MEASURES OF IRREVERSIBILITY USING QUANTUM PHASE SPACE

Gabriel T. Landi

Caxambu de outono, May 2018.

In collaboration with Jader P. Santos (USP), Mauro Paternostro (Queens), Raphael Drummond and Alberto L. de Paula (UFMG).

SUMMARY

- Motivation and objectives.
- Quantum phase space for bosonic systems.
- Entropy production in quantum phase space.
- Irreversibility from exact dilations.
- Measures of non-Markovianity.
MOTIVATION AND OBJECTIVES

- Irreversibility is an emergent property, which is traditionally quantified by the *entropy production*.

- But entropy production is not an observable and must therefore be related to observables by means of a theoretical framework.

- A fully quantum mechanical theory of entropy production for open quantum systems is still lacking.

- Our goals are to understand entropy production

 - from master equations describing non-equilibrium reservoirs.

 - from the perspective of the environment and the S+E correlations.
We shall consider the relaxation of a bosonic mode in contact with a bath.

\[
\frac{d\rho}{dt} = -i[H, \rho] + D(\rho)
\]

\[
H = \omega (a^\dagger a + 1/2)
\]

\[
D(\rho) = \gamma (\bar{n} + 1) \left[a\rho a^\dagger - \frac{1}{2} \{a^\dagger a, \rho\} \right] + \gamma \bar{n} \left[a^\dagger \rho a - \frac{1}{2} \{a a^\dagger, \rho\} \right]
\]

\[
\bar{n} = \frac{1}{e^{\beta \omega} - 1}
\]
DESCRIPTION IN QUANTUM PHASE SPACE

Instead of working with density matrices, we work with the Wigner function:

\[W_S(\alpha, \alpha^*) = \frac{1}{\pi \sqrt{|\Theta|}} \exp \left\{ -\frac{1}{2} (\alpha - \mu)^\dagger \Theta^{-1} (\alpha - \mu) \right\} \]

\[\alpha = (\alpha, \alpha^*) \quad \Theta = \begin{pmatrix} \langle \delta a^\dagger \delta a \rangle + 1/2 & \langle \delta a \delta a \rangle \\ \langle \delta a^\dagger \delta a^\dagger \rangle & \langle \delta a^\dagger \delta a \rangle + 1/2 \end{pmatrix} \]

\[\mu = (\langle a \rangle, \langle a^\dagger \rangle) \]

Then \(W \) will satisfy a Quantum-Fokker-Planck equation

\[\partial_t W = \mathcal{U}(W) + \partial_\alpha J(W) + \partial_{\alpha^*} J^*(W) \]

\[J(W) = \frac{\gamma}{2} \left[\alpha W + (\bar{n} + 1/2) \partial_{\alpha^*} W \right] \quad J(W) \text{ is a probability current} \]

\[J(W_{eq}) = 0 \]
WIGNER-RÉNYI-2 ENTROPY

For Gaussian states, the Wigner entropy coincides (up to a constant) with the Rényi-2 entropy:

\[S(W) = - \int d^2 \alpha \ W \ln W \]

\[= - \ln \text{tr}(\rho^2) \]

\[= \frac{1}{2} \ln |\Theta| \]

It also satisfies the strong subadditivity inequality:

\[S_{AB} + S_{BC} \geq S_{ABC} + S_B \]

It can “do” everything the von Neumann entropy can.

But it is much easier to work with.

Adesso, Girolami, Serafini
PRL 109, 190502 (2012)
WIGNER ENTROPY PRODUCTION

- Entropy does not satisfy a continuity equation.
- In addition to an entropy flow between the system and the environment, entropy may also be spontaneously produced.

\[\frac{dS}{dt} = \Pi - \Phi \]

- The entropy production rate \(\Pi \) quantifies the instantaneous rate of irreversibility of a process.

\[\Pi \geq 0 \quad \text{and} \quad \Pi = 0 \quad \text{iff} \quad W = W_{eq} \]
Our goal is then to relate Π and Φ to the currents in phase space.

Maxim:

- Π should be an even function of $J(W)$ and
- Φ should be an odd function.

As a result, we find:

$$\Pi = \frac{4}{\gamma(\bar{n} + 1/2)} \int d^2\alpha \frac{|J(W)|^2}{W} = -\frac{dS(W||W_{eq})}{dt}$$

$$\Phi = \frac{\gamma}{\bar{n} + 1/2} \left[\langle a^\dagger a \rangle - \bar{n} \right] = \frac{\Phi_E}{\omega(\bar{n} + 1/2)}$$

At high temperatures $\omega(\bar{n} + 1/2) \approx T$ so we get $\Phi \simeq \frac{\Phi_E}{T}$.
DISCUSSION

- For Gaussian bosonic systems, the Wigner entropy appears to be the natural entropy measure.

- Formulating the theory of irreversibility in terms of it leads to expressions relating the entropy production with the microscopic currents in phase space.

 - Analogous to classical formulations.

- The theory recovers classical results for high temperatures.

- Can be readily extended to non-equilibrium baths (e.g. squeezed baths).
ZERO TEMPERATURE

✦ The Wigner formulation also remains valid at $T = 0$.

✦ The standard “von Neumann” method gives diverging results:

$$\Pi = -\frac{dS(\rho||\rho_{\text{eq}})}{dt} \quad S(\rho||\rho_{\text{eq}}) = \text{tr}\left\{\rho(\ln \rho - \ln \rho_{\text{eq}})\right\}$$

✦ The relative entropy diverges when the system tends to a pure state.

✦ Is this divergence physical (perhaps connected to the 3rd law?) or is it simply a mathematical limitation?
IRREVERSIBILITY FROM THE PERSPECTIVE OF THE ENVIRONMENT
Irreversibility is an emergent property.

Stems from the interaction of S with a macroscopically large E.

How exactly does this take place?

What is the role of S-E correlations?

Microscopic derivations of master equations involve approximations: we lose track of the contributions to Π.
Instead, we shall look at exact dilations of a master equation.

We focus on the zero-temperature case:

\[
\frac{d\rho_S}{dt} = 2\kappa \left[a\rho_S a\dagger - \frac{1}{2}\{a\dagger a, \rho_S\} \right]
\]

What is the most general dilation reproducing this equation at all times?

Assume only that bath is bosonic and starts in the vacuum.

Global vacuum must be a fixed point; Gaussianity must be preserved exactly; E-E interactions lead to nothing new.
EXACT SOLUTION

- The dynamics is entirely determined by means of 2 auxiliary functions:

\[
\frac{dg}{dt} = -i \sum_k \gamma_k e^{(\omega - \Omega_k) t} f_k(t), \quad g(0) = 1
\]
\[
\frac{df_k}{dt} = -i \gamma_k e^{-(\omega - \Omega_k) t} g(t), \quad f_k(0) = 0
\]

- Markovian behavior recovered in the Wigner-Weisskopf limit:

\[
g(t) = e^{-\kappa t} \quad f_k(t) = \frac{i \lambda_k}{\kappa + i(\omega - \Omega_k)} \left[e^{-(\kappa + i(\omega - \Omega_k)) t} - 1 \right]
\]
Figure 1: Example of the behavior of the function $g(t)$, Eq. (32) for different numbers of bath oscillators, respectively $K = 10$, 30, 80 and 120. The functions were computed assuming $\omega = 1$, $\gamma_k = 1/K$ and $\Omega_k = 1/2 + (k - 1)/(K - 1)$ (i.e., a linear interpolation from 1/2 to 3/2). The red-dashed curve correspond to the Markovian solution (37). For this particular choice of frequencies, the function g is real.
COVARIANCE MATRIX

- The initial conditions of S are specified by
 \[\mu = \langle a \rangle_0, \quad N = \langle \delta a^\dagger \delta a \rangle, \quad M = \langle \delta a \delta a \rangle \]

- With \(g(t) \) and \(f(t) \) we then reconstruct the full S-E covariance matrix:

\[
\Theta_{SE}(t) = \begin{pmatrix}
\Theta_S & \Theta_{S,1} & \Theta_{S,2} & \ldots \\
\Theta_{S,1}^\dagger & \Theta_{1,1} & \Theta_{1,2} & \ldots \\
\Theta_{S,2}^\dagger & \Theta_{1,2}^\dagger & \Theta_{2,2} & \ldots \\
\vdots & \vdots & \vdots & \ddots \\
\end{pmatrix}, \quad \Theta_S(t) = \begin{pmatrix}
\langle \delta a^\dagger \delta a \rangle_t + 1/2 & \langle \delta a \delta a \rangle_t \\
\langle \delta a^\dagger \delta a^\dagger \rangle_t & \langle \delta a \delta a \rangle_t + 1/2 \\
\end{pmatrix} = \begin{pmatrix}
N|g|^2 + 1/2 & Mg^2 \\
M^*g^* & N|g|^2 + 1/2 \\
\end{pmatrix},
\]
We can also compute both S-E and E-E correlations.

\[\Theta_{S,k} = \begin{pmatrix} \langle \delta a \delta b^\dagger_k \rangle_t & \langle \delta a \delta b_k \rangle_t \\ \langle \delta a^\dagger \delta b^\dagger_k \rangle_t & \langle \delta a^\dagger \delta b_k \rangle_t \end{pmatrix} \]

\[= \begin{pmatrix} Ngf_k^* & Mg \Gamma_k \\ M^* g^* f_k^* & Ng^* f_k \end{pmatrix}, \]

\[\Theta_{k,q} = \begin{pmatrix} \langle \delta b^\dagger_q \delta b_k \rangle_t + \delta_{k,q}/2 & \langle \delta b_k \delta b_q \rangle_t \\ \langle \delta b^\dagger_k \delta b^\dagger_q \rangle_t & \langle \delta b_k \delta b_q \rangle_t + \delta_{k,q}/2 \end{pmatrix} \]

\[= \begin{pmatrix} Nf_k f_q^* + \delta_{k,q}/2 & Mf_k f_q \\ M^* f_k^* f_q^* & Nf_k^* f_q + \delta_{k,q}/2 \end{pmatrix}, \]

\[\mathcal{I}_{SE} = S(\Theta_S) + S(\Theta_E) - S(\Theta_{SE}) \]
The global S-E Wigner function satisfy a unitary QFP:

\[\partial_t W_{SE} = \partial_\alpha J_S - \partial_\alpha^* J_S^* + \sum_k (\partial_{\beta_k} J_k + \partial_{\beta_k^*} J_k^*) \]

The currents acting on S and E are:

\[J_S(W_{SE}) = \frac{1}{g^*} (\sum_k \dot{f}_k^* \beta_k) W_{SE}, \]

\[J_k(W_{SE}) = -\frac{\dot{f}_k}{\dot{g}} J_E(W_{SE}), \quad J_E(W_{SE}) = \frac{\dot{g}}{g} \alpha W_{SE}, \]
MARGINAL QFP

- Integrating over the bath we obtain the QFP for the system:

\[\partial_t W_S = \partial_\alpha J_S(W_S) + \partial_{\alpha^*} J^*_S(W_S) \]

\[J_S(W_S) = \int d^2 \beta \mathcal{J}_S(W_{SE}) = \Gamma(t) \left(\alpha + \frac{\partial_{\alpha^*}}{2} \right) W_S \]

\[\Gamma(t) = -\frac{\dot{g}}{g} = \kappa \quad \text{(in the Markovian case)} \]

- Consequently, the entropy production continues to be:

\[\Pi = -\frac{dS(W_S||W_{eq}^S)}{dt} = \frac{4}{\Gamma(t)} \int d^2 \alpha \frac{|J_S(W_S)|^2}{W_S} \]
ENTROPY PRODUCTION IN THE DILATION

- The global S-E unitary satisfies the following conservation law:

\[
\frac{dS(W_{SE}||W_{SE}^{eq}(W_E(0)))}{dt} = 0
\]

- i.e., the distance to the global vacuum remains constant.

- This allows us to separate \(\Pi \) as

\[
\Pi = \frac{dI_{SE}}{dt} + \frac{dS(W_E||W_E(0))}{dt}
\]

- 2nd term: irreversibility due to changes in \(E \) (local).

- 1st term: irreversibility due to S-E correlations (non-local)
Nothing in the dynamics this model indicates divergences occurring at $T = 0$. All properties are well behaved.

A particularly remarkable special case is when the system starts in a coherent state.

S_E remain in a product state throughout.

$$|\psi(t)\rangle = |\mu g(t)\rangle \otimes \prod_k |\mu f_k(t)\rangle$$

$I_{SE} = 0$ at all times, but there is still an entropy production.
This model provides the perfect platform for experimenting with non-Markovian effects.

In this case Markovianity is fully determined from the sign of

\[\Gamma(t) = -\frac{\dot{g}}{g} \]

An interesting question then is which contributions to the entropy production can be used as witnesses of non-Markovianity.
As a proof of principle, we consider the dynamics of the system S which was initially entangled with an ancilla A (Rivas, Huelga, Plenio, PRL, 105, 050403 (2010)).

Interpretation: thermal state of $S = \text{two-mode squeezed state of } S + A$

$$\Theta_{AS}(0) = \begin{pmatrix}
N + 1/2 & 0 & 0 & \sqrt{N(N+1)} \\
0 & N + 1/2 & \sqrt{N(N+1)} & 0 \\
0 & \sqrt{N(N+1)} & N + 1/2 & 0 \\
\sqrt{N(N+1)} & 0 & 0 & N + 1/2
\end{pmatrix}$$
Markovian
non-Markovian
CONCLUSIONS

- Bosonic Gaussian systems: complete theory of non-equilibrium entropy production in terms of the Wigner entropy.
- Relates entropy production with currents in phase space.
- Using exact dilations, we can separate Π in two terms:
 - The displacement of the bath from equilibrium
 - The non-local system-environment correlations.

Thank you