms such as ultracold atoms [1–4]. For many-body sys-
tems, nontrivial effects such as quantum chaos [5–7] and
criticality [8] emerge naturally from the complexity of the
many-body Hilbert space. It is well known that—up to leading
order—such effects of complex many-body interactions can
be captured by external constraints (see, e.g., large-n quantum
field theories [9] or the spherical model [10–13]). In these
systems, the complexity of strongly interacting degrees of
freedom is reduced to the solution of a single, transcendental
equation that stems from a certain external constraint. These
types of constraints can be enforced in modern experiments,
using techniques such as continuous measurements in order
to project the dynamics onto specific subspaces (the Zeno
effect), rendering the dynamics effectively nonlinear [14,15].

Remarkably, even simple systems with few degrees of
freedom can exhibit effects such as bistability and criticality
in certain limits of the Hamiltonian parameters [16–20]. This
motivates the present study, in which we explore these effects
by means of constraints that act on a free system.

Despite the potential for mimicking many-body effects on
a mean-field level and all of the above-mentioned experi-
mental applications, the development of a general framework
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for the implementation of constraints that act directly on
quantum observables has proven to be notoriously difficult.
In classical mechanics, constraints can be implemented in a
natural way within the Lagrangian formulation. The extension
of this idea to quantum systems can be traced all the way back
to Dirac [21] and has ever since been the subject of several
studies [22–28]. However, these approaches are of limited
applicability since none of them enjoys the breadth and reach
of the Lagrangian formulation.

The enormous success of the Lagrangian formulation in
classical mechanics often overshadows the fact that external
constraints are nothing but time-dependent forces following
specific protocols. That is, any constrained dynamics can
always be viewed as an unconstrained evolution subject to
carefully tailored external forces (typically tensions and nor-
mal forces) that act to enforce the constraints at all times. Of
course, within classical mechanics this viewpoint is not at all
necessary. Here, we adopt this point of view and show how
constraints can arise from carefully chosen work protocols.
Other alternatives based on different approaches have also
been proposed, which include, for instance, quantum feed-
back control [29], the quantum Zeno effect [15,30], active
entanglement control [31], shortcuts to adiabaticity [32–35],
dynamical decoupling [36], and constrained quantum an-
nealing [37–39]. In the context of work protocols, modern
developments in quantum thermodynamics use this concept
in varied applications such as in the elaboration of quantum
heat engines [40–43].

In this work, we explore this idea further by putting forth
a way of implementing quantum constraints, by means of
external agents performing engineered protocols. To illustrate
this framework in action, we focus on a quantum harmonic
oscillator and discuss how to engineer work protocols that
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enforce a constraint between the first and second moments of
the quadrature operators. These constraints are motivated by
mean-field approximation schemes to a stereotypical many-
body quantum system, namely, the spherical model. Thus, the
present study can also be viewed as a quantitative guide to
dynamical properties of such systems. Particularly, our choice
of constraints allows us to include mean-field descriptions
of many-body Floquet systems that have attracted a large
amount of interest in the past decade (see Refs. [44,45] and
references therein). We show that, although the quantum evo-
lution preserves Gaussianity at all times, the constraints force
the system to behave in a highly anharmonic fashion. In this
manner a dynamical order-disorder quantum phase transition
is induced by the constraints to the system. Remarkably,
periodic constraints allow for a third phase to exist where the
dynamics is de facto chaotic. Here, classical chaotic motion is
forced on the quantum evolution and we name this phase the
chaotic phase.

Finally, we test numerically the robustness of this approach
with respect to small perturbations in the preparation of the
initial state and on the work protocols, finding that the errors
scale linearly with the size of the perturbations and sublinearly
in time. In view of these results and of the recent advances
in the coherent control of quantum systems, particularly in
platforms such as trapped ions and superconducting qubits,
we believe that this framework could pave the way for the
design of more general quantum constraints.

II. IMPLEMENTING QUANTUM CONSTRAINTS
WITH EXTERNAL AGENTS

To understand the way we will be implementing quantum
constraints, we first note that we can think of a quantum
constraint as a functional equation for the density matrix ρ

of a quantum system,

φ[ρ] = f (t ), (1)

that must be satisfied at all times, for some functional φ. In
order to impose this constraint using external agents αi(t ), we
can consider a time-dependant Hamiltonian H (t ), given by

H (t ) = H0 +
∑

j

α j (t )Hj, (2)

where H0 is the Hamiltonian of the unconstrained system
in absence of external agents. The unitary evolution of this
system is then

∂ρ

∂t
= −i[H0, ρ] − i

∑
j

α j (t )[Hj, ρ], (3)

meaning that the time derivative of the density matrix depends
explicitly on the external agents. The central idea in order to
specify the work protocol of the external agents is to consider
an initial condition ρ0 that satisfies Eq. (1) and taking a time
derivative in both sides of Eq. (1):

∂

∂t
(φ[ρ]) = f ′(t ). (4)

If the time derivative of φ[ρ] depends explicitly on the ex-
ternal agents, we can solve Eq. (4) by choosing the agents
conveniently. However, if it does not depend on the agents

explicitly, we can repeat the procedure, using now Eq. (4) as a
new constraint until we can tie all the constraints to the agents.

More constraints could in principle be added by simply
repeating the procedure, as long as we have enough external
agents to satisfy all of them. This procedure yields a set of
equations that couple the agents α j (t ) and ρ, meaning that the
protocols will be dependent on the initial condition ρ0 of the
density matrix.

In order to illustrate this scheme, we apply it to a quantum
harmonic oscillator in the next section, using

φ1[ρ] ≡ 〈q2〉, f1(t ) = λ = 1. (5)

Here 〈·〉 ≡ tr(ρ·) refers to the average over the time-
dependent density matrix. The choice of this constraint is
motivated by the many-body quantum spherical model, as we
point out below. Additionally, this constraint is advantageous
since it only depends on averages, which allows us to formu-
late the full dynamics in terms of averages only.

III. THE MODEL

We consider the dynamics of a single bosonic mode,
characterized by quadrature operators q and p, satisfying the
canonical commutation relation [q, p] = i and subject to the
time-dependent Hamiltonian

H (t ) = p2

2m
+ μt q2

2
− Bt q, (6)

where m is a time-independent constant and μt and Bt are
time-dependent functions, acting as work agents. We then
focus on implementing the constraint

〈q2〉 = λ (7)

in a way that couples the first and second moments of quadra-
ture. Here λ is a constant that sets the units of the quadrature
operators and we henceforth set λ = 1.

A. Implementing the constraint

First, we rephrase the problem in the language of Sec. II.
The Hamiltonian contributions read

H0 = p2

2m
, H1 = q2

2
, H2 = −q, (8)

whereas with H1 and H2 the work agents

α1(t ) = μt , α2(t ) = Bt , (9)

are associated in order to fulfill the external constraint

φ[ρ] = 〈q2〉, f (t ) = 1. (10)

The unitary evolution according to Hamiltonian (6) yields for
the first moments

d〈q〉
dt

= 〈p〉
m

, (11)

d〈p〉
dt

= Bt − μt 〈q〉, (12)

whereas the second moments obey

d〈q2〉
dt

= 2Z

m
, (13)
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d〈p2〉
dt

= 2Bt 〈p〉 − 2μt Z, (14)

dZ

dt
= Bt 〈q〉 + 〈p2〉

m
− μt 〈q2〉, (15)

with Z = 1
2 〈qp + pq〉.

Following the framework in Sec. II, we must use initial
conditions such that 〈q2〉0 = 1 and external agents such that

∂

∂t
(φ[ρ]) = f ′(t ) ⇔ d〈q2〉

dt
= 0 ⇔ Z = 0. (16)

The condition in Eq. (16) does not depend explicitly on
μt or Bt , so we must use Z = 0 as a new constraint. This
means that our initial conditions must also be such that Z0 = 0
and repeating what we did for the main constraint we get the
condition

dZ

dt
= 0 ⇔ Bt 〈q〉 + 〈p2〉

m
− μt = 0 (17)

that can be solved by choosing μt and Bt such that

μt = Bt 〈q〉 + 〈p2〉
m

. (18)

B. Choice of the work protocols

Since we have two work agents, there is some freedom in
how we can choose μt and Bt . We use

Bt = κ (〈q〉 + h sin ωt ), (19)

where κ = 1 is a constant setting the energy scales involved,
while μt is defined by Eq. (18). The motivation for this
choice is that Eqs. (6), (7), and (19) are a generalization of
a system that was previously studied with a zero-temperature
dissipative Lindblad dynamics [46]. It can be viewed as a
dynamical mean-field study of the quantum spherical model
[12,13,47,48] in the following sense. The Hamiltonian of the
quantum spherical model with nearest-neighbor interactions
on a hypercubic d-dimensional lattice is given by [12,13,47]

Hsm =
Nd∑

n=1

⎡
⎣gp2

n + μ

2
q2

n − Bqn − J
∑

m ∈	(n)

qnqm

⎤
⎦, (20)

Nd∑
n=1

〈
q2

n

〉 = Nd , (21)

where [qn, pm] = iδnm represent bosonic degrees of freedom,
J is the nearest-neighbor interaction constant, 	(n) represents
the set of nearest neighbors, μ is a Lagrange multiplier to
ensure the constraint, and g quantifies the quantum fluctu-
ations in the system. The quantum spherical model is the
large-n limit of the O(n) nonlinear σ model [13] which
describes quantum rotors. It is known to be of great use
in order to craft analytical insight into statistical properties
of many-body systems since it can be exactly solved and
shows a quantum phase transition in terms of g that is distinct
from the mean-field universality class for spatial dimensions
1 < d < 3 [13,48]. All interactions that go beyond a simple
free model are introduced via the highly nonlocal constraint
which is ensured by the Lagrange multiplier μ. In a mean-field
approximation analogous to the Weiss theory of magnetism

q

p

FIG. 1. Diagram of the constrained quantum dynamics. Two
work agents force a harmonic oscillator to evolve subject to con-
straints (7) and (19). This causes the evolution of the first moments
〈q〉 and 〈p〉 to couple to the variances 〈q2〉 − 〈q〉2 and 〈p2〉 − 〈p〉2,
which have to expand and squeeze depending on the position in
phase space. The figure depicts an example trajectory in the (〈q〉, 〈p〉)
plane, together with snapshots of the Gaussian density profile (whose
widths were rescaled for visibility).

[49], the system (20) can be reduced to a single-body problem
(q, p) with a self-consistently determined magnetization M =
〈q〉. In this scenario Eq. (20) reduces to

Hsm = gp2 + μ

2
q2, 〈q2〉 = 1, 〈q〉 = B. (22)

This system coincides with the one that we are proposing
for h = 0. It has been shown that already the system with
h = 0 can lead to surprisingly rich physics such as nonlinear
dynamics and quantum freezing by heating effects [46]. In
this sense our proposal for h �= 0 can be understood as an
exploration of periodically driven many-body systems in the
mean-field regime.

Such studies have seen a large amount of theoretical and
experimental interest [44,45,50–53]. Routinely, these effects
are hard to engineer and even harder to theoretically describe.
We therefore suggest a systematic exploration of this simple
toy model in order to provide theoretical insight and to see
what sort of dynamical many-body effects can be captured by
it. Before we engage in this study it is instructive to quantify
the effects of constraint (7) and choice (19).

As seen in Eq. (16), constraint (7) fixes the correlation
〈qp + pq〉 = 0 and leads to the connection between the two
work agents, Eq. (18). Remarkably, this coincides with a
classical equipartition of energy (〈p∂pH〉 = 〈q∂qH〉) [46,54]
for our system, which has to be fulfilled dynamically at all
times in the model at hand. Equation (19), on the other
hand, couples the evolution of the first and second moments,
hence making the problem effectively nonlinear (see Fig. 1).
We have already shown how this constraint connects to the
mean-field Weiss theory for h = 0. The case h �= 0 can be
understood as a periodic perturbation where the “magnetic
field” B is not only generated by the system Bs = 〈q〉 but
where also an external field is present, Bext = h sin ωt .

C. Constrained dynamics

To get a better grasp of the dynamics of the constrained
system, we note that since 〈q2〉 and Z are constants, we actu-
ally have a reduced number of variables. Since the dynamics
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is also unitary, a further simplification is possible, exploiting
the fact that the purity P = tr(ρ2) of the initial state must be
a conserved quantity. Hence, the evolution of the remaining
degrees of freedom [Eqs. (11), (12), and (14)] can be viewed
as taking place over surfaces of constant purity, which can be
used to eliminate another one of the equations.

From Eqs. (19) and (18) we have

Bt = 〈q〉 + h sin ωt, (23)

μt = 〈p2〉
m

+ 〈q〉2 + h〈q〉 sin ωt . (24)

The dynamics is Gaussian preserving, so if the initial state
is Gaussian, it will remain so for all times. In this case the
purity can be directly related to the first and second moments
as (see Appendix A):

P = 1
2 (〈p2〉 − 〈p〉2 − 〈p2〉〈q〉2)−

1
2 . (25)

This relation can be used to express 〈p2〉 in terms of 〈q〉, 〈p〉,
and P. Moreover, as far as initial conditions are concerned,
since we must always have 〈q2〉0 = 1 and Z0 = 0, all we need
to specify are 〈q〉0, 〈p〉0, and P (which implicitly determines
〈p2〉0).

Combining Eq. (25) with Eq. (24) allows us to obtain an
explicit formula for the protocol for μt :

μt = 1

4mP2

(
1 + 4P2〈p〉2

1 − 〈q〉2

)
+ 〈q〉2 + h〈q〉 sin ωt . (26)

Finally, inserting Eqs. (19) and (26) into Eq. (12), we arrive at

d〈p〉
dt

= (〈q〉 + h sin ωt )(1−〈q〉2) − 〈q〉
4mP2

(
1 + 4P2〈p〉2

1 − 〈q〉2

)
,

(27)

which, together with Eq. (11), forms a closed and highly non-
linear system of equations for 〈q〉 and 〈p〉. Thus, even though
the underlying dynamics is linear and Gaussian preserving,
the implementation of the constraint leads to an effective
nonlinear evolution for the average position and momentum.

IV. EQUILIBRIUM DYNAMICS (h = 0)

We begin our analysis with the simpler case h = 0. Since
the initial conditions fulfill the constraints and there is neither
a quench nor driving involved, this case can be viewed as
a type of unitary equilibrium dynamics. This case coincides
exactly with the Weiss mean-field scenario of the quantum
spherical model. The dissipative dynamics using Lindblad
master equations has been studied in Ref. [46]. Here, we rather
see this as a first step to show that the constraints can lead to
nonlinear dynamical effects and to lay the ground for the case
h �= 0. For h = 0, the quantity

� = 〈p2〉
m

− 〈q〉2 (28)

is also conserved, besides the purity P. This can be seen
from Eqs. (14) and (11), together with Z = 0. Henceforth,
when no confusion arises, we simplify the notation and write
〈q〉 = q and 〈p〉 = p. Exploiting the conserved quantities, we

−

−

( )

−
−

−

−

( )

FIG. 2. Evolution of the quantum harmonic oscillator subject to
constraint (7) and protocol Bt = 〈q〉, for ω = 1. (a) Orbits in the
(〈q〉, 〈p〉) plane for m = 1 and P = 0.4. (b) The same but for P =
0.7. The homoclinic orbit crossing the origin is shown by dashed
lines. (c), (d) The protocols (c) Bt and (d) μt for some illustrative
choices of orbits with P = 0.4 and 0.7. Initial conditions: 〈q〉0 = 0.5
and 〈p〉0 = 0.2.

can characterize the orbits in the (q, p) phase space as obeying

m(� + q2)(1 − q2) − p2 = 1

4P2
. (29)

Hence, the orbit is completely determined by the values of �

and P.
A numerical analysis of this dynamics is shown in Fig. 2,

where we present orbits in the (q, p) plane for fixed mass
m = 1, ω = 1, and different purities P. In Fig. 2(a), where
P = 0.4, only symmetric orbits covering both sides of the
phase space are observed. Conversely, forP = 0.7 [Fig. 2(b)],
we see the appearance of a homoclinic solution touching
the origin and acting as a separatrix between symmetric and
asymmetric orbits. Finally, for the purpose of illustration, we
present in Figs. 2(c) and 2(d) examples of the protocols Bt

and μt , which must be implemented in the actual evolution in
order to enforce the constraint.

The homoclinic solution is found when the curve go-
ing through (0, 0) crosses p = 0 in two other points. From
Eq. (29), this means that homoclinic solutions exist for � =
1/4mP2 < 1. From Eq. (28) we have that � > −1, so the
existence of asymmetric solutions depends only on the re-
lationship between the purity and the mass. More precisely,
asymmetric solutions exist if and only if

P < Pc = 1

2
√

m
. (30)

In terms of many-body quantum systems, Eq. (30) presents a
dynamical quantum phase transition at mean-field level, in the
sense that a dynamical order parameter

q̄ = lim
T →∞

T −1
∫ T

0
〈q〉(τ ) dτ (31)
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FIG. 3. Examples of classical chaos induced by a time-dependent constraint (19) with f (q, t ) = q + h sin(ωt ). The plots show Poincaré
sections in the (〈q〉, 〈p〉) plane computed at times that are integer multiples of 2π/ω. Different colors correspond to different initial conditions.
The curves were constructed with fixed ω = 1, P = 1, and different choices of m and h: (a) 0.4 and 10−3, (b) 0.25 and 10−2, and (c) 0.4 and
10−1. Additional examples are shown in Appendix C.

can be defined that distinguishes between a symmetric and
a symmetry-broken phase. Such dynamical order parameter
transitions are somewhat less studied than the more common
Loschmidt echo dynamical quantum phase transitions [55]
although they are closely related in certain cases [56].

The transition in Eq. (30) explicitly relies on the intro-
duction of two distinct constraints and enriches the behavior
of this model as it shows not only this dynamical quantum
phase transition but as well a steady-state dissipative transition
[46]. This remarkably rich dynamical behavior may lead
to a variety of possibilities for further explorations such as
interplay between dynamical and dissipative transitions which
can be explicitly studied in this simple toy model. We hope to
return to this point in a future work.

V. PERIODICALLY DRIVEN DYNAMICS AND
ROBUSTNESS OF THE APPROACH

Next we consider the effects of adding a sinusoidal forcing
on top of Bt ; that is, we set h �= 0 in Eq. (23). As we
already mentioned, this study can be viewed as an exploration
of many-body quantum Floquet dynamics in the mean-field
regime. From this viewpoint, the mass of the oscillator plays
the role of quantum fluctuations in the system, in the sense
that m → ∞ corresponds to the classical spherical model.
Conversely, the purity describes the mixing of the initial
quantum state. Roughly speaking, we thus find two sources
of quantumness in the system and without further justification,
we choose to study the dynamical behavior for constant purity
P = 1 and different strengths of quantum fluctuations 1/m
around the critical value mc = 1/4.

One of the main results we wish to emphasize from this
analysis is that time-dependent constraints can lead to clas-
sical chaotic behavior for the first moments q and p. This
is illustrated in Fig. 3, where we show Poincaré sections of
the (q, p) plane for different choices of parameters and initial
conditions. As can be seen, imposing the constraint leads to a
remarkably rich set of responses of the system.

We observe three distinct dynamical phases for the peri-
odically driven mean-field model: (1) a symmetric (or para-
magnetic) phase, where orbits are quasiperiodic with q̄ = 0,
(2) a broken-symmetry (or ferromagnetic) phase, where orbits
are quasiperiodic with q̄ �= 0, and (3) a chaotic phase, where
q̄ = 0 and orbits are completely aperiodic.

While the symmetric phase as well as the broken-symmetry
phase were expected since they are already present in the
scenario h = 0, the chaotic phase that is induced by the
periodic driving is indeed surprising from the point of view
of a many-body system. In Fig. 4 we depict phase diagrams
that distinguish between chaotic and nonchaotic regions. We
see that the chaotic regions are indeed extensive and one can
thus expect to observe these in a Floquet-type setup since it is
not a fine-tuned effect.

To understand this chaotic behavior, first note that the
trajectories in the case h = 0 [defined by Eq. (29)] are closed,
meaning the system is periodic. This means that the system in
the absence of a drive is a nonlinear oscillator. Once we add
the drive, the situation becomes similar to other periodically
driven nonlinear oscillators that display chaotic behavior for
certain ranges of parameters, like the Duffing and the Van der
Pol oscillators [57–59]. This explains the behavior for moder-
ate and large values of h, but another feature that contributes
for the presence of chaos even for very low h is the existence
of the homoclinic trajectory for h = 0 [shown in Fig. 2(b)].
After we add the drive, the periodic solutions in Fig. 2 will
have associated quasiperiodic solutions that will correspond
to invariant tori in an extended phase space, where we added
time as an extra direction with periodic boundary conditions.
The problem is that the homoclinic solution would be in the
intersection of two of these tori, which is a forbidden structure
(for the same reason different trajectories cannot cross in a

FIG. 4. Chaotic region in phase space: left panel: for h = 0.001
and different masses m = 0.23 (black), 0.25 (green / dark gray), 0.27
(beige / light gray); right panel: for m = 0.24 and different driving
strengths h = 0.001 (black), 0.005 (green / dark gray), 0.008 (beige
/ light gray)
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FIG. 5. Robustness of the protocol implementation to potential
sources of error in the case of the time-dependent constraint used
in Fig. 3. In both figures we present curves of 〈q2〉 as a function
of time which, in an ideal case, should equal unity due to the
constraint in Eq. (7). (a) Error due to a protocol designed for the
wrong initial conditions: 〈q〉act

0 − 〈q〉0 = 〈p〉act
0 − 〈p〉0 = 10−3 and

2 × 10−3. In this case the total error does not scale with time and
is also linearly proportional, at all times, to the original error. The
inset shows the ratio of the two errors, which remains close to 2 at all
times. (b) Error due to the presence of a random noise in the protocol
μt . Details on how this noise is implemented are give in Appendix
B. The curve shows 〈q2〉 for several trajectories. In this case the error
scales at most as O(t1/2), illustrated by the black solid line. Other
parameters were m = 0.4, h = 0.1, ω = 1, and P = 1.

phase space). So what happens instead is that these two tori
“merge” into a single aperiodic (hence chaotic) solution and,
as h grows, this aperiodic solution engulfs a larger region.

Notwithstanding, the quantum mechanical evolution con-
tinues to be linear and Gaussian preserving. This happens be-
cause of the way our constraints are implemented, through μt

and Bt which are themselves chaotic. This means that we can
think of the whole system as an ordinary bosonic mode subject
to an external agent that behaves chaotically, but ensures
〈q2〉 = 1. Given this unusual state of affairs and the usual
sensitivity of chaotic dynamics to initial conditions and pertur-
bations, a natural question is whether such an implementation
would be feasible in practice. We next show, by means of a
numerical analysis, that the answer to this question is positive.

There are two main potential sources of error in the
implementation of a protocol. The first is an error in the
initial conditions. That is, one may design a protocol meant
for a given 〈q〉0, which does not coincide exactly with the
actual initial condition 〈q〉act

0 (and similarly for the other initial
conditions). However, the fact that the chaos in our system
is being imposed on top of a linear evolution means that
the overall error will simply be proportional to the initial
error 〈q〉act

0 − 〈q〉0 and, most importantly, will not increase
exponentially with time. This is illustrated in Fig. 5(a), where
we show the time evolution of 〈q2〉 [which ideally should
equal unity according to Eq. (7)] assuming different errors in
〈q〉act

0 − 〈q〉0. As can be seen, doubling the initial error simply
doubles the error at a time t [which is also emphasized in the
inset of Fig. 5(a)].

Another potential source of error is imprecision in the
protocol itself. This question is less trivial to address, as it
relates to the concept of structural stability of a dynamical
system. We simulate this effect by introducing a random noise
of varying intensity in the protocol μt . Details on how this

is implemented are given in Appendix B and a numerical
illustration is shown in Fig. 5(b). As can be seen, a numerical
error in the protocol μt leads to an accumulation of the error
which scales, at most, with order O(t1/2), illustrated by the
black lines (see Appendix B for a more in-depth analysis).
Thus, even though the error does accumulate in this case, it
is sublinear in time and not exponential, so it may still be
manageable provided the experimental running times are not
too long.

VI. DISCUSSION

Imposing external constraints on the evolution of quantum
systems is a decades-old idea, motivated by both practical
aspects in quantum control and fundamental aspects, such
as quantum gravity [28] or its important links to many-body
quantum physics. However, due to the inherent difficulty re-
lated to the noncommutativity of quantum mechanical opera-
tors, it has never enjoyed the breadth and scope of its classical
counterpart. Instead, most of the advances in this direction
have actually taken place indirectly in the field of quantum
control, in particular with techniques such as shortcuts to
adiabaticity and dynamical decoupling. The main goal of
this paper was to show that these techniques can potentially
be extended to formulate a consistent theory of constrained
quantum dynamics. Our focus has been on the case of a single
quantum harmonic oscillator, due both to its simplicity and to
its natural appeal in several experimental platforms, such as
trapped ions and optomechanics. We formulated our system
in terms of Eqs. (6), (7), and (19) and sketched how such a
rather simple constrained quantum evolution can be viewed as
a mean-field study of high-dimensional many-body quantum
dynamics. In the case of strictly time-independent constraints,
we observed a dynamical quantum phase transition in the
unitary regime that is induced by the interaction of both
constraints. We then turned to study the effects that periodic
driving has on such a transition. We find that for large portions
of the phase space, there is a new phase emerging in which
orbits are not periodic but rather follow classical chaotic
motion. This fact paired with the stability against the two
experimentally most relevant errors yields that the chaotic
phase we are showcasing here can indeed be observed in an
experimental setup and does not rely on fine tuning.

A similar approach can of course also be developed in
the case of dichotomic systems. For instance, in Ref. [22]
the authors studied the dynamics of two qubits under the
constraint that they remain disentangled throughout. Similar
extensions are also possible for continuous variables. Indeed,
even cases as simple as two bosonic modes already open up
an enormous number of possibilities. For instance, with two
bosonic modes one could implement a Kapitza pendulum [60]
or investigate variations of this in which the constraints are not
only among the averages, but also involve fluctuations.
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APPENDIX A: PURITY OF A GAUSSIAN SYSTEM

We now briefly comment on the expression for the purity
P used in the main text [Eq. (25)]. The covariance matrix for
a single bosonic mode is defined as

σ =
(〈q2〉 − 〈q〉2 Z − 〈q〉〈p〉

Z − 〈q〉〈p〉 〈p2〉 − 〈p〉2

)
,

where, recall, Z = 1
2 〈qp + pq〉. In view of Eq. (7) of the main

text, we have 〈q2〉 = 1. Moreover, as seen from Eq. (16), we
must also have Z = 0. Thus, the covariance matrix becomes

σ =
(

1 − 〈q〉2 −〈q〉〈p〉
−〈q〉〈p〉 〈p2〉 − 〈p〉2

)
.

For Gaussian states, it is well known that the purity may be
written as

P = 1

2
√|σ | .

Carrying out the computation then leads to Eq. (25) of the
main text.

APPENDIX B: METHOD USED FOR THE STUDY
OF ROBUSTNESS AGAINST PROTOCOL ERRORS

In this section we detail the perturbation used for the study
presented in Fig. 4(b). According to our approach, given an
initial condition 〈q〉 and 〈p〉 and a state with purity 1, there
are protocols μt and Bt that, if followed precisely, lead to the
constraint 〈q2〉 = 1. However, in an experimental setting this
might not be possible and instead we will have

μexperiment = μtheory + δμ,

Bexperiment = Btheory + δB,

where Btheory and μtheory are the Bt and μt predicted for the ini-
tial conditions used and the δ are (presumably) small sources
of error. We are interested in understanding the effect these
perturbations can have on our constraint and for how long we
can expect it to hold if the perturbations δμ and δB have a
size about ε. Unfortunately, the full problem (understanding

the robustness against all possible choices of perturbations)
cannot be feasibly treated, so we must choose some kind of
representative noise. We want our noise to have the following
properties:

(i) Be continuous.
(ii) Have zero average along time.
(iii) Have a finite correlation time.
(iv) Be mostly bounded, so that |δ| < ε most of the time.
An obvious candidate would be to make δ an Ornstein-

Uhlenbeck process; however, this turns our problem into a
stochastic differential equation, which is way more costly to
solve than an ordinary equation and would make the simula-
tions quite time demanding.

We decided instead to follow a physically meaningful
model based on a chaotic attractor as our source of noise.
More precisely we set our parameters to h = 0.1 and m = 0.4.
As it can be seen in the Poincaré section in Fig. 3(c) of the

FIG. 7. Construction of the black solid curve in Fig. 5(b) of the
main text and analysis of the effect of the noise intensity ε. Each
colored curve represents the maximum error found for a given value
of ε, considered over 100 stochastic trajectories. From these curves
we find that the error 〈q2〉 − 1 scales linearly in ε, so that all curves
can be collapsed into a single plot. An additional fitting of these
curves with a power-law behavior tα then reveals the exponent t1/2

reported in the main text.
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FIG. 8. Poincaré sections changing the parameters h and m. Different trajectories are represented in different colors (except the ones in
black, which do not highlight important features). (a)–(d) Sections using h = 10−3 with increasing m (0.1, 0.2105, 0.22, and 0.4, respectively).
(e)–(i) Sections using h = 10−2 with increasing m (0.229, 0.242, 0.25, 0.34, and 0.4, respectively). (j)–(l) Sections using h = 10−1 with
increasing m (0.22, 0.25, and 0.4, respectively). The trajectories not presented are all quasiperiodic (reminiscent of the trajectories in (a)). A
more detailed description can be found in the main text.
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main text, trajectories starting close to the origin 〈q〉 = 〈p〉 =
0 are chaotic in this case. So for each simulation we chose
random initial conditions close to the origin and used δ =
ε〈q〉 for this chaotic orbit (meaning that we were integrating
numerically simultaneously one copy of the nonlinear system
to obtain Btheory and μtheory, two other copies of this system
to obtain δμ and δB, and one copy of the linear system to
investigate how the constraints were being affected by the
perturbation).

ε〈q〉 in the chaotic regime clearly satisfies the properties of
being continuous and bounded. Furthermore, the sensitivity
to initial conditions guarantees the finite correlation time.
The average along time being zero is less obvious but it is
a consequence of the model having a (〈q〉, t ) → (−〈q〉,−t )
symmetry, meaning that the invariant measure of the chaotic
region must be an even function of 〈q〉. This can also be
checked from simulations [Fig. 6(a)]. Finally, we also com-
ment that the time integral of 〈q〉 in the chaotic phase displays
properties akin to that of a random walk, which serves as a
further indication that 〈q〉 is a good source of “random” noise
[Figs. 6(b) and 6(c)].

With this choice of noise, we then reproduce the sim-
ulations several times, always using a different seed. Each
stochastic run produces a curve of the form of Fig. 5(b) in
the main text. Considering, for 100 realizations, the maxi-
mum deviations of 〈q2〉 below and above 1, we constructed
the black solid curve in Fig. 5(b) of the main text, giving
an estimate of the maximum allowed errors given a noise
intensity ε and how this maximum error scales with time (see
Fig. 7).

APPENDIX C: EMERGENCE OF THE CHAOTIC
SOLUTION

In this Appendix we present a more detailed picture of
how the chaotic solutions emerge in the presence of a forcing,
using Poincaré sections (videos showing the change of the

Poincaré sections as the chosen phase changes can also be
found and can be useful to understand the time evolution
along the phase space). The Poincaré sections themselves are
in Fig. 8.

In Fig. 8(a) we see a situation with low m and h that is
essentially the same as what we get without forcing (h =
0) below the critical mass (mc = 0.25). In Fig. 8(b), as m
increases, the curves start to deform until a cusp forms and
a new family of solutions appears (in red). However, since
quasiperiodic solutions cannot cross with each other, this
indicates the appearance of a chaotic solution separating the
two families. In Fig. 8(c), the solutions keep deforming. This
keeps going until the homoclinic solution appears. Because
of the forcing the homoclinic solution also becomes chaotic
[Fig. 8(d)].

Increasing h, more complex structures start to appear. In
Fig. 8(e), the cyan and blue curves correspond to chaotic
solutions, while the red one is evidence of another one, all
of which separate different families of quasiperiodic solu-
tions. These chaotic solutions start to merge as m increases
[Figs. 8(f) and 8(g)]. The analog of the homoclinic solution
is not as clear now [Fig. 8(h)], but eventually appears when
m becomes larger [Fig. 8(i)]. An interesting detail is that this
happens because the homoclinic solution detaches from the
outermost chaotic solutions (a crisis). An evidence of this
is that Fig. 8(h) displays intermittence. The inset shows two
solutions for shorter times (red and blue), where the two
regions trap the trajectories for a long time before switching to
the other one. Another evidence of intermittence can be found
in Fig. 8(f), where the magenta and green trajectories eventu-
ally get to the main chaotic region in gray (this can be seen
magnifying the image). Since the dynamics is conservative,
they should eventually return, but the time for that to happen
is larger than the simulations we did.

As h keeps increasing, the vestiges of the unforced behav-
ior keep disappearing, including a completely different route
to chaos Figs. 8(j)–8(l)].
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