THERMODYNAMIC UNCERTAINTY RELATIONS AND THEIR CONNECTION WITH FLUCTUATION THEOREMS

Gabriel T. Landi Instituto de Física da Universidade de São Paulo

ICTP Trieste
August 28th, 2019

summary

- I. Entropy production.
- II. Thermodynamic uncertainty relations (TURs).
- III. TURs and fluctuation theorems.
- IV. Applications to quantum heat engines.

André M. Timpanaro, Giacomo Guarnieri, John Goold, GTL, "Thermodynamic uncertainty relations from exchange fluctuation theorems". Accepted in PRL. arXiv 1904.07574

Entropy production # entropy

Entropy does not satisfy a continuity equation:

$$\Delta S = \Sigma + \frac{Q}{T}, \qquad \Sigma \ge 0$$

Ist and 2nd laws for a system coupled to two baths:

$$\frac{dU}{dt} = \dot{Q}_h + \dot{Q}_c + \dot{W}$$
$$\frac{dS}{dt} = \dot{\Sigma} + \frac{\dot{Q}_h}{T_h} + \frac{\dot{Q}_c}{T_c}$$

Example: if there is no work involved,

$$\dot{\Sigma} = \left(\frac{1}{T_c} - \frac{1}{T_h}\right) \dot{Q}_h \ge 0$$

Heat flows from hot to cold.

Why entropy production matters

1st and 2nd laws for a system coupled to two baths:

$$\frac{dU}{dt} = \dot{Q}_h + \dot{Q}_c + \dot{W} = 0$$
$$\frac{dS}{dt} = \dot{\Sigma} + \frac{\dot{Q}_h}{T_h} + \frac{\dot{Q}_c}{T_c} = 0$$

$$\eta = -\frac{\dot{W}}{\dot{Q}_h} = 1 + \frac{\dot{Q}_c}{\dot{Q}_h} = 1 - \frac{T_c}{T_h} - \frac{T_c}{\dot{Q}_h}\dot{\Sigma}$$

Entropy production is therefore the reason the efficiency is smaller than Carnot:

$$\eta = \eta_C - \frac{T_c}{\dot{Q}_h} \dot{\Sigma}$$

Thermodynamic Uncertainty Relations (TURs)

- Proved for classical Markov processes.
- Physical origins are rather obscure.
- Regimes of validity?
- Quantum effects?

A. C. Barato, U. Seifert, "Thermodynamic Uncertainty Relation for Biomolecular Processes", *Physical Review Letters*, **I 14**, 158101 (2015)

Implications for mesoscopic engines

- In an autonomous engine the output power is defined by $P = \dot{W}$
- The TUR in this case then reads

$$\frac{\mathrm{var}P}{\langle P\rangle^2} \ge \frac{2}{\langle \dot{\Sigma}\rangle}$$

But $\langle \dot{\Sigma} \rangle = \frac{\langle Q_h \rangle}{T_c} (\eta_C - \eta)$, which gives

$$\frac{\text{var}P}{\langle P \rangle^2} \ge \frac{2T_c}{\dot{Q}_h} \frac{1}{\eta_C - \eta}$$

Finally, we note that $\eta = \frac{\langle P \rangle}{\langle \dot{Q}_h \rangle}$. Whence

$$var P \ge 2T_c \langle P \rangle \frac{\eta}{\eta_C - \eta}$$

$$\eta = \eta_C - \frac{T_c}{\dot{Q}_h} \dot{\Sigma}$$

P. Pietzonka and U. Seifert, Phys. Rev. Lett., 120, 190602 (2017)

Connection with fluctuation theorems

André M.Timpanaro, Giacomo Guarnieri, John Goold, GTL, "Thermodynamic uncertainty relations from exchange fluctuation theorems". Accepted in PRL.

arXiv 1904.07574

Fluctuation theorems

Fluctuation theorems describe the stochastic behavior of the entropy production:

$$\frac{P_F(\sigma)}{P_B(-\sigma)} = e^{\sigma}$$

☐ The most famous one is the Crooks fluctuation theorem:

$$\frac{P_F(W)}{P_B(-W)} = e^{\beta(W - \Delta F)}$$

☐ Jarzynski-Wójcik Exchange Fluctuation Theorem (Phys. Rev. Lett. 92, 230602 (2004)

$$\frac{P(Q)}{P(-Q)} = e^{\delta\beta Q}$$

Stronger symmetry!

 T_A

 T_B

Extension to multiple charges

☐ Can be generalized to an arbitrary number of systems and an arbitrary number of currents:

$$\frac{P(\mathcal{Q}_1, \dots, \mathcal{Q}_n)}{P(-\mathcal{Q}_1, \dots, -\mathcal{Q}_n)} = e^{\sum_i A_i \mathcal{Q}_i}$$

☐ e.g.: two systems, but with particle and energy flow:

$$\frac{P(\Delta E_1, \Delta E_2, \Delta N_1)}{P(-\Delta E_1, -\Delta E_2, -\Delta N_1)} = e^{\beta_1 \Delta E_1 + \beta_2 \Delta E_2 + \delta \beta \mu \Delta N_1}$$

$$\delta\beta\mu = \beta_1\mu_1 - \beta_2\mu_2$$

 \square In general $\Delta E_1 \neq -\Delta E_2$: this means there is work involved; e.g.,

$$\frac{P(Q_H, W)}{P(-Q_H, -W)} = e^{(\beta_H - \beta_C)Q_H + \beta_C W}$$

TUR de force

- ☐ Our mair
- □ Consider

Theorem ("TUR de force"). For fixed finite $\langle \Sigma \rangle$ and $\langle Z \rangle$, the probability distribution $P(\Sigma, Z)$ satisfying $P(\Sigma, Z)/P(-\Sigma, -Z) = e^{\Sigma}$, with the smallest possible variance (the minimal distribution) is the distribution

$$P_{min}(\Sigma, Z) = \frac{1}{2 \cosh(a/2)} \left\{ e^{a/2} \delta(\Sigma - a) \delta(Z - b) + e^{-a/2} \delta(\Sigma + a) \delta(Z + b) \right\}, \quad (1)$$

☐ For fixed can attai

where the values of a and b are fixed by $\langle \Sigma \rangle = a \tanh(a/2)$ and $\langle Z \rangle = b \tanh(a/2)$. For this distribution

$$Var(Z)_{min} = \langle Z \rangle^2 f(\langle \Sigma \rangle), \qquad (2)$$

where $f(x) = csch^2(g(x/2))$, csch(x) is the hyperbolic cosecant and g(x) is the function inverse of $x \tanh(x)$.

riance that Z

$$var(Z) \ge \langle Z \rangle^2 f(\langle \Sigma \rangle)$$

$$f(x) = \frac{2}{e^x - 1}$$

$$\frac{P(\mathcal{Q}_1, \dots, \mathcal{Q}_n)}{P(-\mathcal{Q}_1, \dots, -\mathcal{Q}_n)} = e^{\sum_i A_i \mathcal{Q}_i}$$

$$\Sigma = \sum_{i} A_{i} \mathcal{Q}_{i}$$

Define
$$\Sigma = \sum_i A_i \mathcal{Q}_i$$
 $Z = \sum_i z_i \mathcal{Q}_i, \quad \forall z_i$

Then
$$\frac{P(\Sigma,Z)}{P(-\Sigma,-Z)}=e^{\Sigma} \implies \mathrm{var}(Z) \geq \langle Z \rangle^2 f(\langle \Sigma \rangle)$$

$$\square$$
 But $\langle Z \rangle = \sum_i z_i q_i, \qquad q_i = \langle \mathcal{Q}_i \rangle$

$$\operatorname{var}(Z) = \sum_{ij} C_{ij} z_i z_j, \qquad C_{ij} = \operatorname{cov}(Q_i, Q_j)$$

$$\square$$
 Thus $z^{\mathrm{T}}\Big(\mathcal{C}-foldsymbol{q}oldsymbol{q}^{\mathrm{T}}\Big)z\geq0$

$$\frac{\operatorname{var}(\mathcal{Q}_i)}{\langle \mathcal{Q}_i \rangle^2} \ge f(\langle \Sigma \rangle)$$

$$C - f q q^{\mathrm{T}} \ge 0$$

- ☐ With our framework, we can also go further and say something about the covariances.
- \Box If G is psd, any 2x2 sub-matrix must also be psd: $-\sqrt{G_{ii}G_{jj}} \leq G_{ij} \leq \sqrt{G_{ii}G_{jj}}$
- ☐ Whence:

$$fq_iq_j - M_{ij} \le C_{ij} \le fq_iq_j + M_{ij}, \qquad M_{ij} = \sqrt{(\operatorname{var}(\mathcal{Q}_i) - fq_i^2)(\operatorname{var}(\mathcal{Q}_j) - fq_j^2)}$$

☐ Particularly interesting are the signs of the covariance:

$$\frac{q_i^2}{\operatorname{var}(Q_i)} + \frac{q_j^2}{\operatorname{var}(Q_j)} \ge \frac{1}{f(\langle \Sigma \rangle)} \Longrightarrow \operatorname{sign}(C_{ij}) = \operatorname{sign}(q_i q_j)$$

 T_A

 T_B

SWAP engine

$$\langle Q_h \rangle = \epsilon_A (f_A - f_B)$$

$$\langle Q_c \rangle = -\epsilon_B (f_A - f_B)$$
 $f_i = \frac{1}{e^{\beta_i \epsilon_i} + 1}$

$$f_i = \frac{1}{e^{\beta_i \epsilon_i} + 1}$$

$$\langle W \rangle = -(\epsilon_A - \epsilon_B)(f_A - f_B)$$

$$\frac{\epsilon_B}{\epsilon_A} < \frac{\beta_A}{\beta_B}$$

Engine

$$\frac{\epsilon_B}{\epsilon_A} < \frac{\beta_A}{\beta_B} \qquad \qquad \frac{\beta_A}{\beta_B} < \frac{\epsilon_B}{\epsilon_A} < 1 \qquad \qquad 1 < \frac{\epsilon_B}{\epsilon_A}$$

Heat pump

$$1 < \frac{\epsilon_B}{\epsilon_A}$$

M. Campisi, J. Pekola, R. Fazio, NJP, 17, 035012 (2015)

SWAP engine

$$\frac{P(Q_H, W)}{P(-Q_H, -W)} = e^{(\beta_B - \beta_A)Q_H + \beta_B W}$$

- TURs: simple but with enormous predictive power.
- A dynamical TUR can be derived as a consequence of Fluctuation Theorems.
- Our TUR is matrix valued:
 - Bounds all variances;
 - as well as covariances.
- It is the tightest bound pos

www.fmt.if.usp.br/~gtlandi

Violations of the TUR in the quantum regime

The classical TUR can be violated in quantum transport problems.

We have recently shown that close to linear response the bound is 1/2 looser:

$$\frac{\operatorname{var}(\mathcal{Q})}{\langle \mathcal{Q} \rangle^2} \ge \frac{1}{\langle \Sigma \rangle}$$

- This has been
- A violation of exploited to

This is a consequence of the Fisher information metric and Quantum Cramer-Rao bound.

G. Guarnieri, G. T. Landi, S. R. Clark, J. Goold, arXiv 1902.10428

ce.

could be utput power.

K. Ptaszyński, K. *Phys. Rev. B*, **98**, 085425 (2018)B. Agarwalla, D. Segal, *Phys. Rev. B.*, **98**, 155438 (2018)