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In certain processes there seem to be a well defined arrow of time.
Asymmetry between “forward” and “backward”.

This asymmetry is quantified by the entropy production.
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The 2nd law of thermodynamics can be expressed as:
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OPEN SYSTEMS

For open systems entropy production # entropy.

Entropy does not satisfy a continuity equation.

There can also be an entropy flux
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The 2nd law then becomes Clausius’ inequality:
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Let us now consider a heat engine.
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| like to write the |st and 2nd laws side by side:
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We are interested in a steady-state operation regime:
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The efficiency of the engine then becomes:

Entropy production is therefore the reason the efficiency is smaller than Carnot!
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Carnot’s statement of the 2nd law

“The efficiency of a quasi-static or reversible Carnot cycle depends only
on the temperatures of the two heat reservoirs, and is the same,
whatever the working substance. A Carnot engine operated in this way
is the most efficient possible heat engine using those two

temperatures.”
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Consider the heat flow between two bodies, one hot one cold.
This is same as the heat engine, except we do no work.

We continue to have:

Heat flows from hot to cold.



Clausius’ statement of the 2nd law

“Heat can never pass from a colder to a warmer body without some
other change, connected therewith, occurring at the same time.”



SINGLE BATH

Finally, suppose we only have | bath.

The |Ist and 2nd laws then give: : . Qn
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Positive work (in my definition) means an external agent is doing work on
the system.



Kelvin-Planck statement of the 2nd law

“It is impossible to devise a cyclically operating device, the sole effect of
which is to absorb energy in the form of heat from a single thermal
reservoir and to deliver an equivalent amount of work.”
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Hydrogen Detector
gas in tube (photographic plate)
I / _ Radiant Prism
7755 ) ,-:;‘-'5;-'{/ enerqy
High
voltage \
Arc Slit

Line Spectrum for Hydrogen l

410 nm 434 nm 486 nm 656 nm
Cor Vermelho Ciano Azul Violeta
A (nm) 656.3 486.1 434.1 410.2

Signatures of a chemical element. This is how we know the
sun is made of hydrogen.



BOHRS MODE
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(a) Electronic emission transition

Discrete stuff are super weird! 3
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RWIN SCHRODINGER - 1926

Quantisation as a Problem of
Proper Values (Part I)

(Annalen der Physik (4), vol. 79, 1926)

§ 1. In this paper I wish to consider, first, the simaple case of the
hydrogen atom (non-relativistic and unperturbed), and show that the
customary quantum conditions can be replaced by another postulate,
in which the notion of “ whole numbers ’, merely as such, is not intro-
duced. Rather when integralness does appear, it arises in the same
natural way as i1t does In the case of the node-numbers of a vibrating
string. The new conception is capable of generalisation, and strikes,
I believe, very deeply at the true nature of the quantum rules.



INSTANT HIT

Schrodinger’s equation is weeeeeirrrrrd.

But it works, so who cares.

And it became an instant hit: in a matter of a decade, people were already

applying quantum mechanics to phenomena ranging from chemistry to
nuclear physics.

For most of the last century, people have used quantum mechanics to
understand many phenomena in nature.

But little attention was given to understand quantum mechanics itself.
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The simplest example of a quantum system is one with only 2 states (like
a coin).

We call it a qubit.

A qubit can be in one of two states which we call |0), 1)

But according to quantum mechanics, the state of a qubit can be encoded
as a superposition of these states:

¥) = al0) + |1
where & and 3 are complex numbers satisfying:

af* +|B° = 1



According to quantum theory, if we measure the system, we will find it in
either 0 or |, with probabilities:

0N |04\27 = |5|2

But if we happen to find the system in O, then after the measurement, the
state of the system is updated to O (the state collapsed to the outcome).

These are the rules: superposition + probabilistic outcomes.

We need these rules to construct the theory, even though they are super
weird.

But what does it mean to be in a superposition?



REALISM

A probabilistic outcome is usually associated with ignorance (lack of
information) about what is going on.

It could be that we obtain probabilistic outcomes because we lack
some kind of information (hidden variables)?

Maybe the state of the system (0 or |) is already established, but we
simply don’t know what it is.

This would be a realist theory.

@ n

Realism: the idea that objects have properties which exist
independent of observation.
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In 1935 Einstein, Podolsky and Rosen noticed that if nature was not realist,
weird stuff would happen.

Suppose we have two qubits, A and B. According to the principle of
superposition we are allowed to prepare them on a state of the form

RS Lt

This is what we call an entangled state.

But now we take one of the qubits to another galaxy in a spaceship.
In another planet Bob measures qubit B and happen to find it in |.

Then according to the rules of QM, qubit A would immediately collapse
to | as well!
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For 3 decades this remained as a philosophical question.
In 1964 John Bell proposed a test to check if a theory is realist or not.

Bell’'s idea: create a pair of entangled photons and measure them on
different polarization directions. For a realist theory one must always have

B BB B D

A theory violating this cannot be a realist theory.
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Bell correlations in a

Bose-Einstein condensate Optomechanical Bell Test
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QUANTUM CORRELATIONS

Entanglement is a genuinely quantum effect.

It is not correlation due to information, but an intrinsic correlation that
Nature allows.

Can we use entanglement as a resource to do something?
Yes! These are the Quantum Technologies 2.0.

Quantum communications, quantum computing, quantum sensors, &c.
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Reversing the direction of heat flow using quantum correlations
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To appear in Nature Communications.
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VVHALDCOES THIS MIEATNY

The arrow of time and the 2nd law determine what kinds of
thermodynamic processes are allowed.

According to the 2nd law, resources have to be consumed to make heat
flow from cold to hot (refrigerate).

Here we showed that entanglement is also a resource.
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CONCLUSIONS

Entropy production is the central concept in all of thermodynamics.
(undergraduate courses usually don’t reflect that).

Correlations can be informational or intrinsic. Quantum correlations
(entanglement) are intrinsic.

Entanglement is an informational resource: can be consumed to perform
tasks that are not possible with classical resources.

[ Thank you! ]
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