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-ntropy production and the 2nd law

Ist and 2nd laws for a system coupled to two baths:
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The efficiency of the engine may then be written as
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Entropy production is therefore the reason the efficiency is smaller than Carnot:
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Thermodynamic Uncertainty Relations (TURs)
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Proved for classical Markov
processes.

Physical origins are rather
obscure.

Regime of validity not fully
understood.

Quantum effects?

A. C. Barato, U. Seifert,““Thermodynamic Uncertainty Relation for Biomolecular Processes”,

Physical Review Letters, 1 14, 158101 (2015)



Implications for mesoscopic engines

In an autonomous engine the quantity of interest is the output power W.

The TUR in this case then reads
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P. Pietzonka and U. Seifert, Phys. Rev. Lett., 120, 190602 (2017)

Finally, we note that 7 = — Whence




Connection with fluctuation

theorems
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Fluctuation theorems

Fluctuation theorems describe the stochastic behavior of the entropy
production:

Here we will be concerned with the FT by Jarzynski and Wojcik for
heat exchange between two systems.
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Strong
symmetry!

| Phys. Rev. Lett. 92, 230602 (2004)
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Extension to multiple charges

[1 Can be generalized to an arbitrary number of systems
and an arbitrary number of currents:

Al L e
P(_Q17'°'7_Qn)

[1 e.g.: two systems, but with particle and energy flow:

P(AEl’ AEQ’ ANl) L LG AN T i e U AN SO GV AN
Al S G I 0B = P11 — Bopio

[1 In general AE: # -AE»: this means there is work involved; e.g.,

PQu,W) _ (su-pc)Qu+BoW
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TUR de force

Our mai

Theorem (“TUR de force”). For fixed finite (X)
and {Z), the probability distribution P(X, Z) satisfying
Conside P(X,Z2)/P(-X,-Z) = e*, with the smallest possible
variance (the minimal distribution) is the distribution

| _ 1 ey _
P,. (5.Z)= ZCosh(a/Z){e 5 —a)6(Z - b)

425 (S +a)6(Z + b) } (1)

where the values of a and b are fixed by (X) = riance that Z
atanh(a/2) and (Z) = btanh(a/2). For this distribu-
fion

Var(Z) min = (Z)* f((Z)), (2)

where f(x) = cschz(g(x/ 2)), csch(x) is the hyperbolic
cosecant and g(x) is the function inverse of x tanh(x).
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As a consequence, for any other
distribution, one must have

var(Z2) > (2)* f((Z))

This is the tighest (saturable) bound possible
for this scenario.

And we know which distribution saturates it.

Other papers appeared at the same time, but all deriving a
looser bound (which is thus never tight):

Hasegawa & Vu 1902.06376.
Proesman & Horowitz 1902.07008.
Potts & Samuelsoon 1904.0491 3.




Consider now a general TUR
Define IO
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When a matrix is positive semi-definite, all the diagonal entries
must be non-negative:

-

With our framework, we can also go further and say something
about the covariances.

# Whence:

Particularly interesting are the signs of the covariance:

If G is psd, any 2x2 sub-matrix must also be psd: —/G..G,; < Gi; < /GG ’

e sign(C;;) = sign(g;q;)




SWAP engine
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* TURSs: simple but with enormous predictive power.
e A dynamical TUR can be derived as a consequence of Fluctuation Theorems.
e Our TUR is matrix valued:
* Bounds all variances;
* as well as covariances.

e |t is the tightest bound possible. §
And we know which distribution o)
saturates it.

www.fmt.if.usp.br/~gtlandi



Violations of the TUR in the guantum regime

The classical eablems.

We have recently shown that close to linear response
the bound Is 1/2 looser:

var(Q) - =
ShoT iy
This has be¢ e.
This is a consequence of the Fisher information metric
A violation and Quantum Cramer-Rao bound. could be

exploited tc
G. Guarnieri, GTL, S. R. Clark, J. Goold, arXiv 1902.10428

K. Ptaszynski, K. Phys. Rev. B, 98, 085425 (2018)
B.Agarwalla, D. Segal, Phys. Rev. B., 98, 155438 (2018)

utput power.



