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BOUNDS AND OPTIMIZATION

MaxEnt principle: which distribution maximizes the entropy for a fixed
energy!?

S{p) = Sip] + a1~ Zp) +(v - ZEp) Slpl ==Y punr

Answer: the equilibrium distribution: ptd = e~ %% /Z

The optimization also leads to a bound: S[p] < S[pe]
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Landauer’s principle: what is the minimum amount of heat required to
erase some information?
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The optimal way of accomplishing this is through a reversible process.



OPTIMAL SUPPORT

» Entropy does not care about support:it is a function only of the
distribution.

» An example of a quantity that cares about the support is the variance

var(X) = Z (:1; — E(X))2P(xi)

)

= By changing the support, one can increase the variance and simultaneously
decrease the entropy.



OPTIMIZATION vs. SUPPORT OPTIMIZATION

Suppose we wish to optimize a heat engine. ‘

G

e.g., maximize the efficiency for a fixed output power.

Optimization means tweaking the parameters of the engine.

Support optimization means choosing the best working fluid.

i.e., change the energy levels of the system.



- XAMPLE: THERMOELECTRIC ENGINE

In a thermoelectric the “working fluid” is characterized by a transmission
function instead:

1o = [ de (0 [fL<e> - fR<e>] Prw = [ de T(OV [fL<e> - fR<e>]

Which thermoelectric has the best possible efficiency 7 = Pyen/Jr?
Answer: a deltatransmission function 7(e) = N 5<e ~ V(1 - TR/TL)>

It operates at Carnot efficiency, n =1 - Tr/Ty, but with zero power.

Thermoelectric system arbitrary
quantum system
Reservoir L —— N Reservoir R Taken from
bias = 0 7 bias =V R.Whitney, PRL
temp. =1} temp. = T, 112, 130601 (2014)
JL JL'fgjen

G. D. Mahan and J. O. Sofo, PNAS, 93, 7436 (1996)



Thermoelectric system arbitrary
quantum system
/—\/\/‘\

Reservoir L Reservoir R
bias = 0 T bias=V
temp. =1 temp. = 7,

JL JL‘@en

Which thermoelectric has the best possible efficiency for a fixed output
power Pgen?

The answer is a boxcar function

A
N J---- --- T(€) = N 0(e — €9)0(e1 — €)
—A— eo =V (1 —Tgr/Ty)
€1 determined by Pgen
0 0 & € C

R.Whitney, PRL 112, 130601 (2014)



- XAMPL

- OPTIMAL WORK

- X TRACTION

Consider the single-shot extraction of work from a thermodynamic system.

This process is stochastic and thus must be characterized by a work
distribution P(W), restricted by the Jarzynski equality

E(e_BW) — e BAF

Which kind of system/process allows me to extract the maximum amount of

work?

Since we are at the single-shot level, this is best formulated as:

Which process maximizes P(W > A), for some given A?

V. Cavina, A. Mari and V. Giovannetti, Scientific Reports, 6,29282 (2016).



= This question turns out to be ill-posed:

= The Jarzynski equality is not a strong enough constraint.

= You can always extract an infinite amount of work in principle.
= But suppose we add the additional constraint that P(W < W;,) =0

= Cavina et. al. found that
6_/8AF - eBWmin

P(W 2 A) - G/BA — eBWmin

* In the unrestricted regime Wy, — oo this reduces to

V. Cavina, A. Mari and V. Giovannetti, Scientific Reports, 6,29282 (2016).




= This result is pretty cool.

= It implies that in the single-shot scenario, the probability of extracting
work above AF is exponentially small.

= This bound was already known since 2008. The novel result of Cavina et.
al. is that they also found the optimal process:

P(W) = ps(W = A) + (1 — p)5(W — Winin) w/® n = 0.698 q |
e_ﬁAF _ eBWmin l

P= 7288 — AW ol m § k
20 : -
Ll : |

C. Jarzynski, European Physical Journal B, 64, 331 (2008). 0402 002 04
O. Maillet, PRL, 122, 150604 (2019) i




Thermodynamic Uncertainty Relations (TURs)

= Simple, elegant and powerful.

= Counterintuitive: To reduce
the fluctuations, the process
should be more irreversible.
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= Derived only for the steady-
state of classical Markov
chains.

= Can be violated in many
relevant scenarios (e.g.
thermoelectrics).

Y, =06 Q (in the simplest case)

A. C. Barato, U. Seifert, Physical Review Letters, 1 14, 158101 (2015)



FLUCTUATIONS IN A HEAT ENGINE

As an example of the applicability of TURs, Pietzonka and Seifert showed
that the output power in a heat engine is bounded by

_n
nc —1

var(Pgen) > 21 Pgen

For a fixed average power, the fluctuations go up if we approach Carnot
efficiency.

To reduce fluctuations, one should operate away from Carnot efficiency.

Fluctuations therefore appear as an additional property to take

into account when optimizing heat devices.

P. Pietzonka and U. Seifert, Phys. Rev. Lett., 120, 190602 (2017)
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- XCHANGE FLUCTUATION THEOREM

Fluctuation theorems for thermodynamic processes usually have the form

Pr(Y) 5

e.g. Crooks theorem for work: > = g(W — AF)

FTs, however, compare a forward with a backward process.

In some systems, both coincide.These are called Exchange FTs:

e

This is much stronger: it is a symmetry on a single probability distribution.

Example: direct heat exchange: 3 = §80Q



Motivated by this, we proved the following theorem:

Theorem (“TUR de force”). For fixed finite E(X), the
probability distribution P(X) satisfying P(X)/P(-X) =
e*, with the smallest possible variance (the minimal

distribution) is

1
Pin(Z) = V25 (T — A2 (Z }
() ZCosh(a/Z){e E-a)te o2 +a)

where the value of a is fixed by E(X) = atanh(a/2).

For this distribution For any other distribution

Var(®),.,, = BE)2FEX)), we must then have:
>
where f(x) = cschz(g(x/2)), csch(x) is the hyperbolic \I/SJ(I.X(:)Q) > f(E(X))

cosecant and g(x) is the function inverse of x tanh(x).



TUR de force ISTIGHT

Our TUR is the tighest (saturable) bound for this scenario.
And we know which thermodynamic process saturates it.
This is relevant because, around the same time, similar papers appeared.

But all derived a looser bound with

2
et — 1

fla) =

This bound, however, is never tight.

Hasegawa & Vu 1902.06376.
Proesman & Horowitz 1902.07008.
Potts & Samuelsoon 1904.0491 3.



=X TENSION TO MULTIPLE CHARGES

® We can also generalize our framework to Exchange FTs involving multiple

charges:
P(Q1,-.,Qn)  _ 5 a0

P(_Qla IR _Qn)

= The entropy production in this case is & =) 4,0,

= ex: heat engine FT:

PQnW)  _ (8u-B)Qn+8.W
P(_Qha _W)

= |n this case we obtain the matrix bound

q; = E(Q;)
Cij = cov(9Q;, 9;)

M. Campisi, J. Pekola, R. Fazio, NJP, 17,035012 (2015)




q; = E(Q;)
Cij = cov(9Q;, 9;)

= This says that the matrix above is positive semi-definite.

= As a consequence, all diagonal entries must be positive, which implies an
individual TUR for each charge:

var(Q;)

Q) = 1 EE)

= In addition, it also places restrictions on the covariances:
= IfGis PSCl then GZZJ < GGy

= Correlations between thermodynamic quantities has so far been largely unexplored.




SWAP engine
(@n) =€a(fa— [B)
(Qc) = —€B(fa — IB) Ji=

et el e )
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M. Campisi, J. Pekola, R. Fazio, NJP, 17, 035012 (2015)
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var(W)
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* |n this talk | tried to discuss the idea of optimizing the support in
thermodynamic processes.

a. VWVhat are the ultimate lin
b. Which sorts of processes

c. What are the ideal proce
machine;
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