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UNDERSTAMND /ANE COUAINEIEY

Understanding the emergence of irreversibility is a fundamental problem in
physics.

Quantifying it is crucial for several applications:

Engines, power plants, biological motors, electronic devices, &c.
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In thermodynamics, irreversibility is quantified by the entropy production.

Thermodynamic processes obey the Clausius inequality:
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The difference is called the entropy production:
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It is always non-negative and zero iff the process is reversible.

Sometimes it is easier to work with rates:
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The simplest example is an RL circuit connected to a bath and
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In the long-time limit, this system will reach a non-equilibrium steady state:
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GTL,T.Tome and M.]. de Oliveira, J. Phys.A, 46,395001 (2013)
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The entropy production directly influences the efficiency of a heat engine.

The Ist and 2nd laws in the steady-state, read:

as Qh Qc
s Sy 1 e St
S A e

Pl © (P

The efficiency in the steady-state reads:
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Entropy production is the reason why the efficiency is smaller than Carnot’s.
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SEHNAKENBERGS ARPROACH

Consider a discrete state system described by the classical master
equation:

% =D {W(nlm)pm - W(m|n)pn}
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We also assume detailed balance for simplicity (his result is actually more
general):

W (n|m) = o S s T

We now look at the evolution of the Shannon entropy:

D= an In p,

Schnakenberg, Rev. Mod. Phys., 48,571 (1976)



Schnakenberg showed that
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where

T % Z {W(n\m)pm — W(m]n)pn} In II/‘/I//((ZLT:L))Z: > 0
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We can rewrite this formula in a neat way in terms of the relative entropy
(Kullback-Leibler divergence):
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The entropy production for Davies maps can be formulated in an
analogous way:
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(eigenoperator) [H, A;] = —w; A; ’Y+

(detailed balance)

The entropy production can be shown to be:

I = _ds(glpeq) S(pllo) = tr{plnp — plna}

H. Spohn, J. Math. Phys., 19, 1227 (1978).
H.-P. Breuer, Phys. Rev.A, 68,032105 (2003)



Davies maps select the energy basis as a preferred basis (einselection).

This means the populations pn = (n|p|n) will evolve according to

% — ; {W(nlm)pm = W(m\"%)pn}

We can now split
(relative entropy of coherence)

S(pl|peq) = S(P||Peq) + C(p) C(p) = S(p) — S(p)
e )
This yields: i dS(p|lpeq) dC
N e
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Coherence does not affect the entropy/heat flux.

But decoherence is irreversible and thus affects the entropy production.



EHERMALE ORERATIONS

A thermal op. is 2 map of the form
@ )
pg =E(ps) = trE{U<,05 & 7 )U }

E
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These maps are defined for any environment size and encompass Davies
maps as a particular case.

It also has a unique fixed point:

g(e—ﬁHs) L O s

Example:
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F. Brandao, M. Horodecki, . Oppenheim, ]. Renes & R. Spekkens, Phys. Rev. Lett., 111,250404 (201 3).



The entropy production for thermal operations is similarly defined as

[ ¥ = S(pslleg’) — S(pslleg’) ]

which can similarly be splitas > =3%; + =

[ Xa = S(pllp*) — S(p[|[p™) J [ =

It is also possible to express the entropy production as

= C(ps) — C(ps) J
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% = S(pplleg) + I(psk)
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Z(psg) = S(ps) + S(pE) — S(Psr)

(SE mutual information)

M. Esposito, K. Lindenberg, C.Van Den Broeck, New Journal of Physics, 12, 013013 (2010)
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For thermal operations it follows that the total coherence is conserved,

C(ps) = C(psE)
We now define the distributed coherence (basis dependent discord):
Ca(psr) = Clpsr) — Clps) — CoE)

= T(psr) — Z(A(psg))

The coherence part of the entropy production will therefore also have two
contributions, - B

T. M. Kraft and M. Piani, arXiv 1801.03919
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SIEE HAS TG RAIECTEORIES

We finally formulate the same problem using stochastic trajectories and
the standard 2-point measurements.

ps =D _ Palta) (¥l o5 = > qului{yl

(different bases)

Measure S+E in |Ya, 1)

Evolve with U.

Measure only E (cool thing about thermal op.). Conditional final state of S:
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The path probabilities are
PF [Oé, M V] R PF(V‘ay :u)poqu

And the final state may be decomposed as an incoherent superposition of
the quantum trajectories:

piS’ 3 Z P[O‘mua V]|(I)F|a,ul/><q)F|a,u,l/|
Oy by

However, this is not an eigendecomposition. In general, we have

IOZS’ = Zpblwlﬂﬂwlﬁ‘ p/ﬁ b Z p5|oz,ul/7DF[a7:u7 V] PBlapy = ‘<¢IB‘(I)FIOAMV>‘2
B

o, L,V
Notwithstanding, we can augment the trajectory as

Prlo, g, 8,v] = Dgjapw Prlos i, v] = [{(¥5|®pjap ) [@|Ua, w)|* = [{@av|Upau)|?
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Measure S+E in |¥5,7)

Evolve with U

Measure E: the final state of the system conditioned on the trajectory will be

2 <N|UT|¢/57V> 5 F1 o 2
1o} = =t Py (uB.) = [(ulU" )

The probability for the backwards trajectory will then be

Pslo, i, 8, V] = Pogv,uPr (1|6, V)Dse Dol =i @i e

G. Manzano, . M. Horowitz, J. M. R. Parrondo, Phys Rev. X, 8,031037 (2018).
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The stochastic entropy production is then defined as usual:

= ln& — lnp/aq“
7DB pBQI/
It is constructed so that
o (o) =% = S(ps|lpg’) — S(ps||Ps')

But, in the spirt of the previous results, we now wish to separate it as

oc=04+¢§



AEGHMENTER FRAIECTORIES

We introduce augmented trajectories
75F [057 n, i, 8, m, ,u] AT pn\ozpr/meF [CM, w, 5, V]

where ;
Do el Prnig = |{m[15)]

One may then define
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P. A. M. Dirac,“On the analogy between classical and quantum mechanics”.
Rev. Mod. Phys. 17, 195 (1945).

J.J. Park, S.W. K,V.Vedral, arXiv 1705.01750



They give the correct averages:
(0a) = Xa = S(p||p°?) — S(P'||P*)

(§) =E=C(ps) — C(ps)
But they do not individually obey fluctuation theorems.

The classical entropy production has to be corrected by the information
gain:
(er2dgc it

This is ultimately related to the incompatibility of quantum mechanical
bases.

G. Francica, J. Goold and F. Plastina, 1707.06950
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Each system interacts with a local bath.
The systems do not interact with each other.

But they are prepared in a non-local state (only non-local contribution).

The global map is then

Vs =Ulps ® pg, ® ... ® pgy)U' U=Us g ®...0Usy,Ex

The unitaries may contain work.
We define heat as the change in energy of the environments.
Qi = (H},) — (Hx,)

D. Reeb and M.W.Wolf, NJP, 16, 10301 | (2014).



We then define entropy production as:

=ASs+ ) BiQi=T,,, (S: E)+S(pkllor)

We now introduce the total correlations

T(ps) = S(ps|lps; ® ... ® psy) = ZS(P&) — S(ps)

The entropy production then becomes

% =) (ASs, +BiQi) — AT

1

Finally, we can also write this as

S=)Y Bi(W;— AF) - AT AEs, =W, — Q,



QUANTEUM CONTRIBUTIONS TC X

We can split the total correlations into a classical term, related to the
populations in the energy basis, plus the distributed coherence:

T(ps) = T(0S) + Calps)

Ca(ps) = Clps) — ZC(P&-)

The entropy production then becomes:

Y=Y (ASs, +B:Qi) — AT, — AC

1

=Y Bi(Wi— AFs,) — AT, — ACq

The positivity 2 then gives bounds on how distributed coherence affects

the heat exchange (Landauer-style) and the amount of work that can be
extracted.



[ Thank you! ]

Acknowledgements:
www.fmt.if.usp.br/~gtlandi FAPESP, CNPq, USP




