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Abstract
The study of non-equilibrium physics from the perspective of the quantum limits of thermodynamics and fluctuation
relations can be experimentally addressed with linear optical systems. We discuss recent experimental investigations in this
scenario and present new proposed schemes while discussing the potential advances they could bring to the field of quantum
thermodynamics.
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1 Introduction

Experiments lie at the heart of all natural sciences. Despite
the great success achieved by thermodynamics since the
industrial revolution, its experimental investigation can still
bring important advances, not only for the fundamental
point of view (to test the limits of its applicability) but also
for practical purposes towards new technologies.

Since Carnot, Clausius, Maxwell, Boltzmann, Gibbs and
others constructed its basis more than one hundred years
ago, thermodynamics witnessed a huge development,
passing through many conceptual shifts. It was initially
developed as a macroscopic theory, aiming to describe very
specific measurements consisting of spatial and temporal
averages. The advent of statistical mechanics and quantum
theory pushed thermodynamics to a higher level. Among
several developments, we can mention Onsager’s theory
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Catarina, Florianóplis, SC, CEP 88040-900, Brazil

2 Present address: Universidade Tecnológica Federal do Paraná,
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[1, 2], Kubo’s fluctuation-dissipation theorem [3], and the
generalized fluctuation relations derived by Jarzynski [4],
Crooks [5], and others [6, 7].

These tools were developed in order to understand how
the laws of thermodynamics apply to small (classical and
quantum) systems, where fluctuations matter. As a con-
sequence, it was also necessary to develop experimental
techniques able to probe such limits. Regarding quantum
systems, the requirement of performing two energy pro-
jective measurements on the system, for testing Jarzynski
fluctuation relation, creates a huge barrier for experimental
investigations. This fact explains why we have a rela-
tively small number of reported experiments to date. For
instance, pioneering experiments were performed for study-
ing Jarzynski and Crooks relations [8–14]. There were
also experimental investigations of the Landauer’s princi-
ple [15–17] and Maxwell’s demon paradox [18, 19]. The
experiments for quantum systems employed several plat-
forms. Jarzynski’s equality and Landauer’s principle for
quantum systems were addressed using nuclear spins [20,
21]. They used a strategy based on Ramsey interferome-
try for avoiding the energy projective measurements [22,
23]. The so called two-point measurement protocol to test
Jarzynski’s relation was implemented using ion-trap [24]
and an all-optical setup [25]. A trapped-ion setup was also
employed to implement a quantum thermal machine [26].
Finally, Maxwell’s demon paradox was addressed in a
superconducting-device experiment [27].

The purpose of this work is threefold. First, we introduce
the basic concepts of quantum thermodynamics. Second,
we present a short review on the use of optical setups
to address problems in experimental quantum thermody-
namics, demonstrating that they can be powerful tools to
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advance the field. We discuss three types of optical sys-
tems. The first one based on the light polarization degree
of freedom, the second one based on the photon num-
ber/energy degree of freedom, and the third one based
on the transverse spatial mode structure of light beams.
Third, we focus on the use of spatial modes reviewing
a recent theory paper and present new theoretical results
as a perspective for the application of the spatial-mode
approach. In this way, we illustrate the usefulness of the
optical approach to experimentally study problems in quan-
tum thermodynamics, an area that is becoming increas-
ingly important given the developments achieved during
the last decade.

The paper is organized as follows. Section 2 is devoted to
the discussion of some aspects of the second law of thermo-
dynamics and fluctuation relations. It is not our intention
here to provide a complete review of such topic, but instead
we concentrate ourselves in the main aspects that will be
important for the experimental investigations to be pre-
sented later. In short, we discuss the statistical character of
the second law when we consider small (quantum) systems
and how Jarzynski equality emerges from it. In order to do
this, we consider the two-point measurement definition of
work (see Ref. [28] and references therein). The notions
of entropy production and irreversibility are also discussed
in this section. We then proceed with the description of
three experiments that illustrate the utility of the optical
approach in Section 3. The first one concerns thermome-
try, the second one being a proof-of-principle for realizing
a photonic Maxwell’s demon, while the third describes
the reconstruction of the work probability distribution for
a quantum system. Next, on Section 4, we present three
theoretical proposals that are suitable for implementation
with optical setups, two of them are new. Conclusions and
perspectives are presented in Section 5. In Appendix, the
isomorphism between the paraxial wave equation and the
two dimensional Schödinger equation is presented. This
mapping allows us to study the thermodynamics of quantum
systems employing all-optical experiments.

Throughout the article, we use units such that Boltzmann
and Planck constants are equal to one.

2 The Second Law in Quantum and Classical
Thermodynamics

Different from fundamental laws of physics, like Newton’s
or Maxwell’s equations, the second law of thermodynamics
sets limits for all physical process. Its importance is not
only practical (setting the efficiency of heat engines, for
instance), but also fundamental, since it tells us the preferred
direction of time (the so called arrow of time). Despite
its universal character, in the sense that its formulation is

independent of any microscopic details of the considered
system, there are deep conceptual differences between
quantum and classical descriptions. The goal of this section
is to shortly review these ideas.

2.1 Jarzynski Equality

The idea of work extraction is among the most important
in thermodynamics [29–31]. It is the basic figure of merit
dictating the construction of heat engines and related
devices. The limitations imposed on it by the second law
of thermodynamics reflect some of the deepest ideas in
physics. According to the second law, the amount of work
W that must be invested in order to perform a physical
process is lower bounded by

W ≥ �F, (1)

where �F = Fτ −F0 is the change in free energy F = U −
T S, with U being the internal energy, T the temperature,
and S the entropy. The considered process is assumed to
take place in the time interval t ∈ [0, τ ]. In (1), work is
defined to be negative when it is extracted (that is, when the
system performs work on an external agent). Thus, for work
extraction, (1) should be read as |W| ≤ |�F |. We therefore
see that F is the energy that is free to be potentially extracted
as useful work. However, in general, not all invested energy
translates into free energy (that can be converted into useful
work), as some energy may be irreversibly dissipated. This
fundamental limitation on the amount of work that can be
extracted, or the minimal amount of work that must be
invested to increase free energy, is the essence of the second
law of thermodynamics.

For more than a century, thermodynamics has been
restricted to macroscopic systems. In the last two decades,
however, novel formulations appropriate for the micro-
scopic realm have been introduced, which led to an increas-
ing interest in the physics community. All these formula-
tions rely on a fundamental paradigm shift, namely, that
in order to properly address the thermodynamics of micro-
scopic systems, one must take into account fluctuations in
physical quantities, like work for instance. In the micro-
world, fluctuations play a prominent role, so that work and
all other thermodynamic quantities will also fluctuate, being
therefore described by random variables. One may then
speak of a distribution of work, P(W), which gives the
probability that a certain amount of work W is extracted in
a single run of a process. We will focus on work, but the
ideas presented here can be readily extended to other ther-
modynamic quantities, like heat or entropy production, for
instance.

Stochastic thermodynamics is the research field that
treats the classical contribution from such fluctuations,
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whose origin lies on thermal effects [32]. However, in suffi-
ciently well-controlled systems, fluctuations may also have
a quantum contribution, thus opening the possibility of
exploiting genuinely quantum mechanical resources to per-
form thermodynamic tasks with unprecedented efficiency
[14, 20, 24, 26, 33, 34]. This fascinating new perspective is
the main motivation behind the blooming field of quantum
thermodynamics.

In addition to the potential technological implications,
stochastic and quantum thermodynamics also provides
valuable insight into the second law. More specifically, on
how the intrinsically irreversible behavior of macroscopic
systems ultimately emerges from the underlying reversible
dynamics of the microscopic constituents. Perhaps the most
dramatic manifestations of this aspect are the so called
fluctuation relations, whose most famous representative
is Jarzynski’s equality. It was first derived for classical
systems [4] and then extended to the quantum realm [35–
37]. It reads
〈
e−βW

〉
= e−β�F , (2)

where β = 1/T is the inverse temperature and
〈
e−βW

〉
=

∫
dW P(W)e−βW . (3)

There are several remarkable aspects of (2). First, it is an
equality, even though it is valid for processes arbitrarily far
from equilibrium. This is in stark contrast to equilibrium
thermodynamics, which is only capable of offering inequal-
ities for non-equilibrium processes. Second, equilibrium
information (the free energy) is fundamentally encoded
into the response of the system. Finally, the derivation of
(2) relies only on the assumption that the initial state is
thermal and the underlying dynamics (e.g., Newton’s law
or Schrödinger’s equation) is time-reversal invariant. This
hints at the universality of non-equilibrium processes.

We can use Jensen’s inequality, which states that for a
convex function f , it holds 〈f (x)〉 ≥ f (〈x〉), in (2) to
conclude that

〈W〉 ≥ �F . (4)

We therefore recover the traditional second law (1), but
for the average work 〈W〉 instead. Individual realizations of
a work process may violate (1), but (4) should always hold.
This fact points out the statistical character of the second
law of thermodynamics. As a consequence of the central
limit theorem, fluctuations must vanish in the thermody-
namic limit (large systems), thus implying that the work
distribution P(W) should become more and more peaked
around the average value 〈W〉. Therefore, for macroscopic
systems, local violations of (1) become exponentially less
likely. In this way, classical thermodynamics is recovered in
the macroscopic limit.

2.2Work Distribution in QuantumMechanical
Systems

In this paper, we shall be concerned with the work
distribution for quantum systems undergoing a unitary work
process. In this case, the distribution of work may be
constructed using the two-point measurement protocol [37],
which goes as follows.

• The system, whose Hamiltonian is H0, is prepared in
thermal equilibrium at temperature T

ρth
0 = e−βH0

Z0
,

where Z0 = tr(e−βH0) is the partition function.
• After this, a projective energy measurement is per-

formed on the system. State |ε0
n〉 will be found with

probability

p0
n = e−βε0

n

Z0
. (5)

We defined the eigenvalues and eigenvectors of the
initial Hamiltonian as H0|ε0

n〉 = ε0
n|ε0

n〉.• The next step is the process (work protocol), which is
characterized by an externally controlled parameter λt

(or set of parameters). This unitary process changes the
Hamiltonian from H0 to a final one Hτ . The process is
denoted by Uτ .

• The final step is a projective energy measurement on
the final Hamiltonian eigenbasis, defined by Hτ |ετ

m〉 =
ετ
m|ετ

m〉. The conditional probability associated with
state |ετ

m〉 is then

pm|n = |〈ετ
m|Uτ |ε0

n〉|2. (6)

The sequence of quantum numbers (n, m) forms the
quantum trajectory for this process, which occurs with
path probability

pm,n = p0
npm|n. (7)

It is important to observe that the system is assumed
to be decoupled from any environment during the time
window t ∈ [0, τ ] where the work protocol is implemented.
Consequently, the work performed in each trajectory will
simply be defined as the change in the energy of the system
(sometimes referred to as inclusive work [38])

Wm,n = ετ
m − ε0

n. (8)

The probability distribution of work may then be
computed from the general definition

P(W) =
∑
m,n

δ
(
W − Wm,n

)
pm,n. (9)
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From P(W), all statistical quantities can be computed in
the usual way. For instance, the average work is nothing but

〈W〉 =
∫

dW P(W)W =
∑
m,n

pm,nWm,n. (10)

With some rearrangements, one may show that this can
also be written as

〈W〉 = tr
{
Hτρτ

} − tr
{
H0ρ

th
0

}
, (11)

where ρτ = Uτρ
th
0 U†

τ is the final state of the system when
measurements are suppressed. Unfortunately, extending this
reasoning to higher-order moments of W is not possible,
as work is not a function of state and therefore cannot
be associated with a quantum mechanical observable [39].
Consequently, higher-order moments are only correctly
defined using the two-point measurement protocol and the
corresponding distribution P(W).

2.3 Irreversibility and Entropy Production

The second law in (4) (or its macroscopic counterpart in
(1)) reflects the intrinsically irreversible nature of a physical
process. We define the irreversible work as

Wirr = 〈W〉 − �F ≥ 0, (12)

which quantifies the amount of free energy that was
not harnessed as useful work. The process will be said
reversible when Wirr = 0, which occurs for quasi-static
transformations. In this case, the energy invested in order to
perform the process is entirely converted into free energy.

The irreversible work can be viewed as a specific man-
ifestation of a more general concept in thermodynamics
known as entropy production. The average entropy produc-
tion associated with the irreversible work (12) is defined as

	 = βWirr = β(〈W〉 − �F). (13)

The concept of entropy production was introduced by
Clausius as a quantifier of irreversibility for general ther-
modynamic processes. The specific definition of 	 depends
on the process in question. Notwithstanding, the basic idea
is that in terms of the entropy production, one may formulate
the second law as a single universal expression

	 ≥ 0. (14)

Despite its simplicity and elegance, this is perhaps the
most important expression in all of thermodynamics and
certainly the one with the deepest conceptual implications.

Following the same reasoning outlined in the last section
considering work distribution, for quantum systems, one
may also define a fluctuating entropy production as

σm,n = β(Wm,n − �F), (15)

Fig. 1 Diagram of the basic dynamics undergone by the system during
a work protocol. The system is initially prepared in a thermal state ρth

0
with Hamiltonian H0. After the driving protocol, the system will be in
a non-equilibrium state ρτ , which will in general be different from the
thermal one, defined by ρth

τ = e−βHτ /Zτ

where Wm,n is given in (8). The average entropy production
(13) is then recovered as 	 = 〈σ 〉. Since Wm,n is a random
variable, σm,n is random as well. Therefore, probability
theory allows us to write down the probability distribution
associated with σm,n given that of Wm,n. From this,
Jarzynski equality (2) may be rewritten in the form of a
fluctuation theorem

〈e−σ 〉 = 1. (16)

This expression can be viewed as a universal result for
entropy production, since it is independent of the considered
physical process. As we saw before, it also encompasses the
second law (14) as its first moment, since the application of
Jensen’s inequality to (16) immediately leads to (14).

Next, let us return to (13) and the unitary driving scenario
discussed earlier. A diagram of the dynamics is shown in
Fig. 1. Even though the system was initially in a thermal
equilibrium state, due to the action of the driving protocol,
the final state ρτ will in general be a non-equilibrium one.
After some calculations, the entropy production may also be
written as follows [40]:

	 = S(ρτ ||ρth
τ ), (17)

where S(ρ||σ) = tr(ρ ln ρ − ρ ln σ) is the quantum relative
entropy and ρth

τ is the thermal state associated with the final
Hamiltonian. Hence, we see that the entropy production
may also be interpreted in terms of how distinguishable the
actual final state ρτ is from the reference thermal state ρth

τ .
Given the basic ingredients of quantum thermodynamics

and how we can address problems in this field within linear
quantum optics, we proceed by describing the experiments
that were performed until now and with the theoretical
proposals for new experiments.

3 Experimental Studies

In this section, we provide a short review of the experiments
performed to date employing optical setups in order to
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illustrate the utility of optical systems for the investigation
of thermodynamics at the quantum level. We describe
three experiments. The first one is the construction of
a thermometer for the polarization degree of freedom of
light. This is important, since it gives an example of how
an optical system can interact with an environment in a
controllable way, which is fundamental for the construction
of a thermal engine. The second one is the study of a
Maxwell’s demon, whose goal is to increase the free energy
beyond the limit given by the second law [(1) and (4)]. The
reason they are able to do this is the use of information as a
resource, which is converted into useful work (free energy).
The basic principle of measurement to be used for feed-
forward is demonstrated, even though the actual charging of
the capacitor is not realized. It is technically challenging,
even though feasible with existing technology. Finally, the
last one is a direct implementation of the protocol described
in Section 2 for studying Jarzynski equality, using an all-
optical system. These three experiments explore the basic
ingredients of quantum thermodynamics in the context of
optical systems, paving the way for new developments such
as quantum heat engines and entanglement-assisted work
extraction

3.1 Simulation of Single-Qubit Thermometry

The first work [48] analyzes the use of a single qubit as a
thermometer. In standard thermodynamics, the temperature
is defined only for systems in equilibrium with its
surroundings acting as a thermal bath. A usual method to
measure the temperature is to use a thermometer, which
does not affect the equilibrium conditions. However, when
the system becomes smaller, the thermometer needs to be
even smaller in comparison with the thermal bath.

In order to reduce the scale of the thermometers, Jevtic
et al. [49] proposed a model where you can use a single
qubit to obtain the information about two temperatures
of a bosonic bath. Mancino et al. [48] presented an
experimental investigation of this model using a laser beam,
interferometers, and photodiodes. They implemented and
measured optical thermal states prepared in the polarization
degree of freedom.

They employed a linear-optical-simulator to emulate the
interaction between one qubit and a thermal bath. When the
qubit is isolated from the bath, |0〉 is the excited state and |1〉
is the ground state, and �ω is the energy difference between
levels.

To simulate the qubit in the presence of a thermal bath,
they used a quantum channel to implement the excitation
(decay) of the ground (excited) state. The process that
can be applied to realize this interaction is the generalized
amplitude damping channel (GAD), described by two pairs
of Kraus operators. The first one is E0 and E1, which

describe the standard decay of the excited state of the qubit
into a “cold” bath T1. The second pair, E2 and E3, is related
to the inverse process, where the qubit is placed in a “hot”
bath T2 and goes from the ground to the excited state,
and T2 > T1. With the Kraus operators, it is possible to
reconstruct the process.

The setup is sketched in Fig. 2. It consists of a Sagnac-
like interferometer, which implements the GAD. One of
the mirrors of the Sagnac is replaced with a spatial
light modulator (SLM). The ground (excited) state, by
convention, the state |1〉 (|0〉) is the vertical |V 〉 (horizontal
|H 〉) polarization state.

Three different input states where prepared for the
thermometer: (i) the ground state of the qubit (|V 〉)
represents the situation where the thermometer will be
heated up by the hot bath; (ii) the excited state (|H 〉)
represents the situation where the thermometer will be
cooled down by the cold bath; (iii) the third state (|+〉) is a
superposition between hot and cold thermometer state. Each
input state is sent through the process, which is the cold
or the hot bath. The goal is to analyze the output state of
the polarization qubit using state tomography, and from the
population difference determine if the bath was hot or cold.
The interaction time is simulated by changing the parameter
p in the channels that are implementing the baths.

The results show that, for short interaction times, the
discrimination is optimal and approaches the theoretical
prediction. They also show that all three input states are

Fig. 2 Experimental setup for implementing a generalized amplitude
damping channel. The light source is a diode laser at 810 nm, PBS is
polarizing beam splitter, H is half waveplate, Q is quarter waveplate,
and SLM is spatial light modulator. The incoming light beam is split
by PBS0 into horizontal and vertical polarization components. Each
component performs a round trip in the Sagnac-like interferometer,
interact with H3, H4, and the SLM, and they are recombined in another
point of PBS0. There are two output beams and their polarization states
are analyzed using H1(H2), Q1(Q2), and PBS1(PBS2)
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equally suited to the task and the coherent superposition
input state presents no gain in this scenario. In conclusion,
the polarization qubit can be used as a thermometer for these
emulated thermal baths.

3.2 Photonic Maxwell’s Demon

Let us now discuss one more experiment employing an
optical setup. This time, instead of polarization, the authors
use the photon number or energy degree of freedom
to experimentally address a paradigmatic problem in
thermodynamics, Maxwell’s demon. Mihai et al. [19] used
the setup schematically shown in Fig. 3 to demonstrate that
it is possible to extract work from an intense pseudo-thermal
light source and use it to charge a capacitor.

The experimental setup is illustrated in Fig. 3. Light
coming from the pseudo-thermal source is split into two
beams with the same average intensities. Each one is
directed to a high transmission beam splitter (BS). The
transmitted light is detected by a photodiode (PD) and
the reflected light is detected by a single-photon counting
module (SPCM). The PD converts light into electric current.
Without accounting for the information coming from the
SPCM, the average voltage across the capacitor (C) is zero.
However, the event of a photon count in the SPCM is
correlated with the intensity fluctuation of the transmitted
beam, and this can be used to switch the capacitors polarity
according to the conditional counts in the SPCM.

As the thermal light has the photon bunching effect, when
a photon is reflected from the BS into the SPCM, there
is a higher probability that the number of photons in the
transmitted beam fluctuates above the average. Therefore,
using the information coming from both SPCMs and feed-
forward, the polarity of the capacitor can be properly

Fig. 3 Schematic representation of the experimental setup for
demonstrating a photonic Maxwell’s demon

switched. One count in one of the SPCMs and no count in
the other helps in charging the capacitor, while two counts
or two no-counts do not contribute to the charging process.
The authors provided a proof-of-principle by measuring
the intensity difference between the PDs conditioned on
the count and no-count events in the SPCMs. They do not
actually implement the feed-forward control to demonstrate
effective charging of the capacitor.

3.3Work Distribution with Paraxial Light Modes:
Two-Point Measurement Protocol

Another experimental method to measure the work dis-
tribution of a process acting on a system simulated with
paraxial light modes is through projective measurements,
by directly considering the two-point measurements proto-
col presented in Section 2.2. In the previous section, we
introduced a method that recovers the information about
the energy of the system through interference in order to
avoid direct energy measurements. Here, we want to show
how to reconstruct the work distribution by measuring the
energy levels of the system through projective measure-
ments after a process has been applied. The system and the
applied process can be simulated experimentally with parax-
ial beams due to the analogy between the paraxial equation
and the Schrödinger equation (see Appendix). A family of
light modes that are solutions to the paraxial wave equation
and, therefore, simulating a quantum harmonical oscilla-
tor are the Laguerre-Gaussian (LG) modes. Their energy
eigenvalues are as follows [50]:

ε�p = (|�| + 2p + 1)�ω , (18)

where � and p are the azimuthal and radial quantum
numbers, respectively, which correspond to the azimuthal
and radial indexes to identify the elements of the LG basis
of modes. If we consider only modes with p = 0, their
eigenvalues reduce to

ε� = (|�| + 1)�ω (19)

and therefore depend on � only. LG light modes contain
a orbital angular momentum (OAM) [51]. The amount
of OAM per photon of each mode is determined by the
quantum number �. This means that a projection onto the
OAM basis is equivalent to a projection onto the energy
eigenbasis. If we restrict ourselves to processes that only
change � and then project the final state in the OAM basis,
the work done on the system in the transition from an initial
� to a final �′ can be defined as

W��′ = (|�′| − |�|)�ω . (20)

Using this definition, we can calculate the work
distribution in (9). The probabilities pm,n of that distribution
are in this analogy, the probabilities p�,�′ = p�p�′|�. This is



Braz J Phys

the probability to observe the transition � → �′, p� is the
probability of having � as an input and p�′|� the probability
of observing �′ at the output given that � was the input.
Those probabilities p� are the thermal probabilities defined
in (5), where the denominator Z0 is the partition function.
The partition function is defined in terms of a sum over all
possible energy states. In the analogy between OAM states
and QHO energy eigenstates, we have to consider that there
are OAM states with negative values of �, but for a HO, there
are no negative energies. Those states with negative � have
the same energy and the same probabilities as their positive
equivalent, p� = p−�. This results in a degeneracy 2 for all
energy states, except for � = 0 and therefore in a different
partition function to adjust the thermal probabilities of each
mode. We obtain for the partition function [25]

Z0 =
∑

�

e−βε0
� =

(
eβ�ω tanh

β�ω

2

)
. (21)

The first step of the two-point measurement protocol
is to prepare the initial state, which is a thermal one in
the OAM basis. In an optical setup, this can be done
by directing a Gaussian laser beam onto a SLM, which
modulates the light beam with a programmed phase mask
to generate a LG mode with the desired OAM. The input
modes do not need to be produced with their respective
thermal probabilities because a thermal state is a incoherent
mixtures of all possible input states (see previous section).
We can generate every one of the basis state and apply
a process independently to each and multiply by its
thermal probability afterwards in order to calculate the work
distribution. A range of input states like −10 � � � 10 can
be chosen because higher-order states contribute to the work
distribution negligibly and their Boltzmann weights can be
ignored.

In the second step of the protocol, a process acting
on the system is applied. This can be done by a second
SLM, using another phase mask that introduces transitions
between different energy levels and thus, perform work on
the system.

In the last step, after the process, we projectively measure
the OAM distribution. To measure the OAM of a light
beam, one can use a device called mode sorter, which
splits different OAM modes spatially and different regions
on a screen can be associated with different values of
OAM. Another technique is using a single-mode optical
fiber together with a SLM. These optical fibers only couple
modes with � = 0. The SLM is able to change the value
of � of an incident OAM mode. The value of � that the
SLM changed in order to couple to the fiber is then equal
to the � of the OAM mode. A possible way to implement
this protocol experimentally as described here is shown in
Fig. 4.

Fig. 4 Experimental setup for an optical implementation of the two-
point measurement protocol to obtain the work distribution. A laser
emitting a Gaussian mode is directed to SLM1 which generates the
LG input modes. SLM2 applies a process that introduces transitions to
other modes. The mode sorter splits the different OAM modes which
are then recorded by a CCD camera

The information of the input state and the measured
output OAM distribution gives us the transition probabilities
p�′|�. Together with the thermal probabilities for the
corresponding input states, we can calculate the joint
probabilities p�′,� and, therefore, the work probability
distribution P(W) associated with the applied process. A
detailed experimental setup of this protocol as well as
an implementation of the Maxwell’s demon using this
approach can be found in ref. [25].

4 Theoretical Results

We start this section presenting the characteristic function
approach to investigate the work probability distribution.
Next, we discuss experimental schemes considering the
quantum harmonic oscillator. Although the results pointed
out here are theoretical in nature, they clearly highlight the
power of the optical setup in the experimental investigation
of quantum thermodynamics.

4.1Work Distribution with Paraxial Light Modes:
Characteristic Function Approach

The experimental investigation of non-equilibrium behavior
of quantum and classical systems becomes increasingly
difficult as the size of the system decreases. Measuring the
energy states of a quantum system and computing the work
distributions becomes problematic, since the two-point
measurement protocol for defining the work performed on
the system (see Section 2.2) requires two energy projective
measurements on the system, before and after the process
took place. A way of avoiding this difficulty is to reconstruct
the work distribution through the characteristic function.
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The work characteristic function is the Fourier transform of
the work distribution and is defined as [20]

G(s) =
∫

P(W)eisWdW

=
∑
m,n

pm,n eis(ετ
m−ε0

n), (22)

where P(W) is the work probability distribution introduced
in (9). By measuring the characteristic function, we can
reconstruct the work distribution by calculating the inverse
Fourier transform. While both the work distribution and the
characteristic function are functions of the energy differ-
ences between energy levels, or eigenvalues of the system’s
Hamiltonian, it is possible to encode this information in the
phase of an auxiliary system [22, 23].

Considering the optical setup, this phase information can
be measured at the output of a suitable interferometer in
the form of oscillations [43]. Due to the analogy between
the paraxial equation and the Schrödinger’s equation (see
Appendix), we can emulate the dynamics of a quantum
harmonic oscillator (QHO) with light modes that are
solutions to the paraxial equation. These light modes are
isomorphic to the energy eigenstates of the QHO [44]. Here,
we deal with Hermite-Gaussian (HG) modes, which are
one-dimensional solutions of the QHO.

In order to determine the characteristic function of the
work distribution of a process, we need to devise the appro-
priate operation on the light beams and also implement
free evolutions. Work performed on the system can be
achieved by propagating the light modes through linear opti-
cal elements such as lenses, phase masks, and spatial light
modulators (SLM), which implement unitary transforma-
tions. Free evolution can be implemented by an optical
transformation called fractional Fourier transform (FRFT).
The paraxial optical modes, like the Hermite-Guassian and
the Laguerre-Gaussian, are eigenfunctions of the FRFT
operator. Therefore, under FRFT, these modes acquire a
global phase that is dependent on their mode labels.

One method for performing the optical FRFT is sketched
in Fig. 5, where the input field is transformed in the output
field by free propagation, propagation though a spherical
lens and free propagation again. The FRFT is characterized
by a parameter α ∈ [0, 2π ] that is related to the focal
distance f of the lens and the distance zα of each free
propagation through

zα = 2f sin2(α/2). (23)

The action of the FRFT can be defined by the operator [45]

Vα = e−iα P2+X2
2 , (24)

where X and P are the dimensionless position and
momentum operators, respectively. This means that the
action of the FRFT is a rotation in phase space about

Fig. 5 Optical implementation of the fractional Fourier transform. A
symmetric lens with focal length f is placed between the input and
output plane with a distance zα to each. The field at the output plane
is then given by the fractional Fourier transform of the input field. The
input field Ψin represents the initial state of the QHO, which is evolved
by the evolution operator of (24), resuting in the final state represented
by the field Ψout

the angle α or, equivalently, a free evolution according to
the QHO Hamiltonian. The angle α can be controlled by
adjusting the distance zα and the focal length f . For α =
π/2 (zα = f ), this is equal to the optical Fourier transform,
a special case of the more general transformation FRFT.
Applying the FRFT operator to HG modes, we can verify
that they are eigenfunctions of Vα [46],

Vαφn = e−iαεnφn . (25)

Here, the modes φn(x) = 〈x|φn〉 are the nth eigenvector,
associated with the nth eigenvalue εn, in the position
representation. Looking at the action of the FRFT on the
light modes, we can notice that the transformation encodes
the information about the order n, and therefore the energy
of the system, in the optical phase. This is a key point in the
strategy of measuring the characteristic work function using
an interferometer.

The sketch of a possible scheme for the interferometer
can be seen in Fig. 6. The input mode φ0

n is prepared in a
HG mode. In the upper path of the interferometer, the

Fig. 6 Sketch of the interferometer which implements the protocol to
measure the characteristic work function. The input state is split by a
beam splitter (BS) into an upper and a lower path. In the upper path,
the input state is transformed by the FRFT and then a process U is
applied, while in the lower path, the order of application is reversed.
The output is measured with bulk detectors D1 and D2. A PZT is used
to control the phase difference to measure the real and imaginary parts.
M is a mirror
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optical FRFT is applied, corresponding to the QHO free
propagation. Afterwards, a transformation which is the
process acting on the system is performed. After applying
these two transformations, the state of the upper path can be
written as follows:

φ0
n → φ0

ne−iε0
nα → e−iε0

nα
∑
m

cm,nφ
τ
m . (26)

The expansion coefficients cm,n describe the transition
amplitude from the input mode φ0

n to the output mode φτ
m

after the process and they are defined as

cm,n =
∫

dx′dx
[
φτ

m(x′)
]∗

U(x′, x, t)φ0
n(x) , (27)

where U(x′, x, t) is the coordinate representation of the
applied process. The FRFT (in Fig. 6 as Vα) is implemented
like demonstrated in Fig. 5 so that the input plane of the
interferometer in the upper path is transformed onto the
plane that is the input plane for the device realizing the
process. Another lens can be used to image the output plane
of the process onto the output plane of the interferometer,
preventing unwanted or uncontrolled evolutions. In this
way, the modes evolve in a controlled manner through
stroboscopic steps. This imaging adds a constant phase
factor to the light modes, which can be controlled by a
piezoelectric actuator (PZT) in one of the mirrors so that we
will not consider it in the following calculations.

Applying the same treatment to the lower path, but in the
reverse order (first the process, then free propagation), we
obtain the following:

φ0
n →

∑
m

cm,nφ
τ
m →

∑
m

cm,nφ
τ
me−iετ

mα . (28)

Considering 50:50 beam splitters in the input and output
of the interferometer, we obtain that the intensity at the
output is proportional to [43]

In ∝ 2An + �
{∑

m

|cm,n|2ei(ετ
m−ε0

n)α

}
. (29)

Our initial input state shall be prepared in a thermal state
as mentioned in Section 2.2. This means that the input state
is a convex combination of all possible eigenstates with their
respective thermal Boltzmann weights. However, because a
thermal state is an incoherent mixture of those eigenstates,
we can prepare each one of the components of the mixture
and apply the process separately. We then sum up over all
possible input modes with their weights according to the
thermal distribution. In the experiment, a cutoff value can
be set for higher-order modes, as their probabilities become
increasingly small and they do not contribute to the work

distribution. Summing up (29) for all possible input states,
we find the intensity proportional to

I ∝ 2A + �
{∑

m,n

p0
n|cm,n|2ei(ετ

m−ε0
n)α

}
. (30)

If we compare this result to the characteristic work
function defined in (22), we see that the intensity at the
output of the interferometer is apart from the constant factor
2A, proportional to its real part, I ∝ 2A + �[G(α)]. We
obtain this result by considering that the upper and lower
paths have a zero phase difference. This path difference
can be controlled by the PTZ as shown in Fig. 6 and
mentioned before. In the same way, we can set the path
difference to π/2, which results in the intensity being
proportional to the imaginary part of the characteristic
function. This means that measuring the intensity at the
output of the interferometer, we are able to reconstruct
the work characteristic function. Calculating the Fourier
transform of this function, we get the work distribution
associated with the considered process. An experimental
setup to implement this measurement protocol, as well as
detailed calculations, is shown in the Appendix of ref. [43].

4.2 Driven and Squeezed Harmonic Oscillator

As detailed above, some of the transverse modes of a light
beam in the paraxial approximation are isomorphic to the
energy eigenstates of the 2D quantum harmonic oscilla-
tor. We will consider here the one-dimensional driven and
squeezed quantum harmonic oscillator. Our calculations
will be followed by a suggestion for experimental realiza-
tion using optical modes and linear optics. The Hamiltonian
of the system is as follows:

H(t) = �ω

(
a†a + 1

2

)
+ η(t)a† + γ (t)a† 2

+ η(t)∗a + γ ∗(t)a2, (31)

where a† and a are the creation and annihilation operators,
which are connected to the quadratures x̂ and p̂ by

x̂ =
√

�

2mω

(
a† + a

)
(32)

and

p̂ = i

√
�mω

2

(
a† − a

)
. (33)

ω is the oscillator frequency, η(t) = |η(t)|ei�(t) is the
displacement parameter, and γ (t) = |γ (t)|ei�(t) is the
squeezing parameter, so that �(t), �(t) ∈ R. Through
the suitable choice of the parameters γ (t) and η(t), we
can control the opening of the potential well and the
displacement of the equilibrium point of oscillation. The
phases �(t) and �(t) control the orientation in the phase
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space of the direction in which the displacement and
squeezing occur. These processes are implemented through
quenches achieved by linear optical devices.

In order to explore the work distribution as well as
the Jarzynski equality, it is necessary to diagonalize the
Hamiltonian (31). The diagonalized Hamiltonian Hd(t)

is connected to H(t) through a similarity transformation
H(t) = O†(t)Hd(t)O(t), where the unitary transformation

O(t) = D [α(t)] S [ξ(t)] (34)

is a composition of the displacement operator

D [α(t)] = exp
[
α(t)a† − α∗(t)a

]

and the squeezing operator

S [ξ(t)] = exp

{
r(t)

2

[
e−iθ(t)a2 − eiθ(t)a† 2

]}
.

The displacement parameter is α(t) = |α(t)|eiA(t), with
A(t) ∈ R, and the squeezing parameter ξ = r(t)eiθ(t)

is composed by r(t) ∈ R+, where its phase is given by
θ(t) ∈ R. The action of D [α(t)] and S [ξ(t)] on the creation
and annihilation operators is well known [47]

D†(α)aD(α) = a + α

and

S(ξ)†aS(ξ) = a cosh(r) − a†eiθ sinh(r),

so that the expression for a† is attained by Hermitian
conjugation of the above formulas. The expression of the
diagonalized Hamiltonian is as follows:

Hd(t) = �ω′(t)
(
a†a + 1

2

)
+ �C(t), (35)

where ω′(t) = ωδ(t) is the shifted-frequency, determined
by the parameter

δ(t) = 1

cosh[2r(t)] , (36)

and �C(t) = −�ω|α(t)|2 is a shift on the energy. Actually,
to obtain the final form of Hd(t) = O(t)H(t)O†(t), we
imposed that, after the transformation O(t) on H(t), the

coefficients multiplying the operators a, a†, a2, and
(
a†

)2

are null. Therefore, the connection between the parameters
of the unitary transformations and the parameters of the
Hamiltonian (31) is determined by the relations

|α| = |η|
ω2 − 4|γ |2

√
4|γ |2 + ω2 − 4|γ |ω cos (� − 2�),

(37)

A = arctan

[
2|γ | sin(� − �) − ω sin(�)

2|γ | cos(� − �) − ω cos(�)

]
, (38)

θ = Γ, (39)

r = 1

2
arctanh

(
2|γ |
ω

)
. (40)

Fig. 7 The intensity of the shifted-frequency ω′ = ωδ as function of
the squeezing parameter |γ | written in units of ω

Naturally, the diagonalization process imposes restric-
tions on the degree of squeezing |γ | ∈ [0, ω/2), which
in turn, changes the shifted-frequency ω′(t) through the
parameter δ(t) [see (36) and (40)].

In Fig. 7, it is shown the dependence of ω′(t) on the
squeezing parameter |γ |, where we notice that increasing
the degree of squeezing, the new frequency becomes
smaller. Such effect is better visualized in Fig. 8, where the
spectrum of the driven and squeezed harmonic oscillator

En = �ω′
(

n + 1

2

)
+ �C, n = 0, 1, 2, . . . (41)

is plotted for η = 0 and γ = 0 (left) and for η �= 0 and γ �=
0 (right). We observe that as |γ | increases, the potential well
becomes wider, or equivalently, the effective frequency of
oscillation becomes smaller. The opposite effect, in which
the potential well becomes tighter, can be achieved if the
initial and final configurations are interchanged, i.e., they
satisfy |γ (0)| > |γ (τ)|.

Fig. 8 Change in the spectrum of the harmonic oscillator due to the
sudden quench in the Hamiltonian promoted by the displacement and
squeezing terms in the Hamiltonian (31). Effectively, by increasing the
value of |γ, | the system becomes decompressed, as can be seen by the
change in ω′
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As we are considering a sudden change of the
Hamiltonian parameters, the unitary evolution operator is

, so that the conditional probabilities given by (6)
can be written as follows:

pm|n = |〈ετ
m|ε0

n〉|2, (42)

where the eigenstates of the initial Hamiltonian are |ε0
n〉 =

S† [ξ(0)] D† [α(0)] |n〉 and of the final Hamiltonian are
|ετ

m〉 = S† [ξ(τ )] D† [α(τ)] |m〉, with |n〉(|m〉) being the
Fock state. Rewriting the conditional probability (42) as
function of the displacement and squeezing operators, we
have the following:

pm|n = |〈m|D [α(τ)] S [ξ(τ )] S† [ξ(0)] D† [α(0)] |n〉|2.

(43)

Now we have all the necessary quantities in order to
analyze the work distribution in our system, however, to
verify Jazynski equality, we need to evaluate the Helmholtz
free energy, defined by

�F = 1

β
ln

[
Z(H(0))

Z(H(τ ))

]
, (44)

which, in our case, takes the form

�F = �ω

2
(δ(τ ) − δ(0))+ln

(
1 − e−β�ωδ(τ)

1 − e−β�ωδ(0)

)
+�C. (45)

4.2.1 Displacement Effects

Let us first consider the particular case in which γ (t) = 0
in Hamiltonian (31). In this situation, the diagonalization is
attained through the displacement operator only, that is why
we named such contributions displacement effects. In ref.
[43], it was reported the work distribution when the linear
momentum of the oscillator is displaced by a constant value

Fig. 9 In the upper part, the light beam is displaced by internal
reflection inside a prism. In the lower part, the overlap between
displaced modes is illustrated

p → p + p0 with �F = 0. Here we analyze two cases
in Fig. 10 where initially η(0) = 0 and after the sudden
quench η(τ) = 0.3ω (top figure) and η(τ) = 0.5ω (bottom
figure). As the phase of η(t) is null, �(t) = 0, the average

position of the oscillator is displaced by x0 = η

√
2�

mω3 .

These processes imprint a negative free energy variation

�F = −�η2

ω
and the average work performed on the system

is null. In order to illustrate that, we devise in Fig. 9 an
experimental setup for realizing the displacement operations
with paraxial light modes representing energy eigenstates
of the two-dimensional harmonic oscillator. The system
here is the wave-front of the light beam, which has its
direction of propagation changed by the prism. This process
is realized by propagating a light beam prepared in one of
the Laguerre-Gaussian modes through a prism that displaces
its axis parallel to the incident one. This simple operation
changes the Hamiltonian, as the origin of the coordinate
system is changed. The orbital angular momentum, which

Fig. 10 Work distribution for the driven harmonic oscillator with
a γ (t) = 0, �(t) = 0 for ∀t , η(0) = 0, β�ω = 1, and η(τ) = 0.3ω,
and b η(τ) = 0.5ω for the lower figure. The red solid vertical line
marks the free energy value and the average work performed on the
system is zero in both cases
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gives the information about the energy, depends on the
origin and there will be coupling between the displaced and
the non-displaced family of modes.

Another important aspect to be analyzed in the sudden
displacement case is the work distribution. We observe in
Fig. 10 that the effect of the driven term is to broaden the
work distribution and to displace the position of the center
of the distribution. This result is expected since higher
energy modes of the harmonic oscillator are excited after
the application of the linear quench enabling new transitions
among the energy eigenstates. As such displacement affects
all energy eigenstates, we expect that the center of the
distribution is displaced proportionally to the intensity of
η(τ).

4.2.2 Squeezing Effects

We now analyze how sudden squeezing processes affect the
work distribution. In this situation, we turned off the driven
parameter η(t) = 0 in Hamiltonian (31) and consider two
particular scenarios. In the upper part of Fig. 12, we set
γ (0) = 0 and γ (τ) = 0.3ω for β�ω = 0.5. This sudden
quench describes a decompression situation in which the
potential well of the harmonic oscillator is opened with
respect to the initial condition, ω → ω′ = 0.8ω. The
average work performed on the system in this case is null
while the variation of free energy is negative. In the scenario
in which the opposite process occurs, as shown in the lower
part of Fig. 12, we set γ (0) = 0.3ω and γ (τ) = 0 for
β�ω = 0.5. Now, the potential well becomes narrower
and consequently, the effective frequency increases after the
quench, ω′ = 0.8ω → ω. The average work performed on
the system and the free energy variation are positive, which
reflects the work performed on the light beam by the optical
devices.

Figure 11 shows the sketch of the setup for realizing
squeezing or decompression operations. As before, the input

Fig. 11 The light beam is expanded (propagation left to right) or
compressed (propagation right to left) with a telescope. In the lower
part, the overlap between smaller and bigger modes is illustrated

beam is prepared in one of the Laguerre-Gaussian modes
and sent through a beam expander (propagation left to
right) or compressor (propagation right to left). This will
change the Hamiltonian, as the expanded (compressed)
beams represent a new family of modes with larger (smaller)
beam waist. Therefore, there will be overlap between one
single mode of one family and some modes in the other
family.

As we can see in Fig. 12, the profile of the work distri-
bution of the quantum system after the sudden squeezing
quenches are quite different from the displacement
quenches. We observed that some degree of asymmetry in
the distribution is introduced depending on the value of γ (t)

at the beginning and at the end of the process. Moreover, we
can see oscillations in the work distribution that were not

Fig. 12 Work distribution of the harmonic oscillator after sudden
decompressed and squeezing quenches. The parameters are set to
β�ω = 0.5 and η(t) = �(t) = �(t) = 0 for ∀t ∈ [0, τ ] for both
figures. The upper figure a shows a sudden decompressed quench with
γ (0) = 0 and γ (τ) = 0.3ω, so that the characteristic frequency of the
oscillator after the quench is ωF = 0.8ω0. The lower figure b shows
the opposite case, i.e., a squeezing process in which γ (0) = 0.3ω and
γ (τ) = 0. The red solid line points the value of the free energy. The
average work is a zero and b < W >= 0.95
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Table 1 Numerical results for the Helmholtz free energy, average work, Jarzynski equality, and the normalization of the work probability
distribution for the set of parameters used in Figs. 10 and 12. In all cases λ(tI ) = 0

β�ω λ(tF ) γ (tI ) γ (tF ) 〈W〉 �F 〈e−β(W−�F)〉 ——P(W)—

1.0 0.3 0 0 0 -0.09 1.00 1.00

1.0 0.5 0 0 0 -0.25 1.00 1.00

0.5 0 0 0.3 0 -0.45 0.99 1.00

0.5 0 0.3 0 0.92 0.45 1.00 1.00

present, or not visible, for the displacement quench within
the range of parameters we have analyzed. Another fea-
ture observed in Fig. 12 is that the squeezing/compression
quench (b) increases the chance of observing a violation
of the second law of thermodynamics (in a single run)
as compared with the case for squeezing/decompression
quench (a). These single run violations can be understood
as follows. The work distribution displays the statistics of
events, supposing that several identical quantum systems are
subjected to the same process and each one undergoes a
transition resulting in some positive (work ON the system)
or negative (work BY the system) work. Therefore, in some
of these runs, the work done by the system is bigger than
the average free energy. The signature of these events in the
plots of Fig. 12 is being to the left of the red vertical line,
which indicates the average free energy in the horizontal
(work/energy) scale.

In Table 1, we check the validity of the results presented
in Figs. 10 and 12 through the numerical verification of
the Jarzynski equality and the normalization of the work
distribution.

5 Conclusion and Perspectives

We have presented an introduction to the new field
of quantum termodynamics highlighting the role of
experimental investigations based on all optical setups. The
high degree of control of several degrees of freedom of light,
like the polarization and the orbital angular momentum,
allows testing new theoretical developments like Jarzynki
fluctuation relation and realizing proof-of-principle tests of
strategies for the interconversion between information and
energy, inspired by the Maxwell’s demon paradigm. We
have also presented novel calculations of work distributions
for a quantum harmonic oscillator subjected to squeezing
and displacement. These distributions show signatures
of their quantum character and we also show that the
theoretical results can be experimentally tested using an
all-optical scheme.

We expect that all-optical setups including entangled
photons will be used in the near future to investigate
quantum effects on fluctuation relations, to implement

Maxwell’s demon strategies, and to investigate the problem
of the emergence of the arrow of time.
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Appendix: Analogy Between the Paraxial
Wave Equation and the 2D Schrödinger
Equation

The paraxial wave equation describes light beams that do
not diverge (or converge) too much during propagation.
In this section, we review the isomorphism between this
equation and the two-dimensional Schrödinger equation.
We start from the Helmholtz equation for a light field

(∇2 + k2)A(x, y, z) = 0, (A1)

where A(x, y, z) describes the spatial dependence for the
amplitude of the electric field. Denoting by k0 = 2π/λ0 the
wavenumber for a medium with constant index of refraction
n0, let us suppose that A(x, y, z) can be written as A =
u(x, y, z)e−ik0z, where z is the direction of propagation.
This starting point includes the assumption that the field
is almost monochromatic, so that the phase exp −iωopt t is
factored out. Inserting the amplitude A(x, y, z) in the wave
equation, and employing the paraxial approximation
∣∣∣∣
∂2u

∂z2

∣∣∣∣ �
∣∣∣∣k0

∂u

∂z

∣∣∣∣ , (A2)

we get

∇2⊥u(x, y, z) − ik0
∂u(x, y, z)

∂z
= 0, (A3)

where ∇2⊥ = ∂2/∂x2 + ∂2/∂y2. This equation is known as
the paraxial Helmholtz equation, or simply paraxial wave
equation. It can be written in a more convenient form

i

k0

∂u(x, y, z)

∂z
= − 1

k2
0

∇2⊥u(x, y, z), (A4)
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where the minus sign in the right hand side comes from
the arbitrary definition of the direction of propagation ±z.
We can directly connect it to the Schödinger equation by
making the identifications

ψ(x, y, t) → u(x, y, z),

t → z,

� → 1

k0
,

and comparing it with the Scrödinger equation for the free
particle

i�
∂ψ(x, y, t)

∂t
= − �

2

2m
∇2⊥ψ(x, y, t). (A5)

This equivalence can be extended to the case where
the Scrödinger equation describes a particle under the
action of some potential. In this case, the wave equation
should be solved in a non-homogeneous medium with a
position dependent index of refraction n(x, y). Rigorously
speaking, one should come back to the Maxwell’s equations
and not directly employ the wave equation. However,
under the paraxial approximation, and considering that the
variation of the index of refraction with x and y is small
enough, it is possible to use the same reasoning employed
above including a position-dependent potential. A complete
discussion about this subject can be found in ref. [41], and
the so called optical Schrödinger equation is derived in ref.
[42], for instance. Based on these works, we find that, when
a potential for the particle is included, we can write

i

k0

∂u(x, y, t)

∂z
=

[
− 1

k2
0

∇2⊥ + n(x, y)

]
u(x, y, t). (A6)

where n(x, y) is a position-dependent index of refraction,
and the corresponding Scrödinger equation is as follows:

i�
∂ψ(x, y, t)

∂t
=

[
− �

2

2m
∇2⊥ + V (x, y)

]
ψ(x, y, t). (A7)

In this context, it is convenient to make m = 1/2. This
can be done without loss of generality since the mass has no
physical meaning in the optical case.

An important potential function is the quantum harmonic
oscillator (QHO), which we explore in the context of
quantum thermodynamics. The index of refraction that
corresponds to the QHO potential V (x, y) = ω2(x2 +y2)/2
is given by

n(x, y) = 1

2
nα(x2 + y2) − n2, (A8)

where ω is the angular frequency of the QHO, n is the index
of refraction in the center (x = 0, y = 0) of the propagation
medium, and α is a constant. This index function describes
the so called square law media that appear in the context of

Fig. 13 A light source shines a transparent rod with transverse
modulation of the index of refraction given by a revolution paraboloid.
Only compatible modes like the Laguerre-Gaussian ones are coupled

optical waveguides [41]. The energy of the QHO is related
to the optical parameters by

�ω =
√

nα

k0
. (A9)

We can check the consistency of the analogy by noting
that the classical limit given by � → 0 corresponds to
λ → 0, which is equivalent to the ray-optics limit. We also
verify that increasing ω corresponds to increasing α, which
is a parameter that increases the confinement of the light
beam through the variation of the refraction index.

In Fig. 13, the optical analogue of the quantum harmonic
oscillator is sketched. The blue rod represents a medium
with an index of refraction that varies along the x and y

directions according to a paraboloid of revolution n(x, y)

given in (A8). The index is maximal in the center and
decreases when the radius r2 = x2 +y2 increases following
a parabolic function. In the analogy, this is the optical
equivalent of a two-dimension harmonic oscillator. When
light shines on the rod, only modes that are solutions to
the paraxial wave equation including the index of refraction
paraboloid function can propagate inside it. The Laguerre-
Gaussian modes [41, 50, 51], for instance, are such
solutions. They are equivalent to the quantum eigenstates,
and they will propagate without any change besides a global
phase shift. However, outside the rod, the index of refraction

Fig. 14 Comparison between the distribution of index of refraction
along the direction x with the equivalent potential energy for the cases
of an optical fiber/square potential as well as the QHO/optical version
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is constant. As a result, the beam will diffract and diverge.
It is interesting to note that an optical fiber implements the
equivalent of a finite height square potential: n(x, y) =
nc > 1 for r = √

x2 + y2 < r0 and n(x, y) = 1
for r = √

x2 + y2 > r0. Figure 14 shows a comparison
between the one dimensional versions of potential V (x)

and the modulation n(x) for the square function, which is
equivalent to the optical fiber, and the parabolic function for
the harmonic oscillator.

Let us now analyze what happens with the optical
analogue, when the Hamiltonian of the QHO changes due
to some action (process) on the system. The most relevant
change concerns some modification in the potential, so that
the energy gap �ω is modified. We refer to this change as a
squeezing or anti-squeezing. This is optically accomplished

Fig. 15 Upper panel: 1D representation of two square law media with
different values of α defined in (A8). Medium A is squeezed with
respect to medium B. Suppose there is light propagating from left
to right. Lower panel: graphical representation of an eigenmode of
medium A, a Laguerre-Gaussian mode with � = �0, propagating from
left to right. Inside A it only acquires a phase. In the air, it diffracts and
in B, it couples to the local eigenmodes �0, �1, �2

by changing α, which means that the paraboloidal index
of refraction distribution becomes broader or narrower in
the plane x, y. The upper panel of Fig. 15 illustrates
an anti-squeezing operation represented in one dimension.
Changing k0, or the wavelength, produces a similar effect.
The lower panel of Fig. 15 illustrates the effect of changing
the propagation medium from A to air and then to medium
B in the light beam. Supposing an initial eigenmode of
A, it propagates acquiring a global phase (not represented)
and not changing its shape. Reaching the free space, it will
diffract and when it is incident upon medium B, it will
couple its energy to eigenmodes of B. This means that the
initial beam with OAM �0 can give rise to other beams with
different values of OAM. In this analysis, we are neglecting
reflection effects, as they can be avoided in practice using
anti-reflection coatings.

In general, it is possible to emulate one quantum particle
in an arbitrary potential by using light and a medium
where the index of refraction is suitably modulated. It
is important to observe here that this isomorphism is
restricted to 2D systems, since the third coordinate here
plays the role of time. However, for practical purposes,
it is interesting to replace the modulated medium with a
stroboscopic dynamics, where the light beams are actually
propagated in free space and then spatially modulated. The
time evolution is obtained for a sequence of intermediate
plans. Figure 16 illustrates this approach. The light mode
inside the modulated medium evolves acquiring only a
global phase. The stroboscopic version of this evolution
takes the input state and transforms it into the evolved
state by means of linear optical components like lenses and
spatial light modulators (SLM). It is important to observe
here that this isomorphism is restricted to 2D systems, since
the third coordinate here plays the role of time.

Fig. 16 The light mode (eigenmode) propagating in the blue rod can
be emulated with a zero order Gaussian beam (LG00) incident on a
SLM, which prepares a mode identical to the mode inside the rod, and
its free propagation inside the rod is realized with free propagation and
a lens



Braz J Phys

References

1. L. Onsager, Phys. Rev. 37, 405 (1931)
2. L. Onsager, Phys. Rev. 38, 2265 (1931)
3. K. Kubo, Rep. Prog. Phys. 29, 1 (1966)
4. C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)
5. G.E. Crooks, Phys. Rev. E 61, 2361 (2000)
6. M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 771 (2011)
7. M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 1653

(2011)
8. G. Hummer, A. Szabo, Proc. Natl. Acad. Sci. USA 98, 3658

(2001)
9. J. Liphardt, S. Dumont, S.B. Smith, I.J. Tinoco, C. Bustamante,

Science 296, 1832 (2002)
10. D. Collin, F. Ritort, C. Jarzynski, S.B. Smith, I. Tinoco, C.

Bustamante, Nature 437, 231 (2005)
11. V. Blickle, T. Speck, L. Helden, U. Seifert, C. Bechinger, Phys.

Rev. Lett. 96, 070603 (2006)
12. O.-P. Saira, Y. Yoon, T. Tanttu, M. Möttönen, D.V. Averin, J.P.
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Souto Ribeiro, L.C. Céleri, Phys. Rev. A 94, 042305 (2016)
44. G. Nienhuis, L. Allen, Phys. Rev. A 48, 656 (1993)
45. P. Pellat-Finet, Opt. Lett. 19, 1388 (1994)
46. H.M. Ozaktas, Z. Zalevsky, M.A. Kutay, The fractional Fourier

transform: with applications in optics and signal processing. Wiley
Series in Pure and Applied Optics (2001)

47. M.O. Scully, M.S. Zubairy, Quantum optics (1999)
48. L. Mancino, M. Sbroscia, I. Gianani, E. Roccia, M. Barbieri, Phys.

Rev. Lett. 118, 130502 (2017)
49. S. Jevtic, D. Newman, T. Rudolph, T.M. Stace, Phys. Rev. A 91,

012331 (2015)
50. L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman,

Phys. Rev. A 45, 8185 (1992)
51. M. Padgett, L. Allen, Contemp. Phys. 41, 275 (2000)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/cond-mat/0009244
http://arxiv.org/abs/cond-mat/0007360v2

	Experimental Quantum Thermodynamics with Linear Optics
	Abstract
	Introduction
	The Second Law in Quantum and Classical Thermodynamics
	Jarzynski Equality
	Work Distribution in Quantum Mechanical Systems
	Irreversibility and Entropy Production

	Experimental Studies
	Simulation of Single-Qubit Thermometry
	Photonic Maxwell's Demon
	Work Distribution with Paraxial Light Modes: Two-Point Measurement Protocol

	Theoretical Results
	Work Distribution with Paraxial Light Modes: Characteristic Function Approach
	Driven and Squeezed Harmonic Oscillator
	Displacement Effects
	Squeezing Effects


	Conclusion and Perspectives
	Acknowledgments
	Funding Information
	Appendix : Analogy Between the Paraxial Wave Equation and the 2D Schrödinger Equation
	References
	Publisher's Note


