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Thermodynamics of precision in quantum nonequilibrium steady states
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Autonomous engines operating at the nanoscale can be prone to deleterious fluctuations in the heat and particle
currents. Thermodynamic uncertainty relations (TURs) express a fundamental lower bound which translates a
trade-off relation between precision and entropy production. Importantly, recent studies have shown that they can
be violated in the quantum regime, thus motivating the search for analogous quantum counterparts. In this paper,
we show that the geometry of quantum nonequilibrium steady states alone directly implies the existence of TUR,
but with a looser bound, which is not violated by the above recent findings. The geometrical nature of this result
makes it extremely general, establishing a fundamental limit for the thermodynamics of precision. Our proof is
based on the McLennan-Zubarev ensemble, which provides an exact description of nonequilibrium steady states.
We first prove that the entropy production of this ensemble can be expressed as a quantum relative entropy.
The TURs are then shown to be a direct consequence of the Cramer-Rao bound, a fundamental result from
parameter estimation theory. By combining techniques from many-body physics and information sciences, our
approach also helps to shed light on the delicate relationship between quantum effects and current fluctuations
in autonomous machines, where new general bound on the power output are found and discussed.
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I. INTRODUCTION

Autonomous machines, whether classical or quantum,
generically operate in nonequilibrium conditions. They har-
vest work by consuming resources such as heat or fuel and, in
order to maintain functionality, dissipate into the environment
[1]. As such they operate in a regime known as nonequilibrium
steady state (NESS), characterized by a nonzero entropy
production rate [2,3] and by an ability to maintain nonzero
average currents across the system. Accurately describing the
physical properties of a NESS is central to the development
of mesoscopics [4,5] as well as fundamental to our under-
standing of nanoscale autonomous machines such as molec-
ular electronics [6,7], nanojunction thermoelectrics [8], single
electron circuits [9], quantum dots [10], quantum autonomous
refrigerators [11–14], and even ultracold atomic systems [15].

An important advance in this respect has been made re-
cently with the discovery that classical time-homogeneous
Markovian chains obey the so-called thermodynamic uncer-
tainty relations (TURs) [16,17]. When meso- and microscopic
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systems are considered, fluctuations of the currents around
their mean values become significant. The TUR provides a
bound on these fluctuations by relating them to the NESS
entropy production rate according to (taking kB = 1 and h̄ = 1
throughout)

�Ĵα

〈Ĵα〉2
〈σ̂ 〉 � 2, (1)

where 〈Ĵα〉 is the average current (of particles, charge or
heat), �Ĵα

≡ limT→∞ T(〈Ĵ2
α〉 − 〈Ĵα〉2) denotes its normalized

variance and 〈σ̂ 〉 is the average entropy production rate in the
NESS.

Since the original inception of this result, there has been a
flurry of activity aimed at further exploring their consequences
in various settings [18–32]. Not only is the TUR expected
to have implications for the functioning of biological clocks
[33] and control techniques [34], it was demonstrated recently
that it has significant consequences for the operation of au-
tonomous machines. For instance, it follows from Eq. (1) that
the fluctuations in the output power of an engine operating
between two reservoirs at temperatures TC and TH > TC is
bounded by [35]

〈P̂〉 � �P

2TC

(
ηC

η
− 1

)
≡ BPS, (2)

where 〈P̂〉 denotes the average power, �P its normalized
fluctuations, η the engine efficiency, and ηC = 1 − TC/TH the
corresponding Carnot efficiency. This result implies that, in
order to have an autonomous steady-state machine which
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operates at finite power as η → ηC , one must incur fluctua-
tions that diverge at least as ∼(ηC − η)−1.

Recently, it has been shown [26,36,37] that the classical
TUR Eq. (1) can be violated in driven setups, such as,
e.g., time-periodic Markov chains [38,39], or in the quantum
regime. While the precise mechanisms responsible for these
violations are still not fully understood, this opens up an
interesting perspective, as it would in principle allow one to
use quantum effects to reduce the deleterious current fluctua-
tions without compromising the engine’s efficiency and output
power [40–42]. Moreover, these violations also naturally lead
one to ask, to what extent, are TURs really a universal feature
of nonequilibrium steady states.

In this work we show that, up to second order in the
thermodynamic affinities, the geometry of quantum NESS, by
itself, already implies the existence of a TUR of the form

〈σ̂ 〉 � 〈Ĵ〉T �−1〈Ĵ〉, (3)

where � is the normalized covariance matrix between
different steady-state currents [43]. By restricting to the
single-component vector case, one immediately in particular
obtains

�Ĵα

〈Ĵα〉2
〈σ̂ 〉 � 1, (4)

which, compared to the classical result in Eq. (1), shows that
our bound involving the variance of currents can in principle
be up to two times looser. The key to achieve this result is,
rather than adopting a dynamical approach, to exploit the
generalization of the idea of Gibbs distributions to the set
of NESSs known as the nonequilibrium statistical operator
approach, or the McLennan-Zubarev form [44–46]. Making
use of concepts borrowed from the geometry of quantum
states [47] and quantum estimation theory, this allows us to
derive an expression of the steady-state entropy production
in terms of a relative entropy with a positive correction de-
pending on powers of the current fluctuations in equilibrium,
and then the geometric bound Eq. (3). We finally illustrate
the implications of our findings to the output power of an
autonomous mesocopic heat engines, in the same spirit as
Ref. [34]. This leads to the following new general independent
upper bounds:

〈P̂〉 � 2BPS,

〈P̂〉 � η

TC

�P̂�ĴH
− �P̂,ĴH

�P̂ − 2η�P̂,ĴH
+ η2�ĴH

(ηc − η), (5)

where BPS is given by Eq. (2), �P̂,ĴH
denotes the normalized

correlation between the power and the heat current from the
hot reservoir, while �ĴH

is the variance of the latter. On the one
hand, one can deduce from the first inequality in Eq. (5) that
the maximum reachable power for a nanoscale steady-state
engine can potentially be up to two times larger than any
classical Markovian counterpart, albeit the precise physical
conditions leading to the saturation of the bound being still an
open problem. Furthermore, our generalized quantum TUR
both reveals and quantifies how much the fluctuations of
the incoming heat current from the hot reservoir affects the
achievable output power. Finally, we show a concrete appli-
cation of our results in a paradigmatic toy model consisting

FIG. 1. Diagrammatic illustration of the scenario considered in
this paper. A central system (C) is coupled to two semi-infinite
thermal reservoirs prepared at temperatures TL,R and chemical po-
tentials μL,R. After a sufficiently long time, this system will tend to
a global nonequilibrium steady state (NESS) (a) characterized by the
existence of a finite current of particles (ĴQ) and energy (ĴE ) through
the central system. When the two biases in temperature and chemical
potential are set to zero, i.e., TL = TR = T and μL = μR = μ, the
asymptotic state becomes an equilibrium state, denoted as a local
equilibrium state (LES) (b). The two states are closely related to each
other as shown in Eq. (12).

of a serial double quantum dot connected to two semi-infinite
fermionic leads. A more systematic study of these two bounds
in other physical platforms and models will be pursued in a
forthcoming work.

II. NONEQUILIBRIUM STEADY-STATE
STATISTICAL OPERATOR

For clarity, we will consider a typical NESS scenario
depicted in Fig. 1(a), whereby a central quantum system
is connected to two semi-infinite fermionic leads, L and R,
acting both as energy and particle reservoirs that drive the
overall system into a global steady state. The results we de-
rive, however, can be straightforwardly generalized to the case
of multiple bosonic and/or fermionic baths. This extension is
discussed in more detail in Appendix A 2 and in Ref. [48],
while a derivation from a purely classical perspective is given
in Ref. [45].

The main idea of the statistical operator approach is to use a
density matrix ensemble description for the NESS, taking into
account the additional conserved quantities which are respon-
sible for the currents. This is based on propagating the entire
composite system from the infinite past to the present using
a generalized Gibbs ensemble first derived by McLennan
[45,49] and Zubarev [44,50,51], and is hence known as the
McLennan-Zubarev form. An alternative form for the NESS
statistical operator was derived in the 90’s by Hershfield [46]
using a scattering-theory based approach. Not only are the
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approaches known to be equivalent [52–54] but they can also
be obtained from a max-entropy approach [55,56], analogous
to equilibrium ensembles [57,58], but with constrained finite
currents.

For the NESS scenario outlined the overall system is de-
scribed by the total Hamiltonian Ĥ = Ĥ0 + Ĥint, with Ĥ0 =
ĤC + ĤL + ĤR representing the sum of all the autonomous
terms for each part, and Ĥint = V̂LC + V̂RC incorporating all
the couplings between the three parts. We make no assump-
tions about the contributions comprising Ĥ besides that they
conserve the particle number. In particular the central conduc-
tor C could itself be a complex many-body system.

At the infinite past, t0 = −∞, the three components are
considered decoupled, with the two baths being at equilibrium
characterized by two different inverse temperatures βL and βR

and two chemical potentials μL and μR. The total system is
therefore taken to be at the state ρ̂(t0) = ρ̂L ⊗ ρ̂C ⊗ ρ̂R, where

ρ̂a = Z−1
a e−βa(Ĥa−μaN̂a) (a = L, R), (6)

in which Za = Tra[e−βa (Ĥa−μaN̂a )] and N̂a is the total particle
number operator for reservoir a. We are interested in the
steady state and so any observable of interest in this limit will
be independent from the initial state of the central system ρ̂C .

Immediately after the initial time t0 the coupling be-
tween the central system and the two leads is switched-
on adiabatically according to Ĥε (t ) = Ĥ0 + e−ε|t |Ĥint, with
ε being an arbitrary small positive constant [59], so
Ĥε (t0 = −∞) = Ĥ0, Ĥε (0) = Ĥ. Making use of the in-
teraction picture evolution operator ÛI,ε (0,−∞) generated
by this Hamiltonian, the NESS statistical operator ρ̂ness ≡
limε→0+ ÛI,ε (0,−∞)ρ0Û

†
I,ε (0,−∞) is given by the exact and

intuitive form (see Appendix A and Refs. [44,48,50,60,61])

ρ̂ness = Z−1
nesse

−β(Ĥ−μN̂ )+	̂, (7)

where Zness is the NESS partition function, N ≡ ∑
a=L,R Na

is the total particle number operator for the leads, β =
1/2(βL + βR), μ = (βLμL + βRμR)/(βL + βR), δβ = βL −
βR, and δβμ = βLμL − βRμR. Crucially, Eq. (7) includes the
entropy production operator 	̂ which is defined as

	̂ = δμβQ̂+ − δβ Ê+, (8)

where

Ê = 1
2 (ĤL − ĤR), Q̂ = 1

2 (N̂L − N̂R), (9)

and for X = E , Q, we introduce the operators

X̂+ = lim
ε→0+

ε

∫ 0

−∞
dteεt X̂H (t ) = lim

T→∞
1

T

∫ 0

−T

dtX̂H (t ), (10)

with X̂H (t ) = eiĤt X̂ e−iĤt and T ∝ ε−1. The last equality in
Eq. (10) is a direct consequence of Abel’s theorem [60,62].
Q̂+ and Ê+ therefore represent the operators connected to
time-averaged particle and energy differences between the
L and R leads. It is important to emphasize that in this
framework, the NESS state Eq. (7) refers to the global
state of the composite LCR system and not just the reduced
state of C.

The structure of Eq. (7) implies that the NESS is a
generalized Gibbs ensemble where in addition to the usual

conserved quantities Ĥ and N̂ , there are the additional con-
served quantities Ê+ and Q̂+, whose Lagrange multipliers
are the well known thermodynamic affinities δβ and δβμ

that drive the energy and particle currents respectively [2].
Another observation from Eq. (7) is that the cumulants of
the steady-state entropy production, here connected to the
current fluctuations, are generated by taking derivatives of
the corresponding Massieu potential ψness ≡ − ln Zness [63].
This is in direct analogy to the case for equilibrium ensembles
where they are connected to the equilibrium fluctuations of
the energy. In Appendix B 1, we explicitly show that the
expectation value of the entropy production operator 	̂ for
the NESS, calculated through the Massieu potential, recovers
the familiar result for the average entropy production rate

〈σ̂ 〉 = lim
T→∞

1

T
〈	̂〉 = δβμ〈ĴQ〉 − δβ〈ĴE 〉, (11)

where 〈ĴQ,E 〉 = Tr[ĴQ,E ρ̂ness] are the usual asymptotic steady-
state particle and energy currents [53,64], with the current
operator of X̂ given as ĴX (t ) ≡ dX̂H (t )

dt for X = E , Q. In the
following, we will assume, by convention and without loss of
generality, that a current 〈ĴQ,E 〉 is positive when directed from
the left reservoir to the right reservoir and negative otherwise.

III. ENTROPY PRODUCTION AS A RELATIVE ENTROPY

Armed with the NESS statistical operator, we are now
ready to introduce our first main result. Using the NESS
ensemble Eq. (7), we write the average entropy production
as a quantum relative entropy [65], which plays a central role
in nonequilibrium quantum thermodynamics [66–71]. In the
formalism presented here, the entropy production operator
	̂ defined in Eq. (8) represents a conserved quantity in the
NESS, i.e., it commutes with the total Hamiltonian Ĥ. Conse-
quently the exponential in Eq. (7) can be factorized leading to
the following insightful re-expression:

ρ̂ness = ρ̂lese
	̂ Zles

Zness
, ρ̂les ≡ Z−1

les e−β(Ĥ−μN̂ ), (12)

where ρ̂les represents the local equilibrium state (LES) of
the total system, i.e., the equilibrium condition that would
be reached if both leads had an inverse temperature β̄ and
chemical potential μ̄ [see Fig. 1(b)]. The above relation
clearly expresses the intimate relation between ρ̂ness and
ρ̂les. This is made precise by quantifying their distinguisha-
bility through the relative entropy (Kullback-Leibler diver-
gence) D(ρ̂1||ρ̂2) = Tr[ρ̂1 ln ρ̂1] − Tr[ρ̂1 ln ρ̂2]. A straightfor-
ward calculation leads to

〈	̂〉 = D(ρ̂ness||ρ̂les ) + �ψ, (13)

where the second term on the right-hand side (r.h.s.) corre-
sponds to the difference in the Massieu potentials of the LES
and of the NESS

�ψ = ψles − ψness ≡ ln

(
Zness

Zles

)

= ln

(
1 +

+∞∑
n=1

(2n!)−1〈	̂2n〉les

)
. (14)
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We stress that the expectation value of the even pow-
ers of the entropy production operator in the last equal-
ity are calculated over the local equilibrium state (see
Appendix B 2 for derivation and details). One may physically

interpret 〈Wextr〉 = β
−1

D(ρness||ρles ) as the available work that
could be extracted by letting the leads equilibrate to β and μ

[72].
Two relevant considerations can be made. First, all the

expectation values 〈	̂2n〉les are positive quantities, therefore
leading to the conclusion that �ψ � 0. Combining this with
the fact that, via Klein’s inequality, the relative entropy is
non-negative allows us to obtain the non-negativity of the
steady-state mean entropy production 〈	̂〉. Along the same
lines, upon introducing the entropy production rate 〈σ̂ 〉 from
Eq. (11) into Eq. (13), one obtains an analogous reformulation
of this quantity in terms of a relative entropy and also prove its
positivity. Second, in the absence of a temperature gradient,
the first term in the series, i.e., 〈	̂2〉les, is proportional to
the Johnson-Nyquist noise [60], which therefore becomes
the leading term whenever an expansion over the affinity
β(μL − μR) is performed.

As a final observation it is important to remark here
that Eq. (12), and all the subsequent results, hold true also
in the case of arbitrary number of baths. As discussed in
Appendix A 2, the only difference for a multiple bath setup
is that the explicit form of the entropy production operator 	̂

consists of many more terms.

IV. THERMODYNAMICS OF PRECISION

Using our derived expression for the average entropy pro-
duction defined by Eq. (13), we are now in a position to exploit
the mathematical properties of the relative entropy to derive
our TUR. We start by rewriting the NESS operator in Eq. (7)
in the generic form

ρ̂ness ≡ ρ̂(λ) = Z−1
nesse

−λi X̂i , (15)

where X = (H,−N, E+,−Q+)T and Einstein’s summation
notation has been adopted with the vector of parameters
λ = (β, βμ, δβ, δβμ)

T
representing the set of experimentally

controllable conditions defining the manifold of thermody-
namically accessible states. We will henceforth refer to this
as the manifold of steady states (SSM), see Fig. 2.

FIG. 2. Manifold of nonequilibrium steady states and schematic
representation of the main results Eqs. (13).

It is immediate to see that equilibrium states of the form
ρ̂les will belong to this manifold, as they correspond to vectors
λ having the affinities δβ and δβμ equal to zero. The local
curvature of the manifold is then given by the Fisher infor-
mation, which quantifies the sensitivity of the system to small
variations of the control parameter λ. Explicitly,

D(ρ̂(λ + δλ)||ρ̂(λ)) = 1
2 dλT I(λ)dλ + O(dλ3), (16)

where the Fisher information I is in this multidimensional
case a matrix with elements

I (λ)i j =
∑

k

ρk (λ)

(
∂ ln ρk (λ)

∂λi

∂ ln ρk (λ)

∂λ j

)
(17)

with {ρk} denoting the set of populations, i.e., the projections
of the density matrix on the energy eigenbasis of Ĥ. The SSM
can be shown to be a Riemannian manifold over the set of pa-
rameters λ, whose metric (called Fubini-Study [73]) induces
a notion of statistical distance between two generic states ρ̂1

and ρ̂2. In fact looking at the SSM in this geometrical form can
be used to generalized the concept of thermodynamic length,
introduced by Crooks for the class of equilibrium ensembles
[74], to the class of NESS (see also extension to nonunitary
dynamics [75]).

In order to shed light on the geometry of the thermodynam-
ics of precision we invoke the Cramer-Rao bound [76] which
puts a fundamental lower bound on the precision of estimation
of a parameter λ, or a function g(λ) of that parameter, labeling
a statistical ensemble. Concretely, the latter reads

Covλ(g) � Kλ′ (g)I(λ)−1Kλ′ (g)T , (18)

where K is the Jacobian matrix of transformation with ele-
ments

Kλ′ (g)i j = ∂gi(λ)

∂λ j
, (19)

and where Cov denotes the covariance matrix with elements

Covλ(gig j ) = 〈gig j〉λ − 〈gi〉λ〈g j〉λ. (20)

Equation (18) can be interpreted as establishing the positive
semi-definiteness of the matrix Cov − KI−1KT . Given the
NESS defined in Eq. (7) is diagonal in the total energy eigen-
basis we can use the classical version of the bound [77]. We
stress that the bound on Covλ(g) in Eq. (18), specified by the
inverse of the Fisher Information, is valid in general and is in
no way restricted to small variation of the control parameter λ.
Shortly we will perform a series expansion of Cov − KI−1KT

in powers of dλ which allows the substitution of the Fisher
information with the relative entropy D(ρ̂(λ + δλ)||ρ̂(λ)).

Let us apply the above general geometrical results (16) and
(18) to the situation at hand. Motivated by what happens in
actual experimental platforms, rather than directly estimating
the vector of parameters λ, we choose to estimate the average
steady-state currents 〈Ĵα〉λ ≡ Tr[Ĵαρ̂(λ)]. Here we will em-
ploy the label α to include all the relevant physical currents,
including particle (α = Q), energy (α = E ), heat (α = H),
as well as theheat from the (α = a = L, R) reservoir Ĵa =
ĴE ,a − μaĴQ,a and the work (α = W ) defined as ĴW = ĴL − ĴR.
Let us then start from a state ρ(λ�) in the SSM corresponding

to λ� = (β
�
, μ�, 0, 0)

T
, and implement the transformation
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ρ(λ�) �→ ρ(λ� + dλ), with dλ = (0, 0, δβ, δβμ)T being a
small increment in the inverse temperature and chemical
potential imbalances. These two states represent respectively
ρ̂les and ρ̂ness. By performing a series expansion of the Cramer-
Rao bound to the leading nonzero order in dλ and exploiting
our result (13), we obtain the following inequality (see Ap-
pendix B 3 for details),

〈σ̂ 〉 � 〈Ĵ〉T �−1〈Ĵ〉. (21)

Here, following the standard procedure [16], we have defined
the so-called normalized covariance matrix with elements

�Ĵα,Ĵβ
≡ lim

T→∞
TCov(Ĵα Ĵβ ), (22)

and we have used the entropy production rate defined in
Eq. (11) as 〈σ̂ 〉 = limT→∞ T−1〈	̂〉. We remind the reader that
the adiabatic limit limT→∞ has to be performed at the very
end of the calculation of interest [78], and therefore the ratio in
Eq. (21) is well-defined and finite. In particular, from Eq. (21)
it immediately follows that

�Ĵα

〈Ĵα〉2
〈σ̂ 〉 � 1, (23)

which represents a TUR of the same form as Eq. (1) but with
a constant which is two times looser, dictated by the geometry
of quantum NESS. Moreover our result in Eq. (21) generalizes
the classical TUR since it involves in the full covariance
matrix �.

V. IMPLICATIONS FOR MESO- AND
NANOSCOPIC HEAT ENGINES

We will now discuss the consequences that our new bound
Eq. (21) on precision has on autonomous quantum steady-
state machines operating at small biases in temperature and
chemical potentials. Let us assume, with reference to the color
scheme used in Fig. 1(a) and without loss of generality, that
TL > TR and that the thermal gradient is exploited to drive
the current against the chemical potential difference μL < μR

(Seebeck effect) [64,79–81].
In their seminal work, Pietzonka and Seifert (PS) showed

that, for steady-state engines described by classical Marko-
vian stochastic processes, the application of TUR to the
work current, i.e., the power 〈P̂〉 ≡ 〈ĴW 〉 = 〈ĴL〉 − 〈ĴR〉 leads
straightforwardly to the upper bound Eq. (2), with η =
〈P̂〉/〈ĴL〉 being the efficiency of the engine and ηC being the
Carnot efficiency corresponding to TL = TH and TR = TC . A
crucial identity that is used to derive Eq. (2) is the expression
of the entropy production rate in terms of the output power
and of the efficiency, i.e.,

〈σ̂ 〉 = 〈ĴL〉
TL

− 〈ĴR〉
TR

= 〈P̂〉
TR

(
ηC

η
− 1

)
(24)

from colloidal systems [82] to biological clocks [33]. How-
ever, it is expected to fail whenever quantum systems, such
as nanoscale heat engines, cannot be suitably described by
effective Markovian processes. Indeed recent results [36] have
in fact shown violations of the classical TUR Eq. (1) and
of the bound on the output power Eq. (2) in paradigmatic

toy models, such as resonant single-dots and serial (or side-
coupled) double-dot junctions [37].

A straightforward application of our new bound Eq. (21),
when restricted to Eq. (23) with Ĵα = ĴW , leads to

〈P̂〉 � BGG ≡ �P̂

TR

(
ηC

η
− 1

)
= 2BPS. (25)

This result extends the validity of the conclusions obtained
in Ref. [35] that were summarized in the introduction of this
work. What is more remarkable, however, is that Eq. (25) indi-
cates that the allowed output power for given engine efficiency
and constancy (i.e., power fluctuations) can potentially be
twotimes larger than any counterpart described as a classical
Markov stochastic process. It can moreover be easily checked
that all the violations observed in the above mentioned toy
models analyzed in Refs. [36,37] are well within our new
bound, even in the presence of Coulomb interaction between
the quantum dots [37] (see also Appendix B 4).

On top of this, an additional bound can be derived by
exploiting the full covariance matrix �Ĵα,Ĵβ

of Eq. (21). If we

consider in particular Ĵα = ĴW and Ĵβ = ĴL (the latter being by
convention the heat current from the hot reservoir), we have
that (see Appendix B 4)

〈P̂〉 � η

TR

�P̂�ĴL
− �2

P̂,ĴL

�P̂ − 2η�P̂,ĴL
+ η2�ĴL

(ηc − η), (26)

where �P̂,ĴL
is the normalized covariance between P̂ and ĴL

[see Eq. (22)] and �ĴL
the normalized variance of ĴL. This

new upper bound complements the one of Eq. (25) and shows
an unexpected relation between the maximum amount of
power output and the incoming heat current from the hot (left)
reservoir. Equation (26) implies that when these two quantities

becomes highly statistically correlated, i.e.,
|�P̂,ĴL

|√
�P̂�ĴL

→ 1, the

numerator on the r.h.s. of Eq. (26) vanishes and therefore the
only way to achieve a finite power output is for the efficiency

η to become equal to η → |�P̂,ĴL
|

�ĴL

=
√

�P̂
�ĴL

(so that also the

denominator goes to zero). This is the case, for example, in the
tight coupling regime, where the heat current becomes propor-
tional to the particle current [37,83]. Since, by definition, η =
〈P̂〉/〈ĴL〉, this means that, for highly statistically correlated
systems, 〈P̂〉 ∝ √

�P and likewise for the heat current from
the hot reservoir. Such relation between the mean values and
their variances is typical, e.g., of Gaussian distributions and is
expected to hold for ergodic systems.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we have explored the thermodynamics of pre-
cision for quantum NESS. We exploited a statistical ensemble
description and an expression of the entropy production in
terms of relative entropy in order to bound the dissipation
from below by the covariance matrix of currents. Our result
differs from the standard approaches in the literature for the
thermodynamics of precision—not only is it derived in a
fully quantum mechanical way, it also is geometrical in na-
ture, reflecting the underlying fundamental universality of the
concept. Moreover, this novel approach the merit of exploit-
ing methods and techniques borrowed from several different
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research areas, such as quantum information theory, many-
body scattering theory and statistical mechanics, and therefore
can prove of interest for a wide range of physics community,
such as, e.g., quantum thermodynamics and condensed matter
physics.

Crucially, the derivation of our result in Eq. (21) does
not assume any Markov approximation however it is valid at
second order in δβ and δβμ, thus beyond the linear response
regime. Moreover, as it is the case for the classical TUR, it
holds true for any current in the steady-state system. However,
it also goes further in that it contains information on the
covariance between different currents, whereas the usual TUR
that instead concern only the variances of currents, i.e., the
diagonal elements of the above covariance matrix. In future
work, we plan to investigate the repercussions of our bound on
the precision of quantum clocks [84], as well as its extension
to driven setups [38,39].

ACKNOWLEDGMENTS

The authors would like to thank Marti Perarnau-Llobet
for insightful comments and Mauro Paternostro, Alessandro
Silva, Felix Binder, Paul Riechers, Francesco Plastina, Mark
Mitchison, and Graldine Haack for fruitful discussions. This
work was supported by an SFI-Royal Society University Re-
search Fellowship (J.G.). This project received funding from
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant
agreement No. 758403). S.R.C. gratefully acknowledges sup-
port from the UKs Engineering and Physical Sciences Re-
search Council (EPSRC) under grant No. EP/P025110/2.
G.T.L. acknowledges the financial support from the São Paulo
Funding Agency (FAPESP) under projects 2017/50304-7,
2017/07973-5.

APPENDIX A: DERIVATION OF THE
MCLENNAN-ZUBAREV GENERALIZED

STATISTICAL OPERATOR

1. Adiabatic switching of the interaction Møller operators

In this section, we present some technical details con-
cerning the derivation of the McLennan-Zubarev general-
ized statistical ensemble [Eq. (7) of the main text], which
will be necessary for the derivations of our main results.
We begin by considering the unitary evolution of a sys-
tem described subject to a Hamiltonian of the form Ĥ =
Ĥ0 + Ĥint. The Schrödinger picture density matrix ρ̂S (t ) will
then evolve from some initial time t0 according to ρ̂S (t ) =
Û (t, t0)ρ̂S (t0)Û †(t, t0), where Û (t, t0) = e−iĤ(t−t0 ). We move
to the interaction picture with respect to Ĥ0 by defining
ρ̂I (t ) = Û †

0 (t, 0)ρ̂S (t )Û0(t, 0), where Û0(t, 0) = e−iĤ0t . Note
that here we have chosen the time t = 0, and not t0, as the
coincidence time between operators and states in the two
pictures.

The time evolution of ρ̂I (t ) will then be given by ρ̂I (t ) =
ÛI (t, t0)ρ̂I (t0)Û †

I (t, t0), where

ÛI (t, t0) = Û †
0 (t, 0)Û (t, t0)Û0(t0, 0). (A1)

The expectation value of an arbitrary observable Â not explic-
itly dependent on time is given by 〈Â(t )〉 = Tr[ÂI (t )ρ̂I (t )],
where ÂI (t ) = Û †

0 (t, 0)ÂÛ0(t, 0). In the particular case where
ρ̂S (t0) commutes with Ĥ0, then ρ̂S (t0) = ρ̂I (t0) = ρ̂0 and
〈Â(t )〉 simplifies to

〈Â(t )〉 = Tr[ÂI (t )ÛI (t, t0)ρ̂0Û
†
I (t, t0)]. (A2)

Following standard literature, the steady-state expectation
value of Â is then defined as the asymptotic limit 〈Â〉ness =
lim|t−t0|→∞〈Â(t )〉. We will in particular consider the case
where t = 0 and t0 → −∞. On the one hand, it can be proven
that this choice corresponds to taking the correct causal
constraint rather than the steady state corresponding to the
advanced solution [48,60]. On a more intuitive basis however,
one can also motivate this choice on physical grounds by
arguing that, when dealing with a steady-state system, one
wants to calculate thermodynamic quantities in the steady
state, i.e., once the latter is established. This choice is then
also consistent with choosing the coincidence time for the
quantum mechanical pictures for the evolution to coincide at
time t = 0, where the steady state is assumed to be reached.
One therefore obtains that

ρ̂ness := ÛI (0,−∞) ρ̂0 Û −1
I (0,−∞). (A3)

We will now specialize this to the McLennan-Zubarev NESS
operator in Eq. (7) of the main text, and show how it can be
constructed starting with ρ̂0 as given by Eq. (6) of the main
text. To derive the explicit form of ρ̂ness used in Eq. (7) of the
main text, we next introduce the notion of adiabatic switching
of the interaction [59].

To that end, we distort the original Hamiltonian to read

Ĥε (t ) ≡ Ĥ0 + e−ε|t |gĤint, (A4)

with ε being a positive infinitesimal number and g is a dimen-
sionless bookkeeping parameter that can be formally set to
unity at the end. This new Hamiltonian smoothly interpolates
between the free Hamiltonian Ĥ0 at |t | → ∞ and the total
Hamiltonian Ĥ at t = 0. The adiabatic limit corresponds to
ε → 0+, which should be taken only in the end of all calcu-
lations. One may now directly verify that for 0 � t � t0, the
new interaction picture evolution operator Ûε,I (t, t0) satisfies
the differential equation [85]

iεg
∂Ûε,I (t, t0)

∂g
= Ĥη,I (t )Ûε,I (t, t0) − Ûε,I (t, t0)Ĥε,I (t0),

(A5)

where Ĥε,I = Û †
0 (t, 0)ĤεÛ0(t, 0). Specializing to the case

where t = 0 and t0 = −∞ and using the fact that Ĥε (0) = Ĥ
and Ĥε (−∞) = Ĥ0, we get

iεg
∂Ûε,I (0,−∞)

∂g
= ĤÛε,I (0,−∞) − Ûε,I (0,−∞)Ĥ0.

Taking the limit ε → 0, so the left-hand side (l.h.s.) vanishes,
and introducing the Møller operator (A6) defined as

�̂+ = lim
ε→0+

Ûε,I (0,−∞), (A6)

then finally leads to the so called intertwining property [86]

Ĥ�̂+ = �̂+Ĥ0. (A7)
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This somewhat counter-intuitive result shows if |φ is an
eigenstate of Ĥ0 with energy E then �̂+|φ is an eigenstate
of Ĥ with the same energy. Thus the Møller operator formally
connects eigenstates of the free and full Hamiltonians.

An important subtlety of this result, well known from
scattering theory [87], is that although �+ is constructed from
a unitary in Eq. (A6) it is rendered nonunitary in general by
the adiabatic limit ε → 0+. Specifically �+ possesses a left-
inverse �̂−1

+ �̂+ = 1̂ but lacks a right-inverse �̂+�̂−1
+ = 1̂.

The reason for this is the presence of a discrete set B of bound
states in the spectrum of Ĥ. The Møller operator maps the
complete continuous spectrum of Ĥ0 spanning the full Hilbert
space H to only part of the spectrum of Ĥ spanning the
subspace S of (unbounded) scattering states. Consequently,
instead of a right-inverse we strictly have �̂+�̂−1

+ = �̂S ,
with �̂S being the projector onto S [78,86,88], meaning that
Eq. (A7) can be written as

�̂S Ĥ�̂S = �̂+Ĥ0�̂
−1
+ . (A8)

For clarity in the following, we will neglect bound states and
assume the unitarity of �−1

+ so that instead

Ĥ = �̂+Ĥ0�̂
−1
+ . (A9)

We will see in the next section that this assumption is tan-
tamount to including bound states in the construction of a
generalized Gibbs ensemble for the NESS. However, since
bound states by definition do not contribute to currents this
is not expected to influence any of our analysis of the NESS.

2. Derivation of Eq. (7) of the main text

We next use Eq. (A9) to derive the McLennan-Zubarev
ensemble given in Eq. (7) of the main text. For any observable
X̂ , we denote X̂+ = �̂+X̂ �̂−1

+ as the corresponding Møller
evolved operator. It is straightforward to check that

[X̂ , Ŷ ] = 0 �⇒ [X̂+, Ŷ+] = 0. (A10)

This property is quite convenient, as the initial state in
Eq. (A3) is made up of operators that all commute among
each other, i.e., [Ĥa, N̂b] = 0, ∀a, b = L, R. Exploiting this,
as well as the form of the initial states of L and R in Eq. (6) of
the main text, we rewrite ρ̂ness = �̂+ρ̂0�̂

−1
+ from Eq. (A3) as

ρ̂ness =
∏

a=L,R

1

Za
exp{−βa(Ĥa,+ − μaN̂a,+)}ρC,+ (A11)

We now rearrange the different terms as follows. First, we de-
fine β̄ = (βL + βR)/2, μ̄ = (βLμL + βRμR)/(βL + βR), δβ =
βL − βR and δβμ = βLμL − βRμR. Moreover, we define

Ê+ ≡ 1
2 (ĤL,+ − ĤR,+), Q̂+ ≡ 1

2 (N̂L,+ − N̂R,+), (A12)

which are related to the asymptotic values of the energy and
particle imbalances, i.e., Ê+ = �̂+Ê�̂−1

+ and Q̂+ = �̂+Q̂�̂−1
+

with E ≡ 1/2(ĤL − ĤR) and Q ≡ 1/2(N̂L − N̂R). We may
then write, for instance,

βLĤL,+ + βRĤR,+ = β(ĤL,+ + ĤR,+) + δβ Ê+

= βĤ − βĤC,+ + δβ Ê+, (A13)

where we used the fact that ĤL,+ + ĤR,+ + ĤC,+ = Ĥ is
the full Hamiltonian. A similar result holds for the particle

number operators. With this rearrangement, Eq. (A11) may
now be written as

ρ̂ness = 1

ZLZR
e−β(Ĥ−μN̂ )−δβ Ê++δβμQ̂+

× eβ(ĤC,+−μN̂C,+ ) ρ̂C,+. (A14)

As shown in Refs. [53,60] the state ρ̂ness is independent of
the initial state ρ̂C of the central system. To prove this is not a
trivial task and there are many possible equivalent ways; here
we will start by showing that the above mentioned Gell-Mann
Low relation

Ûε,I (0,−∞)Ĥ0Û
†
ε,I (0,−∞)

= Ĥ − iεg
∂Ûε,I (0,−∞)

∂g
Û †

ε,I (0,−∞) (A15)

does not depend on the particular partition of the total Hamil-
tonian Ĥ into Ĥ0 and Ĥint. With reference to the notation
introduced in Sec. II, let us consider two scenarios: in the
first one Ĥ0 = ĤL + ĤR + ĤC and Ĥint = V̂LC + V̂RC; in the
second scenario, which for clarity we will denote with the
“dash” symbol, Ĥ′

0 = ĤL + ĤR and Ĥ′
int = ĤC + V̂LC + V̂RC.

The first term on the right hand side of Eq. (A15) contains
the full Hamiltonian Ĥ and therefore does not depend on the
particular partition chosen. Since Û †

ε (0,−∞) = Û †
ε,I (0,−∞)

and using the explicit expression for the evolution operator

Û †
ε (0,−∞) = 1 +

+∞∑
n=1

(−ig)n

n!

∫ 0

−∞
dt1 . . . dtne−ε

∑n
j=1 |t j |

×−→̂
T [Ĥε (t1) . . . Ĥε (tn)],

with Ĥε (t ) given by Eq. (A4), one can easily compute the last
term on the right-hand side of Eq. (A15) and obtain that

iεg
∂Ûε (0,−∞)

∂g
Û †

ε (0,−∞)

= ε

+∞∑
n=1

(−ig)n−1

n!

∫ +∞

−∞
dt1 . . . dtne−ε

∑n
j=1 |t j |

×−→̂
T [Ĥε (t1) . . . Ĥε (tn)].

It is then straightforward to see that Ĥε (t j ) = Ĥ′
ε (t j ) +

(1 − e−ε|t j |)ĤC and therefore, since the ĤC contribution van-
ishes in the limit ε → 0+, g → 1, it does not depend on the
partitioning of the total Hamiltonian. In turn this implies that
the intertwining property Eq. (A9) is also independent on the
chosen partition.

For the construction of the NESS we required that the
initial state ρ̂0 commutes with the chosen free Hamiltonian,
e.g., Ĥ0 or Ĥ′

0. This is satisfied for ĤL and ĤR by the
assumption of grand-canonical states for the leads made in
Eq. (6). The freedom to include or not ĤC in the definition of
the free Hamiltonian implies that ρ̂ness is independent on the
choice of ρ̂C used within ρ̂0. This is a sensible consequence
of the fact that the central conductor is only a finite contri-
bution to an otherwise infinite system. It is therefore conve-
nient to exploit this independence by choosing ρ̂C such that
ρ̂C,+ = e−β(ĤC,+−μN̂C,+ ), canceling out the second line of
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Eq. (A14) and reducing it to the McLennan-Zubarev form
given in Eq. (7).

Some additional important observations can be made about
the operators comprising the McLennan-Zubarev form. First,
[Ê , Ĥ0] = 0 as well as [Q̂, Ĥ0] = 0, which in light of Ĥ0,+ =
Ĥ from Eq. (A9) and Eq. (A10) means that [Ê+, Ĥ] = 0 and
[Q̂+, Ĥ] = 0 also. Second, this immediately implies that the
entropy production operator 	̂ = δμβQ̂+ − δβ Ê+ also com-
mutes with Ĥ and is therefore a conserved quantity.

It is moreover worth mentioning that, by exploiting the
Dyson’s expansion of Ûε,I (0,−∞) and Abel’s theorem [48],
it is possible to express Ê+ and Q̂+ as time-averaged
Heisenberg-picture operators as (X ≡ E , Q)

X̂+ = X̂ −
∫ 0

−∞
dteεt ĴX (t ), (A16)

= lim
ε→0+

ε

∫ 0

−∞
dteεt X̂H (t ) = lim

T→∞
1

T

∫ 0

−T

dtX̂H (t ),

(A17)

with X̂H (t ) = eiĤt X̂ e−iĤt and where we have defined the
current operator (in Heisenberg picture) of the X̂ as ĴX (t ) ≡
d
dt X̂H (t ). We refer the interested reader to Ref. [60] for the
details.

Finally, it is important to point out here that the above con-
struction of the NESS statistical operator can be extended to
the case of arbitrary number of baths (and even to the case of
a continuum of baths, see, e.g., Ref. [48]), with each assumed
to start in grand canonical Gibbs ensemble at time t = t0
at their own inverse temperature β j and chemical potential
μ j . Remarkably, the resulting operator has exactly the same
structure and properties of Eq. (7), the only difference being
the explicit form of the entropy production operator 	̂ which
instead consists of many more terms. To quickly realize this,
it is sufficient to notice that a regrouping of, e.g.,

∑N
j=1 Ĥ j+ in

the same spirit of Eq. (A13), will lead to

N∑
j=1

Ĥ j+ = βĤ +
N∑

j=1

Ĥ j+

⎡
⎣N − 1

N
β j − 1

N

N∑
k = j

βk

⎤
⎦, (A18)

where β = N−1 ∑N
j=1 β j and the symbol

∑
k = j denotes a

summation over all indices k except the one equal to j.
Crucially by exploiting Eq. (A10), with X̂ = Ĥ0 =∑N
j=1 Ĥ j and Ŷ = Ĥk , it is apparent that the terms appearing

in Eq. (A18), beside the first one which will enter in the
definition of 	̂, still commute with the total Hamiltonian Ĥ.
This allows the exponential of Eq. (7) to be disentangled
even in the multiple-bath case, and the expression in terms
of the LES as in Eq. (12) to be obtained. The following results
therefore holds as well.

APPENDIX B: PROOFS OF THE RESULTS AND
ADDITIONAL DETAILS OF THE CALCULATIONS

1. Discussion of the connection of the expectation value of the
entropy production operator 〈�̂〉 with the entropy

production rate

In light of the formalism illustrated in detail in the previous
section, the NESS statistical operator ρ̂ness is reached at time

FIG. 3. Schematics of the NESS. The NESS is reached at time
t = 0 through an adiabatic switching on of the interaction at initial
time t0 = −∞, where the state ρ̂0 was factorized. Every expectation
value calculated in the steady state must be then computed at
time t > 0.

t = 0 through an adiabatic switching on of the coupling at
initial time t0 = −∞, where the initial state was ρ̂0. What we
defined to be “entropy production operator” 	̂ = δβμQ̂+ −
δβμÊ+ appearing at the exponent of the NESS state Eq. (7)
is therefore, by construction, a quantity which expresses the
dissipated work necessary to create the steady state starting
from the factorized state ρ̂0. It is therefore far from evident
why its average over the NESS should correspond to the
usual expression considered in the steady state, where 〈	̂〉 =
limT→∞ T〈σ̂ 〉 with 〈σ̂ 〉 being given by [89]

〈σ̂ 〉 = δβμ〈ĴQ〉 − δβ〈ĴE 〉, (B1)

where the affinities δβ and δβμ have been defined previously
and 〈ĴQ,E 〉 are the steady-state values of the particle and
energy currents, respectively. The latter are in fact known to be
constant in time and all the above mean values are assumed to
be taken with respect to the NESS state, i.e., 〈·〉 ≡ Tr[ · ρ̂ness].

Put in another way, can one prove that the mean value
of that operator, i.e., the average dissipated work to create
the NESS, is actually equivalent to the average entropy pro-
duction generated in the steady state (i.e., once the NESS is
obtained)? The answer to this question is affirmative, and to
prove this important fact the first step is to notice that the
average currents (particle and energy) in the NESS are time
independent. This was explicitly shown in Ref. [60] but, in
light of its importance, we will repeat here some of the main
steps using our notation for convenience. Let us consider first
the expectation value of the particle current at a generic time
t > 0, i.e., once the NESS is established, see Fig. 3,

〈ĴQ(t )〉 = lim
ε→0+

Tr[Û †
ε (t, 0)ĴQÛε (t, 0)ρ̂ε], (B2)

where Ûε (t, 0) is the evolution operator corresponding to the
Hamiltonian Ĥε (t ) and where we have used the notation

ρ̂ε ≡ Ûε (0,−∞) ρ̂0 Û †
ε (0,−∞). (B3)

Note that the steady-state solution for the statistical operator
ρ̂ness Eq. (7) is obtained from ρ̂ε by taking the adiabatic limit,
i.e., ρ̂ness = limε→0+ ρ̂ε . Finally, in what follows, we will also
use the alternative notation ρ̂T−1 to equivalently denote ρ̂ε

after we have switched the limits limε→0+ into limT→∞ using
Abel’s theorem [as in Eq. (10)].

We recall the very important fact that the adiabatic limit
limε→0+ , which was taken before to get the final closed
expression for ρ̂ness, must always be performed only at the end
of the calculations (i.e., in this case after the average is taken).
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By making use of the identity Eq. (10), one has that

〈ĴQ(t )〉 = lim
ε→0+

Tr[ĴQρ̂ε] −
∫ t

0
dτ Tr

[
Ĵρε

(τ )ĴQ(t )
]
, (B4)

where we have defined the current operator (in Heisenberg
picture)

Ĵρε
(t ) ≡ d

dt
ρ̂ε (t ) = iÛ †

ε (t, 0)[ρ̂ε, Ĥε (t )]Ûε (t, 0). (B5)

It is then possible to show that [see Eqs. (31) to (34)
of Ref. [60] for the details], upon defining Ĵ ′

Q(τ, t ) ≡
Ûε (τ, 0)ĴQ(t )Û †

ε (τ, 0), one can compute the second term in

the above expression

lim
ε→0+

Tr
[
Ĵρε

(τ )ĴQ(t )
] = lim

ε→0+
Tr[i[ρ̂ε, Ĥε (τ )]Ĵ ′

Q(τ, t )]

= lim
ε→0+

εTr[(ρ̂ε − ρ̂0)Ĵ ′
Q(τ, t )] = 0,

(B6)

which, substituted back into Eq. (B4), gives

lim
ε→0+

〈ĴQ(t )〉 = lim
ε→0+

〈ĴQ〉 ≡ 〈ĴQ〉. (B7)

Analogous calculations hold for the mean steady-state energy
current 〈ĴE 〉. Equipped with these results, we can now con-
sider the entropy production operator 	̂ defined in Eq. (8).
We begin by manipulating 〈	̂〉 as

〈	̂〉 = δβμ〈Q̂+〉 − δβ〈Ê+〉 = −δβμ

∂

∂ (δβμ)
ln Zness − δβ

∂

∂ (δβ )
ln Zness,

= − lim
ε→0+

[
δβμ

∂

∂ (δβμ)
ln Tr[ρ̂ε] + δβ

∂

∂ (δβ )
ln Tr[ρ̂ε]

]
,

= − lim
ε→0+

{
δβμTr

[
ρ̂ε

(
Q̂ −

∫ 0

−∞
dt eεt ĴQ(t )

)]
+ δβTr

[
ρ̂ε

(
Ê −

∫ 0

−∞
dt eεt ĴE (t )

)]}
,

where from the second to the third line Eq. (A16) has been used in place of both Q̂+ and Ê+. Next, we integrate by parts and
employ Abel’s theorem to get

〈	̂〉 = − lim
ε→0+

[
δβμ

∫ 0

−∞
dt εeεt 〈Q̂(t )〉 + δβ

∫ 0

−∞
dt εeεt 〈Ê (t )〉

]
,

= − lim
T→+∞

1

T

(
δβμ

∫ 0

−T

dt Tr[Q̂(t )ρ̂T−1 (t )] + δβ

∫ 0

−T

dt Tr[Ê (t )ρ̂T−1 (t )]

)
.

Moving the evolution to Heisenberg picture we then get

〈	̂〉 = − lim
T→+∞

1

T

(
δβμ

∫ 0

−T

dt Tr[Q̂(t )Û (t, 0)ρ̂T−1Û †(t, 0)] + δβ

∫ 0

−T

dt Tr[Ê (t )Û (t, 0)ρ̂T−1Û †(t, 0)]

)
,

= − lim
T→+∞

1

T

(
δβμ

∫ 0

−T

dt Tr[Q̂(2t )ρ̂T−1 ] + δβ

∫ 0

−T

dt Tr[Ê (2t )ρ̂T−1 ]

)
,

and then by using the definition of the current operator for both Q̂ and Ê this becomes

〈	̂〉 = − lim
T→+∞

1

T

(
δβμ

∫ 0

−T

dt Tr

[(∫ 2t

0
dτ ĴQ(τ )

)
ρ̂T−1

]
+ δβ

∫ 0

−T

dt Tr

[(∫ 2t

0
dτ ĴE (τ )

)
ρ̂T−1

])
,

= − lim
T→+∞

1

T

∫ 0

−T

dt
∫ 2t

0
dτ (δβμTr[ĴQ(τ )ρ̂T−1 ] + δβTr[ĴE (τ )ρ̂T−1 ]).

Finally we exploit Eq. (B7), integrate and simplify to arrive at

〈	̂〉 = − lim
T→+∞

1

T

∫ 0

−T

dt
∫ 2t

0
dτ (δβμTr[ĴQρ̂T−1 ]

+ δβTr[ĴE ρ̂T−1 ]),

= − lim
T→+∞

1

T

∫ 0

−T

dt 2t (δβμ〈ĴQ〉 + δβ〈ĴE 〉),

= lim
T→+∞

T(δβμ〈ĴQ〉 + δβ〈ĴE 〉) = lim
T→+∞

T〈σ̂ 〉.
(B8)

This concludes the proof, as we can now evaluate the mean
entropy production rate in the NESS as

〈σ 〉 = lim
T→∞

1

T
〈	̂〉, (B9)

the latter being the NESS average of the entropy production
operator appearing in ρ̂ness.

2. Proof of Eq. (14)

In order to prove Eq. (14) it is useful to keep in mind that,
as stated in the main text (and proven, e.g., in Refs. [55,90]),
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the time-averaged entropy production operator 	̂ is a
conserved quantity and therefore it commutes with the total
Hamiltonian Ĥ (and consequently also with the total number
operator N̂). This allows to “disentangle” the exponential
exp [−β(Ĥ − μN̂ ) + 	̂] = exp [−β(Ĥ − μN̂ )] exp [	̂]. We
have therefore that

�ψ ≡ ln

(
Zness

Zles

)
= ln

(
Tr[e−β(Ĥ−μN̂ )+	̂]

Tr[e−β(Ĥ−μN̂ )]

)

= ln

(
Tr

[
e−β(Ĥ−μN̂ )

Tr[e−β(Ĥ−μN̂ )]
e	̂

])

= ln(Tr[ρ̂lese
	̂]). (B10)

Expanding now the exponential operator e	̂ in Maclaurin
series

∑+∞
m=0 	̂m/m! one is left with

�ψ = ln

(
1 +

+∞∑
n=0

Tr

[
ρ̂les

(
	̂(2n+1)

(2n + 1)!

)]

+ Tr

[
ρ̂les

(+∞∑
n=1

	̂(2n)

(2n)!

)])
, (B11)

where the first term comes from the m = 0 term, i.e., the
identity 1, which therefore gives back Tr[ρ̂les] = 1, and the
remaining terms of the series have been sorted into odd and
even powers of 	̂. Since the expectation value is taken with
respect to the LES statistical operator, the former (i.e., the odd
powers of the entropy production operator) vanish and only
the even powers survive, thus leading to Eq. (14), i.e.,

�ψ = ln

(
1 +

+∞∑
n=1

(2n!)−1〈	̂2n〉les

)
. (B12)

A number of further considerations can be made at this point,
which will be useful in the following, especially in deriving
the bound Eq. (21), as explained in detail in Appendix B 3.
First of all, let us start from the identity in Eq. (12)

ρ̂ness = ρ̂lese
x	̂ Zles

Zness
, (B13)

where we introduced a positive dimensionless constant x that
measures the strength of the affinities δβ and δβμ, that will
prove useful to keep track of the order in the following
series expansions; the latter can always be reabsorbed into the
definition of 	̂. Notice that, due to Eq. (12), the following
identity straightforwardly holds

Zness

Zles
= 〈

ex	̂
〉
les, (B14)

from which it follows

x〈	̂〉ness =
〈
	̂ex	̂

〉
les〈

ex	̂
〉
les

. (B15)

If we now performs a Taylor expansion of the r.h.s. into
powers of x, exploiting the fact that 〈	̂〉les = 0, we finally
obtain the following relation

x〈	̂〉ness = x2〈	̂2〉les + o(x3), (B16)

which expresses the fact that average of the square of the
entropy production operator calculated on the LES is equal,
up to second order in the affinities, to the average entropy
production in the NESS. By finally performing an analogous
Taylor expansion on �ψ , one also finds that

�ψ = x2

2
〈	̂2〉les + o(x3) = x

2
〈	̂〉ness + o(x3), (B17)

where Eq. (B16) has been exploited in the last step.

3. Proof of our bound on thermodynamic precision

In this section, we will provide the explicit derivation of
Eq. (21). As explained in the main text, the starting point is
to perform the following transformation on the manifold of
steady states (SSM)

ρ̂(λ�) �→ ρ̂(λ′) ≡ ρ̂(λ� + dλ), (B18)

where λ� = (β
�
, μ�, 0, 0)

T
and where dλ = (0, 0, δβ, δβμ)T

represents a small increment in the inverse temperature and
chemical potential imbalances. It is immediate to realize that
the two states represent ρ̂les and ρ̂ness, respectively. Let us
then employ the generalized Cramer-Rao bound to estimate
the average steady-state currents 〈Ĵα〉λ

Covλ′ (J) − Kλ′ (J)I(λ′)−1Kλ′ (J)T � 0, (B19)

where

Kλ′ (J) = d〈J〉
dλ

(B20)

is the Jacobian matrix and where the covariance matrix has
elements

CovJ(λ′)αβ ≡ Cov(Ĵα, Ĵβ ) = Tr[Ĵα Ĵβρ(λ′)]

− Tr[Ĵαρ̂(λ′)]Tr[Ĵβρ̂(λ′)], (B21)

with the labels α, β being any of the current Q, E ,H, L, R,W
defined in the main text. Equation (B19) expresses the positive
semidefiniteness of the matrix Cov − KI−1KT and, could also
be alternatively re-written as I − KT Cov−1K � 0 (as they
represent the two Shur complements of a common positive
semi-definite block matrix, see, e.g., Eq (6.1.3) of Ref. [91]).
Given that d〈J〉 = Kdλ, let us conveniently expressed the
above inequality as

dλT Idλ � d〈J〉T Cov−1d〈J〉. (B22)

The next step is to notice that

d〈Ĵα〉λ′ ≡ 〈Ĵα〉λ′ − 〈Ĵα〉λ� = 〈Ĵα〉λ′ , (B23)

as the last term vanishes (the currents are zero on the LES
ρ̂les = ρ̂(λ∗)). Using this result in Eq (B22) leads immediately
to

〈J〉T Cov−1〈J〉 � dλT Idλ = 2D(ρ̂ness||ρ̂les) (B24)

where Eq. (16) was used in the last step. Thanks to our result
in Eq. (13), we can now substitute the relative entropy in the
above expression and obtain

(〈	̂〉 − �ψ ) � 1
2 〈J〉T Cov−1〈J〉. (B25)

It is then important to notice that, in the regime of small
temperature and chemical potential biases, one has that the
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Massieu potential difference �ψ reduces to x〈	̂〉ness/2 fol-
lowing Eq. (B17); when plugged into the above Equation this
immediately leads to the following bound:

〈	̂〉 � 〈J〉T Cov−1〈J〉. (B26)

Finally, one can express the above bound in terms of the av-
erage steady-state entropy production rate, given the relation

〈	〉 = lim
T→∞

T〈σ̂ 〉. (B27)

Keeping note that the adiabatic limit limT→∞ must be per-
formed only at the very end of calculations, one retraces the
exact same steps as done in standard literature of TUR by
introducing the normalized covariance matrix

�(Ĵα Ĵβ ) = lim
T→∞

TCov(Ĵα Ĵβ ), (B28)

and the time T from the expression before taking the adiabatic
limit. It is straightforward to show that this immediately leads
to Eq. (21).

Finally, we stress that the above result generalizes the TUR
as it involves the full covariance matrix, and it follows in
particular that the diagonal elements must be positive as well,
from which one obtains

�Ĵα

〈Ĵα〉2
〈σ̂ 〉 � 1, (B29)

possessing the same structure as the classical TUR but a bound
two times looser than the Markovian classical counterpart.

4. The double serial quantum dots steady-state engine

We will devote this section to briefly show the application
of the TUR-derived upper bound on power in a toy model
considered in Refs. [36,37]. In particular, we will choose the
serial double quantum dots junction model since it has been
shown to manifest violations of the TUR even at arbitrary
small biases δβ and δβμ when a second-order expansion is
considered. This corresponds to the regime of validity of our
new geometrical TUR.

Let us therefore consider a 1D junction system made of
two quantum dots, with energies EL,R, coupled to each other
coherently through a tunneling amplitude �. The two dots
are then respectively hybridized with their corresponding lead
with a tunneling amplitude tα and chemical potential μα . The
total Hamiltonian is then

Ĥ =
∑

a

Eaĉ†
aĉa + �

(
ĉ†

LĉR + ĉ†
RĉL

) +
∑
a,k

(εk − μa)b̂†
a,kb̂a,k

+
∑
a,k

(
tab̂†

a,kĉa + t∗
a b̂a,kĉ†

a

)
(a = L, R), (B30)

where {ĉa, ĉ†
a} are the annihiliation and creation operators for

the quantum dots, while {b̂a,k, b̂†
a,k} are those of the fermionic

leads for an eigenstate k with energy εk . We also assume,
without any loss of generality, that TL > TR.

In the main text, we showed how the TUR implies an
upper bound to the power, dictated by its fluctuations �P

and by the efficiency ε, according to Eq. (25). The quantities
entering this bound are usually calculated using the formalism

of nonequilibrium Greens function [64,79–81] and concretely
are given, in the wide-band limit, by the Landauer-Büttiker
formulas

〈P̂〉 = (μR − μL )

2π h̄

∫ +∞

−∞
dE τ (E ) ( fL(E ) − fR(E )),

�P = (μR − μL )2

2π h̄

∫ +∞

−∞
dE τ (E ) { fL(E ) + fR(E )

− 2 fL(E ) fR(E ) − τ (E )[ fL(E ) − fR(E )]2}, (B31)

with f (E ) = [eβ(E−μ) + 1]
−1

being the Fermi-Dirac distri-
bution and τ (E ) being the transmission function. We will
assume τ (E ) has the form

τ (E ) = �L�R�2

|(E − EL + i�L/2)(E − ER + i�R/2) − �2|2 ,

(B32)

where �a = 2π |ta|2da is the real part of the dot’s self-energy
quantifying the coupling of lead a to dot a, with da denoting
the density of states of the lead. Finally, the efficiency of the
steady-state engine is given by ε = 〈P̂〉/〈ĴL〉, with

〈ĴL〉 = 1

2π h̄

∫ +∞

−∞
dE (E − μL )τ (E ) ( fL(E ) − fR(E )),

(B33)

denoting the heat current from the left (hot) reservoir, and

�(P̂, ĴL ) = μR − μL

2π h̄

∫ +∞

−∞
dE (E − μL )τ (E )

×{ fL(E ) + fR(E ) − 2 fL(E ) fR(E )

− τ (E )[ fL(E ) − fR(E )]2}. (B34)

In Fig. 4, the power (blue solid curve) is displayed as
a function of the two quantum dots’ detuning EL − ER =
�E . In the resonant case �E = 0, a Markovian description
fails and a violation of the classical TUR arises because of
the degeneracy in the system’s Hamiltonian. For increasing

FIG. 4. Plot of the power 〈P̂〉 (blue solid curve) against BPS (red
dashed curve) in units of �2 as a function of the two quantum
dots’ detuning EL − ER = �E . The other parameters are �L = �R =
� = 0.002TR, TL = 10TR, μL = 1.05TR μR = TR, and finally � =√

15�/6. The inset shows a schematics of the model considered.
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values of �E , the validity of BPS (red curve) is recovered
as sequential hopping becomes dominant. These results are
in line with those obtained in Refs. [36,37] for the same
model. Since the violation of the classical TUR in this setup
is less than 1% of BPS it well below our new upper bound
BGG demonstrating that it holds true even in known quantum
regimes. Comparisons with the results obtained in Ref. [37]
for the violations of BPS in presence of a Coulomb interaction
term in the Hamiltonian Uĉ†

LĉLĉ†
RĉR show that in this case they

are also well within the predictions of our bound BGG.

5. Proof of the new lower bound on power

Let us start from the re-expression of the entropy produc-
tion rate in terms of the power and of the efficiency

〈σ̂ 〉 = 〈ĴR〉
TR

− 〈ĴL〉
TL

= 〈P̂〉
TR

(
ηC

η
− 1

)
. (B35)

Let us choose Ĵ = (ĴW ≡ P̂, ĴL )
T

(the latter component being
by convention the heat current from the hot reservoir). The
inverse of the normalized covariance matrix can be calculated
explicitly using the following relation, true for any square
n × n matrix M:

M−1 = 1

det(M)
CT , (B36)

where C is the square matrix of cofactors of M, i.e., Ci j =
(−1)i+ jmi j with mi j being the minor of M obtained deleting
the ith row and jth column. The result is given by

�−1 = 1

�P̂�ĴL
− �2

P̂,ĴL

(
�ĴL

−�P̂,ĴL−�P̂,ĴL
�P̂,

)
(B37)

where we have defined, in conformity of notation with the
main text, the normalized correlation function between the
power and the heat current from the left (hot) reservoir

�Ĵα,Ĵβ
≡ lim

T→∞
TCov(Ĵα Ĵβ ) (B38)

and

�Ĵα
≡ lim

T→∞
T

(〈
Ĵ2
α

〉 − 〈Ĵα〉2
)

(B39)

the normalized variance of Ĵα . The direct application of
Eq. (21), making also use of the definition of the efficiency
η ≡ 〈P̂〉/〈ĴH 〉, leads straightforwardly to Eq. (26)

〈P̂〉 � η

TR

�P̂�ĴL
− �2

P̂,ĴL

�P̂ − 2η�P̂,ĴL
+ η2�ĴL

(ηc − η). (B40)
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