LANDAUER'S PRINCIPLE FOR GAUSSIAN QUANTUM SYSTEMS

Gabriel T. Landi Instituto de Física da Universidade de São Paulo

Caxambu d'Aju May 29th, 2019

summary

- I. Landauer's principle.
- II. Entropy production.
- III. Quantum phase space.
- IV. Landauer for Gaussian states.

- J. P. Santos, GTL and Mauro Paternostro, *Phys. Rev. Lett*, **118**, 220601 (2017) M. Brunelli, et. al., *Phys. Rev. Lett.*, **121**, 160604 (2018)
- J. P. Santos, A. M. Timpanaro, M. Paternostro and GTL, in preparation (2019)

Landauer's principle: information is physical

Fundamental heat cost for erasing information:

$$\Delta Q_E \ge -T\Delta S_S$$

 ΔQ_E = heat dissipated in the reservoir.

 $\Delta S_S = \text{entropy change in the system/memory.}$

Mixed \rightarrow Pure: $\Delta S_S \leq 0 \rightarrow \Delta Q_E \geq 0$.

Landauer's principle: information is physical

Fundamental heat cost for erasing information:

$$\Delta Q_E \ge -T\Delta S_S$$

 ΔQ_E = heat dissipated in the reservoir.

 $\Delta S_S = \text{entropy change in the system/memory.}$

Mixed
$$\rightarrow$$
 Pure: $\Delta S_S \leq 0 \rightarrow \Delta Q_E \geq 0$.

- T = 0: bound becomes uninformative.
- Would it be possible to have an erasure @ T = 0 with zero heat cost?

Landauer's principle: information is physical

E

Fundamental heat cost for erasing information:

System-environment interaction:

$$\rho_{SE}' = U(\rho_S \otimes \rho_E^{\text{th}})U^{\dagger} \qquad \rightarrow \qquad \rho_S' = \text{tr}_E \rho_{SE}'$$

System-environment interaction:

$$\rho_{SE}' = U(\rho_S \otimes \rho_E^{\text{th}})U^{\dagger} \qquad \rightarrow \qquad \rho_S' = \text{tr}_E \rho_{SE}'$$

- Tracing over the environment is an irreversible process.
 - There is an associated entropy production:

$$\Sigma = \mathcal{I}'(S:E) + D(\rho_E'||\rho_E^{\text{th}})$$

System-environment interaction:

$$\rho_{SE}' = U(\rho_S \otimes \rho_E^{\text{th}})U^{\dagger} \qquad \rightarrow \qquad \rho_S' = \text{tr}_E \rho_{SE}'$$

- Tracing over the environment is an irreversible process.
 - There is an associated entropy production:

$$\Sigma = \mathcal{I}'(S:E) + D(\rho_E'||\rho_E^{\text{th}})$$

$$\mathcal{I}'(S:E) = S(\rho_S') + S(\rho_E') - S(\rho_{SE}')$$

$$S(\rho) = -\text{tr}\rho\log\rho$$

$$D(\rho||\sigma) = \text{tr}(\rho\log\rho - \rho\log\sigma)$$

P. Strasberg, G. Schaler, T. Brandes and M. Esposito, Phys. Rev. X., 7, 021003 (2017).

System-environment interaction:

$$\rho_{SE}' = U(\rho_S \otimes \rho_E^{\text{th}})U^{\dagger} \qquad \rightarrow \qquad \rho_S' = \text{tr}_E \rho_{SE}'$$

- Tracing over the environment is an irreversible process.
 - There is an associated entropy production:

$$\Sigma = \mathcal{I}'(S:E) + D(\rho_E'||\rho_E^{\rm th})$$

$$\mathcal{I}'(S:E) = S(\rho_S') + S(\rho_E') - S(\rho_{SE}')$$

$$S(\rho) = -\mathrm{tr}\rho\log\rho$$

$$D(\rho||\sigma) = \mathrm{tr}\big(\rho\log\rho - \rho\log\sigma\big)$$
 and law

P. Strasberg, G. Schaler, T. Brandes and M. Esposito, Phys. Rev. X., 7, 021003 (2017).

Quantum Landauer's Principle

It is possible to show that if the environment is thermal, then

$$\Sigma = \mathcal{I}'(S:E) + D(\rho_E'||\rho_E^{\text{th}}) = \beta \Delta Q_E - \Delta S_S \ge 0$$

Landauer's principle is thus a direct consequence of the 2nd law.

Quantum Landauer's Principle

It is possible to show that if the environment is thermal, then

$$\Sigma = \mathcal{I}'(S:E) + D(\rho_E'||\rho_E^{\text{th}}) = \beta \Delta Q_E - \Delta S_S \ge 0$$

- Landauer's principle is thus a direct consequence of the 2nd law.
- But this continues to be problematic @T = 0.
 - Note that in this case the relative entropy diverges because the target state becomes pure.

Wigner entropy production

- Focus on continuous variable systems with Gaussian states (q-optics, BECs, phonons, trapped ions, &c.).
- Instead of using the von Neumann entropy, use the entropy of the Wigner function

$$S_W = -\int d^2\alpha \ W \log W$$

Wigner entropy production

- Focus on continuous variable systems with Gaussian states (q-optics, BECs, phonons, trapped ions, &c.).
- Instead of using the von Neumann entropy, use the entropy of the Wigner function

$$S_W = -\int d^2\alpha \ W \log W$$

- For Gaussian states, the Wigner function is always non-negative.
- Moreover, it is related to the Rényi-2 entropy:

$$S_2 = -\log \operatorname{tr} \rho^2$$

J. P. Santos, GTL and Mauro Paternostro, *Phys. Rev. Lett.*, 118, 220601 (2017)
M. Brunelli, et. al., *Phys. Rev. Lett.*, 121, 160604 (2018)
Adesso, Girolami, Serafini, *PRL*, 109, 190502 (2012)

Wigner-Landauer principle for CVs

- We assume that S and E are both bosonic and Gaussian.
 - Moreover, their unitary is Gaussian preserving.
- Define the Wigner entropy production:

$$\Sigma_W = \mathcal{I}'_W(S:E) + D_W(W'_E||W_E^{\text{th}}) \ge 0$$

where all quantities are now defined in terms of the Wigner function. e.g.,

$$D_W(W_1||W_2) = \int d^2\alpha \ W_1 \log W_1/W_2$$

Wigner-Landauer principle for CVs

- We assume that S and E are both bosonic and Gaussian.
 - Moreover, their unitary is Gaussian preserving.
- Define the Wigner entropy production:

$$\Sigma_W = \mathcal{I}'_W(S:E) + D_W(W'_E||W_E^{\text{th}}) \ge 0$$

where all quantities are now defined in terms of the Wigner function. e.g.,

$$D_W(W_1||W_2) = \int d^2\alpha \ W_1 \log W_1/W_2$$

• For Gaussian states, the Wigner entropy satisfies the strong subadditivity inequality. All entropic quantities are well behaved.

$$\Sigma_W = \Delta \Phi_E - \Delta S_{W,S} \ge 0$$

$$\Sigma_W = \Delta \Phi_E - \Delta S_{W,S} \ge 0 \qquad \Delta \Phi_E = \sum_{k=1}^{N_E} \frac{\langle b_k^{\dagger} b_k \rangle' - \langle b_k^{\dagger} b_k \rangle_{\text{th}}}{\langle b_k^{\dagger} b_k \rangle_{\text{th}} + 1/2}$$

$$\Sigma_W = \Delta \Phi_E - \Delta S_{W,S} \ge 0 \qquad \Delta \Phi_E = \sum_{k=1}^{N_E} \frac{\langle b_k^{\dagger} b_k \rangle' - \langle b_k^{\dagger} b_k \rangle_{\text{th}}}{\langle b_k^{\dagger} b_k \rangle_{\text{th}} + 1/2}$$
$$\langle b_k^{\dagger} b_k \rangle_{\text{th}} = \frac{1}{e^{\Omega_k/T} - 1}$$

$$\Sigma_W = \Delta \Phi_E - \Delta S_{W,S} \ge 0 \qquad \Delta \Phi_E = \sum_{k=1}^{N_E} \frac{\langle b_k^{\dagger} b_k \rangle' - \langle b_k^{\dagger} b_k \rangle_{\text{th}}}{\langle b_k^{\dagger} b_k \rangle_{\text{th}} + 1/2}$$

$$\langle b_k^{\dagger} b_k \rangle_{\text{th}} = \frac{1}{e^{\Omega_k/T} - 1}$$

- This is not yet very useful:
 - What makes Landauer useful is the connection to heat:

$$\Delta Q_E = \sum_k \Omega_k \left(\langle b_k^{\dagger} b_k \rangle' - \langle b_k^{\dagger} b_k \rangle_{\text{th}} \right)$$

$$\Sigma_W = \Delta \Phi_E - \Delta S_{W,S} \ge 0 \qquad \Delta \Phi_E = \sum_{k=1}^{N_E} \frac{\langle b_k^{\dagger} b_k \rangle' - \langle b_k^{\dagger} b_k \rangle_{\text{th}}}{\langle b_k^{\dagger} b_k \rangle_{\text{th}} + 1/2}$$

$$\langle b_k^{\dagger} b_k \rangle_{\text{th}} = \frac{1}{e^{\Omega_k/T} - 1}$$

- This is not yet very useful:
 - What makes Landauer useful is the connection to heat:

$$\Delta Q_E = \sum_k \Omega_k \left(\langle b_k^{\dagger} b_k \rangle' - \langle b_k^{\dagger} b_k \rangle_{\text{th}} \right)$$

Playing with a chain of inequalities leads to:

$$\Delta Q_E \ge \Gamma_{\min} \Delta S_{W,S}, \qquad \Gamma_{\min} = \min_k \Omega_k (\langle b_k^{\dagger} b_k \rangle_{\text{th}} + 1/2)$$

 $\Delta Q_E \ge \Gamma_{\min} \Delta S_{W,S}, \qquad \Gamma_{\min} = \min_k \Omega_k (\langle b_k^{\dagger} b_k \rangle_{\text{th}} + 1/2)$

$$\Delta Q_E \ge \Gamma_{\min} \Delta S_{W,S}, \qquad \Gamma_{\min} = \min_k \Omega_k (\langle b_k^{\dagger} b_k \rangle_{\text{th}} + 1/2)$$

• For high temperatures $(T \gg \Omega_k, \forall k)$

$$\Omega_k(\langle b_k^{\dagger} b_k \rangle_{\rm th} + 1/2) \simeq T$$

We then recover the usual Landauer principle.

$$\Delta Q_E \ge \Gamma_{\min} \Delta S_{W,S}, \qquad \Gamma_{\min} = \min_k \Omega_k (\langle b_k^{\dagger} b_k \rangle_{\text{th}} + 1/2)$$

• For high temperatures $(T \gg \Omega_k, \forall k)$

$$\Omega_k(\langle b_k^{\dagger} b_k \rangle_{ ext{th}} + 1/2) \simeq T$$

- We then recover the usual Landauer principle.
- But now if T = 0

$$\Gamma_{\min} = \min_{k} \Omega_k / 2 = \text{infrared cutoff}$$

 The infrared cutoff establishes a fundamental lower bound at zero temperature

Example: linear chain

$$H_{SE} = \omega a^{\dagger} a + \sum_{i=1}^{N_E} \omega_0 c_i^{\dagger} c_i - g \sum_{i=1}^{N_E - 1} (c_i^{\dagger} c_{i+1} + c_{i+1}^{\dagger} c_i) - \lambda (a^{\dagger} c_1 + a c_1^{\dagger})$$

Example: linear chain

$$H_{SE} = \omega a^{\dagger} a + \sum_{i=1}^{N_E} \omega_0 c_i^{\dagger} c_i - g \sum_{i=1}^{N_E - 1} (c_i^{\dagger} c_{i+1} + c_{i+1}^{\dagger} c_i) - \lambda (a^{\dagger} c_1 + a c_1^{\dagger})$$

Diagonalizing the bath part leads to normal modes:

$$b_k = \sqrt{\frac{2}{N_E + 1}} \sum_{i=1}^{N_E} \sin(ik)c_i \qquad \qquad \Omega_k = \omega_0 - g\cos(k)$$

Example: linear chain

$$H_{SE} = \omega a^{\dagger} a + \sum_{i=1}^{N_E} \omega_0 c_i^{\dagger} c_i - g \sum_{i=1}^{N_E - 1} (c_i^{\dagger} c_{i+1} + c_{i+1}^{\dagger} c_i) - \lambda (a^{\dagger} c_1 + a c_1^{\dagger})$$

Diagonalizing the bath part leads to normal modes:

www.fmt.if.usp.br/~gtlandi

• Landauer's principle: heat up to erase information

www.fmt.if.usp.br/~gtlandi

- Landauer's principle: heat up to erase information
- Landauer is uninformative when T = 0.

www.fmt.if.usp.br/~gtlandi

- Landauer's principle: heat up to erase information
- Landauer is uninformative when T = 0.
- Formulating the problem in terms of phase space entropies reveals a minimum heat cost.

www.fmt.if.usp.br/~gtlandi

spinoffqubit.info

Thank you!

spinoffqubit.info

www.fmt.if.usp.br/~gtlandi

