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We introduce the idea of weakly coherent collisional models, where the elements of an environment
interacting with a system of interest are prepared in states that are approximately thermal but have an
amount of coherence proportional to a short system-environment interaction time in a scenario akin to well-
known collisional models. We show that, in the continuous-time limit, the model allows for a clear
formulation of the first and second laws of thermodynamics, which are modified to include a nontrivial
contribution related to quantum coherence. Remarkably, we derive a bound showing that the degree of such
coherence in the state of the elements of the environment represents a resource, which can be consumed to
convert heat into an ordered (unitarylike) energy term in the system, even though no work is performed in
the global dynamics. Our results therefore represent an instance where thermodynamics can be extended
beyond thermal systems, opening the way for combining classical and quantum resources.
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Introduction.—The laws of thermodynamics provide
operationally meaningful prescriptions on the tasks one
may perform, given a set of available resources. The second
law, in particular, sets strict bounds on the amount of work
that can be extracted in a certain protocol. Most processes
in nature, however, are not thermodynamic and therefore do
not enjoy such a simple and far-reaching set of rules. One is
then led to ask whether there exists scenarios “beyond
thermal” for which a clear set of thermodynamic rules can
nonetheless be constructed. This issue has recently been
addressed, e.g., in the context of nonthermal heat engines
[1–3], squeezed thermal baths [4–6], coherence amplifica-
tion [7], information flows [8], and quantum resource
theories [9–11]. The question also acquires additional
meaning in light of recent experimental demonstrations
that quantum effects can indeed be used as thermodynamic
resources [12,13].
A framework that is particularly suited for addressing the

thermodynamics of engineered reservoirs is that of colli-
sional models (also called repeated interactions) [14–27].
They draw inspiration from Boltzmann’s original
Stosszahlansatz: At any given interval of time, the system
S will only interact with a tiny fraction of the environment.
For instance, in Brownian motion, a particle interacts with
only a few water molecules at a time. Moreover, this
interaction lasts for an extremely short time, after which
the molecule moves on, never to return [28]. Since the
environment is large, the next molecule to arrive will be
completely uncorrelated from the previous one, so the
process repeats anew.
In the context of quantum systems, this process is

depicted in Fig. 1, where the system S interacts sequentially

with a multiparty environment whose elements, henceforth
dubbed ancillae An, are assumed to be mutually indepen-
dent and prepared, in general, in arbitrary states. This
process generates a stroboscopic evolution for the reduced
density matrix of the system, akin to a discrete-time
Markov chain. A continuous-time description in terms of
a Lindblad master equation can be derived in the short-time
limit, provided some assumptions are made about the
system-ancilla interaction [16,18,27].
When the ancillae are prepared in thermal states, it is

possible to quantitatively address quantities of key thermo-
dynamic relevance, from work to heat currents and entropy
[22–26]. This process includes both the stroboscopic case,
where formal relations can be drawn with the resource
theory of athermality [29,30], and the continuous-time limit
[19,31]. The framework is also readily extended to systems
coupled to multiple baths in an entirely consistent way
[20,21,32]. Conversely, when the state of the ancillae is not

FIG. 1. Basic setup of weakly coherent collisional models. The
system is allowed to interact sequentially with a series of
independent ancillae prepared in states ρA, which are close to
being thermal but have a small amount of coherence [cf. Eq. (5)].
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thermal, much less can be said about its thermodynamic
properties.
An important contribution in this direction was given in

Refs. [19,33], which put forth a general framework for
describing the thermodynamics of collisional models.
However, for general ancillary states, the second law of
thermodynamics is expressed in terms of system-ancilla
correlations and the changes in the state of the ancillae
[cf. Eq. (3) below]. These quantities are rarely accessible in
practice, which greatly limits the operational use of such
formulations.
Motivated by this search for “thermodynamics beyond

thermal states,” in this Letter we draw a theoretical
formulation of the laws of thermodynamics for the class
of weakly coherent collisional models (Fig. 1), i.e.,
situations where the ancillae are prepared in states that,
albeit close to thermal ones, retain a small amount of
coherence. This case is realistic, as perfect thermal equi-
librium is unlikely to be achieved in practice.
We show that, despite their weakness, the implications of

such residual coherence for both the first and second laws
of thermodynamics are striking, in that nontrivial contri-
butions to the continuous-time open dynamics arise to
affect the phenomenology of energy exchanges between
system and environment [22]. In order to illustrate these
features in a clear manner, we choose a scenario where no
work is externally performed on the global system-ancilla
compound [20,21,32], so all changes in the energy of the
system can be faithfully attributed to heat flowing from or
into the environment. Despite this choice, we derive a
bound showing how coherence in the ancillae (quantified
by the relative entropy of coherence) is consumed to
convert part of the heat into a coherent (worklike) term
in the system.
Our analysis thus entails that quantum coherence can

embody a faithful resource in the energetics of open
quantum systems [31]. Such a resource can be consumed
to transform disordered energy (heat) into an ordered one
(work), thus catalyzing the interconversion of thermody-
namic energy exchanges of profoundly different nature and
paving the way to the control and steering of the thermo-
dynamics of quantum processes.
Collisional models.—We begin by describing the general

structure of collisional models. A system S interacts with an
arbitrary number of environmental ancillae A1; A2;…, all
identically prepared in a certain state ρA. Each system-
ancilla interaction lasts for a time τ and is governed by a
unitary USAn

. The state of S after its interaction with An is
embodied by the stroboscopic map

ρSððnþ 1ÞτÞ ¼ trAn
ðρ0SAn

Þ≡ trAn
½USAn

ðρSðnτÞ⊗ ρAÞU†
SAn

�;
ð1Þ

where ρSðnτÞ is the state of S before the nth system-ancilla
interaction.

Next, letHS andHAn
denote the free Hamiltonians of the

system and ancillae. We define the heat exchanged in each
interaction as the change in energy in the state of the ancilla
[34–36] QAn

¼ trfHAn
ðρAn

0 − ρAn
Þg, where ρ0An

¼ trSρ0SAn
.

Work is then defined as the mismatch between QAn
and the

change in energy of the system,ΔEn¼ trfHS½ρSððnþ1ÞτÞ−
ρSðnτÞ�g, leading to the usual first law of thermodynamics

ΔEn ¼ Wn −QAn
: ð2Þ

As the global dynamics is unitary, the definition of work in
this case is unambiguous, being associated with the cost of
switching the S-An interaction on and off [20,21,32]. This
work cost will be strictly zero whenever the system satisfies
the condition [29,30] ½USAn

; HS þHAn
� ¼ 0, which states

strict energy conservation. In this case, Eq. (2) reduces to
ΔEn ¼ −QAn

, which implies that all energy changes in the
system can be unambiguously attributed to energy flowing
to or from the ancillae. In order to highlight the role of
quantum coherence, we assume this is the case throughout
the Letter. The extension to the case where work is also
present is straightforward.
The second law of thermodynamics for the map in

Eq. (1) can be expressed as the positivity of the entropy
production in each stroke, defined as [19,33]

Σn ¼ Iðρ0SAn
Þ þ Sðρ0An

kρAn
Þ; ð3Þ

where Iðρ0SAn
Þ ¼ Sðρ0SÞ þ Sðρ0An

Þ − Sðρ0SAn
Þ is the mutual

information between S and An after their joint evolution,
Sðρ0An

kρAn
Þ ¼ trðρ0An

ln ρ0An
− ρ0An

ln ρAn
Þ is the relative en-

tropy between the initial and final states of An, and SðρÞ¼
−trðρlnρÞ is the von Neumann entropy. Equation (3)
quantifies the degree of irreversibility associated with
tracing out the ancillae. It accounts not only for the
system-ancilla correlations that are irretrievably lost in this
process but also for the change in state of the ancilla,
represented by the last term in Eq. (3). The two terms were
recently compared in Refs. [24,37] and in the context of
Landauer’s principle [34].
Continuous-time limit.—In the limit of small τ, Eq. (1)

can be approximated by a Lindblad master equation. Such a
limit requires a value of τ sufficiently small to allow us
to approximate ρSððnþ 1ÞτÞ − ρSðnτÞ as a sufficiently
smooth derivative. Mathematically, in order to implement
this, it is convenient to rescale the interaction potential VSAn

between S and An by a factor 1=
ffiffiffi
τ

p
[16,18,27]. In other

words, one assumes that the total S-An Hamiltonian is of
the form

HSAn
¼ HS þHAn

þ VSAn
=

ffiffiffi
τ

p ð4Þ

with the unitary evolution USAn
¼ exp½−iτHSAn

�. This
kind of rescaling, which enables the performance of the
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continuous-time limit, is frequent in stochastic processes,
e.g., in classical Brownian motion [38] or in the interaction
with the radiation field [40].
Weakly coherent ancillae.—Finally, we specify the state

of the ancillae, which is the main feature of our construc-
tion. We assume that the ancillae are prepared in a state of
the form

ρA ¼ ρthA þ ffiffiffi
τ

p
λχA; ð5Þ

where ρthA ¼ e−βHA=ZA is a thermal state at the inverse
temperature β (ZA is the corresponding partition function).
Here, χA is a Hermitian operator having no diagonal
elements in the energy basis of HA. Moreover, λ is a
control parameter that measures the magnitude of the
coherences. Notice that the term “weak coherences” is
used here in the sense that we are interested specifically in
the case where τ → 0, in which case the second term in
Eq. (5) is much smaller in magnitude than the first. For
finite τ, not all choices of χA lead to a positive semidefinite
ρA. However, in the limit τ → 0, these constraints are
relaxed, and any form of χA having no diagonal entries
becomes allowed.
The scaling in Eq. (5) highlights an interesting feature

of coherent collisional models, namely, that for a short τ
and strong VSAn

, even weak coherences already produce
non-negligible contributions.
We use the unitary USAn

generated by Eq. (4) and the
state in Eq. (5) in the map stated in Eq. (1). We then expand
the latter in a power series of τ and take the limit τ → 0.
This process then leads to the quantum master equation
(cf. Ref. [41] for details)

_ρS ¼ −i½HS þ λG; ρS� þDðρSÞ; ð6Þ

where _ρS ¼ limτ→0½ρSððnþ 1ÞτÞ − ρSðnτÞ�=τ. We also
define

DðρSÞ ¼ −trA½VSA; ½VSA; ρS ⊗ ρthA ��=2; ð7Þ

representing the usual Lindblad dissipator associated with
the thermal part ρthA , and

G ¼ trAðVSAχAÞ; ð8Þ

representing a new unitary contribution stemming from the
coherent part of ρA. In deriving Eq. (6), we have assumed
that trAðVSAρ

th
A Þ ¼ 0, as customary [42]. Equations (6)–(8)

provide a general recipe for deriving quantum master
equations in the presence of weak coherences. All one
requires is the form of the system-ancilla interaction
potential and the state of the ancillae. In the limit
λ → 0, one recovers the standard thermal master equation
[16,18,27,32].

Eigenoperator interaction.—The physics of Eqs. (6)–(8)
becomes clearer if one assumes a specific form for the
interaction VSA. A structure that is particularly illuminating,
in light of the strict energy-conservation condition, is

VSA ¼
X
k

gkL
†
kAk þ H:c:; ð9Þ

where gk are complex coefficients and Lk and Ak are
eigenoperators for the system and ancilla, respectively [43].
In other words, they satisfy the conditions ½HS; Lk� ¼
−ωkLk and ½HA; Ak� ¼ −ωkAk, for the same set of Bohr
frequencies fωkg. This means that they function as low-
ering and raising operators for the energy basis of S and A.
As both have the same ωk, all of the energy leaving the
system enters an ancilla and vice versa, so strict energy
conservation is always satisfied.
The form taken by the dissipator in Eq. (7) when VSA, as

given above, is the standard thermal one,

DðρSÞ ¼
X
k

fγ−kD½Lk� þ γþk D½L†
k�g; ð10Þ

where D½L�¼LρSL†−1
2
fL†L;ρg. We also define the jump

coefficients γ−k ¼ jgkj2hAkA
†
kith and γþk ¼ jgkj2hA†

kAkith,
with h…ith ¼ trfð…ÞρthAg. As shown, e.g., in Ref. [43],
since the Ak are eigenoperators, these coefficients satisfy
detailed balance γþk =γ

−
k ¼ e−βωk . As for the new coherent

contribution in Eq. (8), we now find

G ¼
X
k

fgkhAkiχL†
k þ g�khA†

kiχLkg; ð11Þ

where h…iχ ¼ trfð…Þχg means an average over the
coherent part χ of the ancillae.
Qubit example.—As an illustrative example, suppose

both system and ancillae are resonant qubits with HSðAÞ ¼
ðΩ=2ÞσSðAÞz and VSA ¼ gðσSþσA− þ σS−σ

AþÞ. Moreover, we
take χA ¼ j0ih1j þ j1ih0j, so Eq. (10) reduces to the simple
amplitude damping dissipator DðρSÞ ¼

P
j¼� γjD½σSj �,

whereas the coherent contribution in Eq. (11) goes to
G ¼ gσSx . The dynamics of the system will then mimic that
of a two-level atom driven by classical light, with DðρSÞ
representing the incoherent emission or absorption of
radiation and G a coherent driving term.
Modified first law.—Collisional models enable the

unambiguous distinctions between heat and work, which
is, in general, not the case [44], due to the full access to
the global dynamics offered by such approaches [19,32].
In particular, Eq. (6) was derived under the assumption of
strong energy conservation, so no work by an external
agent is required to perform the unitary. Any energy
changes in the system are thus solely due to energy leaving
or entering the ancillae.
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The evolution of hHSi is easily evaluated as

dhHSi=dt ¼ iλh½G;HS�i þ tr½HSDðρSÞ�: ð12Þ

The basic structure of these two terms is clearly different.
The second term represents the typical incoherent energy
usually associated with heat, whereas the first represents a
coherent contribution more akin to quantum mechanical
work. Indeed, we show below that the first term in Eq. (12)
satisfies the properties expected from quantum mechanical
work. We thus refer to it as the coherent work, _WC ¼
iλh½G;HS�i. We also refer to the last term in Eq. (12) as the
incoherent heat, _Qinc ¼ trfHSDðρSÞg. As the ancillae are
not thermal, they will act as both thermal and work
reservoirs (in the sense specified in Ref. [19]). As a
consequence, classifying their change of energy as heat
or work is prone to a certain level of ambiguity. For weakly
coherent ancillae, however, this separation becomes
unambiguous.
Combining this with Eq. (2) gives the modified first law

dhHSi=dt≡ − _QA ¼ _WC þ _Qinc; ð13Þ

where _QA ¼ limτ→0QAn
=τ is the change in energy of each

ancilla. Such a modified first law is one of our key results.
It reflects a transformation process, where part of the heat
flowing in or out of the ancillae is converted into a coherent
energy change WC, with the remainder being the incoher-
ent heat _Qinc. Next, we show that this transformation
process is made possible by consuming coherence in the
ancillae.
Modified second law.—We now turn to the second law in

Eq. (3). All entropic quantities can be computed using
perturbation theory in τ, leading to results that become
exact in the limit τ → 0. The details are given in Ref. [41].
We find

Iðρ0SAn
Þ ¼ −βΔF − ΔCAn

; ð14Þ

Sðρ0An
kρAÞ ¼ βWC þ ΔCAn

; ð15Þ

where ΔF is the change in nonequilibrium free energy
of the system, FðρSÞ ¼ hHSi − TSðρSÞ and WC ≃ _WCτ.
Moreover, ΔCAn

¼ Cðρ0An
Þ − CðρAn

Þ is the change in the
relative entropy of coherence [45,46] in the state of the
ancillae with CðρAÞ ¼ SðρdAÞ − SðρAÞ, with ρdA the diagonal
part of ρA in the eigenbasis of HA. If λ ¼ 0 in Eq. (5), we
get WC ¼ ΔCAn

¼ 0 (so that Σ ¼ −βΔF).
The positivity of the relative entropy in Eq. (15) implies

that in each system-ancilla interaction, the coherent work is
always bounded by

βWC ≥ −ΔCAn
: ð16Þ

This is the core result of our investigation: It shows that the
coherent work is bounded by the loss of coherence in the
state of the ancillae, which needs to be consumed in order
to enable the transformation process described in Eq. (13).
Coherence can, in this case, therefore be interpreted as a
thermodynamic resource, which must be used to convert
disordered energy in the ancillae into an ordered type of
energy usable for the system.
On a more general level, the resource in question here is

the athermality of ρA [29,30,47] (i.e., its nonpassive
character [48]). However, the specifics of how this resource
can be extracted (which requires knowledge of the operator
G) and, most importantly, into what it can be converted
will depend on the form of ρA. This argument can be
further strengthened by studying the ergotropy [49] in the
state (5), which is defined as the maximum amount of work
extractable from ρA. As we show in Ref. [41], for weakly
coherent states, it follows that W ¼ TCðρAÞ. This result
provides additional physical grounds to the bound
in Eq. (16): The optimal process for extracting coherent
work is when the ancillae lose all their coherence so that
−ΔCðρAÞ ¼ CðρAÞ.
Inserting Eqs. (14) and (15) in Eq. (3) and taking

the limit τ → 0, one finds that the entropy production rate
Π ¼ limτ→0Σn=τ can be expressed as

Π ¼ βð _WC − _FÞ ¼ _SðρSÞ − β _Qinc: ð17Þ

This equation embodies a modified second law of thermo-
dynamics in the presence of weak coherences. It is
structurally identical to the classical second law [50] but
with the coherent workWC instead. The positivity ofΠ sets
the bound _WC ≥ _F that, albeit looser than the one in
Eq. (16), has the advantage of depending solely on system-
related quantities.
Extension to multiple environments.—An extremely

powerful feature of collisional models is the ability to
describe systems coupled to multiple baths. The typical
idea is represented in Fig. 2. The system is placed to
interact with multiple species of ancillae, with each species
being independent and identically prepared in states ρA, ρB,
ρC, etc. This can be used to model nonequilibrium steady
states, e.g., of systems coupled to multiple baths. In the
stroboscopic scenario, the state of the system will be
constantly bouncing back and forth with each interaction,

S

C B A C B A C B

A

FIG. 2. Example of a collisional model where the system
interacts with multiple species of ancillae.
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even in the long-time limit. But the stroboscopic state after
sequences of repeated interactions with the ancillae will, in
general, converge to a steady state.
The remarkable feature of this construction is that the

contributions from each species become additive in the
continuous-time limit, in contrast to models where the bath
is constantly coupled to the system [51]. We assume that
each interaction lasts for a time τ=m, wherem is the number
of ancilla species (e.g., m ¼ 3 in Fig. 2). Moreover, let
i ¼ A;B;C;…; m label the different species. To obtain a
well-behaved continuous-time limit, one must rescale the
interaction potential VSi with each species [Eq. (4)] by
m=

ffiffiffi
τ

p
while keeping the coherent terms in Eq. (5) propor-

tional to
ffiffiffi
τ

p
. Using this recipe, we find the master equation

_ρ ¼ −i
�
HS þ

X
j

λjGSj; ρS

�
þ
X
j

DjðρSÞ; ð18Þ

where the sums are over the various species involved, while
GSj and Dj are exactly the same as those given in Eqs. (7)
and (8). This is extremely useful, as it provides a recipe to
construct complex master equations, with nontrivial steady
states, from fundamental underlying building blocks.
This approach translates neatly into the first and second

laws of thermodynamics, which now become

dhHSi=dt≡ −
X
j

_Qj ¼
X
j

ð _Wj
C þ _Qj

incÞ ð19Þ

and

Π ¼ _SðρSÞ −
X
j

βj _Q
j
inc; ð20Þ

where βj is the inverse temperature of species j. Both have
the same structure as the usual first and second laws for
systems coupled to multiple environments.
Conclusions.—We have introduced a scenario beyond

the standard system plus thermal bath, for which opera-
tionally useful thermodynamic laws can be constructed.
The key feature of our scenario is the use of weakly
coherent states. For strong system-ancilla interactions, even
weak coherences already lead to a nontrivial contribution.
This leads to a modified continuous-time Lindblad master
equation that encompasses a nontrivial coherent term
giving rise to an effective work contribution to the
energetics of the open system, although no external work
is exerted at the global level. Incoherent (thermal) energy
provided by the environment is catalyzed into worklike
terms for the system to use by the (weak) coherence with
which the former is endowed.
We believe that this analysis thus provides a striking

example of the resourcelike role that coherence can play
in nonequilibrium thermodynamic processes [31], with

applications, for instance, in the design of heat engines
mixing classical and quantum resources.
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