SUPPORT OPTIMIZATION FOR THERMODYNAMIC PROCESSES

Gabriel T. Landi Instituto de Física da Universidade de São Paulo

Nottingham University. Jan. 27th, 2020

Summary

André M. Timpanaro, Giacomo Guarnieri, John Goold, GTL, "Thermodynamic uncertainty relations from exchange fluctuation theorems". *Phys. Rev. Lett.* **123**, 090604 (2019) (arXiv 1904.07574)

GTL, Giacomo Guarnieri, John Goold and André M. Timpanaro, "Optimal support for thermodynamic processes" (in preparation)

BOUNDS AND OPTIMIZATION

MaxEnt principle: which distribution maximizes the entropy for a fixed energy?

$$\tilde{S}[\mathbf{p}] = S[\mathbf{p}] + \alpha \left(1 - \sum_{n} p_{n}\right) + \beta \left(U - \sum_{n} E_{n} p_{n}\right)$$

$$S[\mathbf{p}] = -\sum_{n} p_{n} \ln p_{n}$$

- Answer: the equilibrium distribution: $p_n^{\rm eq} = e^{-\beta E_n}/Z$
- The optimization also leads to a bound: $S[p] \leq S[p_{eq}]$

Landauer's principle: what is the minimum amount of heat required to erase some information?

$$\Delta Q_{\rm env} \ge -T\Delta S_{\rm sys}$$

The optimal way of accomplishing this is through a reversible process.

OPTIMAL SUPPORT

The support of a distribution P(x) is defined as the set of points x_i at which $P(x_i) \neq 0$.

- Entropy does not care about support: it is a function only of the distribution.
- An example of a quantity that cares about the support is the variance

$$\operatorname{var}(X) = \sum_{i} \left(x_i - \mathbb{E}(X) \right)^2 P(x_i)$$

By changing the support, one can increase the variance and simultaneously decrease the entropy.

OPTIMIZATION VS. SUPPORT OPTIMIZATION

- Suppose we wish to optimize a heat engine.
 - e.g., maximize the efficiency for a fixed output power.
- Optimization means tweaking the parameters of the engine.
- Support optimization means choosing the best working fluid.
 - i.e., change the energy levels of the system.

EXAMPLE: THERMOELECTRIC ENGINE

In a thermoelectric the "working fluid" is characterized by a transmission function instead:

$$J_L = \int d\epsilon \, \mathcal{T}(\epsilon) \epsilon \left[f_L(\epsilon) - f_R(\epsilon) \right] \qquad P_{\text{gen}} = \int d\epsilon \, \mathcal{T}(\epsilon) V \left[f_L(\epsilon) - f_R(\epsilon) \right]$$

- Which thermoelectric has the best possible efficiency $\eta = P_{\rm gen}/J_L$?
- Answer: a deltatransmission function $\mathcal{T}(\epsilon) = N \ \delta \bigg(\epsilon V(1 T_R/T_L) \bigg)$
- It operates at Carnot efficiency, $\eta = 1 T_R/T_L$, but with zero power.

Taken from R. Whitney, *PRL* **112**, 130601 (2014)

- Which thermoelectric has the best possible efficiency for a fixed output power P_{gen}?
- The answer is a boxcar function

$$\mathcal{T}(\epsilon) = N \; \theta(\epsilon - \epsilon_0) \theta(\epsilon_1 - \epsilon)$$
 $\epsilon_0 = V(1 - T_R/T_L)$
 $\epsilon_1 \; \text{determined by } P_{\text{gen}}$

EXAMPLE: OPTIMAL WORK EXTRACTION

- Consider the single-shot extraction of work from a thermodynamic system.
- This process is stochastic and thus must be characterized by a work distribution P(W), restricted by the Jarzynski equality

$$\mathbb{E}(e^{-\beta W}) = e^{-\beta \Delta F}$$

- Which kind of system/process allows me to extract the maximum amount of work?
- Since we are at the single-shot level, this is best formulated as:
 - Which process maximizes $P(W \ge \Lambda)$, for some given Λ ?

V. Cavina, A. Mari and V. Giovannetti, Scientific Reports, 6, 29282 (2016).

- This question turns out to be ill-posed:
 - The Jarzynski equality is not a strong enough constraint.
 - You can always extract an infinite amount of work in principle.
- But suppose we add the additional constraint that $P(W < W_{\min}) = 0$
- Cavina et. al. found that

$$P(W \ge \Lambda) = \frac{e^{-\beta \Delta F} - e^{\beta W_{\min}}}{e^{\beta \Lambda} - e^{\beta W_{\min}}}$$

• In the unrestricted regime $W_{\min} \to \infty$ this reduces to

$$P(W \ge \Lambda) = e^{-\beta(\Delta F - \Lambda)}$$

V. Cavina, A. Mari and V. Giovannetti, Scientific Reports, 6, 29282 (2016).

$$P(W \ge \Lambda) = e^{-\beta(\Delta F - \Lambda)}$$

- This result is pretty cool.
 - It implies that in the single-shot scenario, the probability of extracting work above ΔF is exponentially small.
- This bound was already known since 2008. The novel result of Cavina et. al. is that they also found the optimal process:

$$P(W) = p\delta(W - \Lambda) + (1 - p)\delta(W - W_{\min})$$
$$p = \frac{e^{-\beta\Delta F} - e^{\beta W_{\min}}}{e^{\beta\Lambda} - e^{\beta W_{\min}}}$$

O. Maillet, PRL, 122, 150604 (2019)

Thermodynamic Uncertainty Relations (TURs)

$$\frac{\operatorname{var}(\mathcal{Q})}{\mathbb{E}(\mathcal{Q})^2} \ge \frac{2}{\mathbb{E}(\Sigma)}$$

$$\Sigma = \delta \beta \mathcal{Q}$$
 (in the simplest case)

- Simple, elegant and powerful.
- Counterintuitive: To reduce the fluctuations, the process should be more irreversible.

- Derived only for the steadystate of classical Markov chains.
- Can be violated in many relevant scenarios (e.g. thermoelectrics).

FLUCTUATIONS IN A HEAT ENGINE

 As an example of the applicability of TURs, Pietzonka and Seifert showed that the output power in a heat engine is bounded by

$$\operatorname{var}(P_{\operatorname{gen}}) \ge 2T_c P_{\operatorname{gen}} \frac{\eta}{\eta_C - \eta}$$

- For a fixed average power, the fluctuations go up if we approach Carnot efficiency.
 - To reduce fluctuations, one should operate away from Carnot efficiency.

Fluctuations therefore appear as an additional property to take into account when optimizing heat devices.

TUR from fluctuation theorems

André M. Timpanaro, Giacomo Guarnieri, John Goold, GTL, "Thermodynamic uncertainty relations from exchange fluctuation theorems". *Phys. Rev. Lett.* **123**, 090604 (2019) (arXiv 1904.07574)

EXCHANGE FLUCTUATION THEOREM

Fluctuation theorems for thermodynamic processes usually have the form

$$\frac{P_F(\Sigma)}{P_B(-\Sigma)} = e^{\Sigma}$$

- e.g. Crooks theorem for work: $\Sigma = \beta(W \Delta F)$
- FTs, however, compare a *forward* with a *backward* process.
- In some systems, both coincide. These are called Exchange FTs:

$$\frac{P(\Sigma)}{P(-\Sigma)} = e^{\Sigma}$$

- This is much stronger: it is a symmetry on a single probability distribution.
- **Example:** direct heat exchange: $\Sigma = \delta \beta Q$

Motivated by this, we proved the following theorem:

Theorem ("TUR de force"). For fixed finite $\mathbb{E}(\Sigma)$, the probability distribution $P(\Sigma)$ satisfying $P(\Sigma)/P(-\Sigma) = e^{\Sigma}$, with the smallest possible variance (the minimal distribution) is

$$P_{min}(\Sigma) = \frac{1}{2\cosh(a/2)} \left\{ e^{a/2} \delta(\Sigma - a) + e^{-a/2} \delta(\Sigma + a) \right\},\,$$

where the value of a is fixed by $\mathbb{E}(\Sigma) = a \tanh(a/2)$. For this distribution

$$Var(\Sigma)_{min} = \mathbb{E}(\Sigma)^2 f(\mathbb{E}(\Sigma)),$$

where $f(x) = csch^2(g(x/2))$, csch(x) is the hyperbolic cosecant and g(x) is the function inverse of $x \tanh(x)$.

For any other distribution we must then have:

$$\frac{\mathrm{var}(\Sigma)}{\mathbb{E}(\Sigma)^2} \ge f(\mathbb{E}(\Sigma))$$

TUR de force ISTIGHT

- Our TUR is the tighest (saturable) bound for this scenario.
- And we know which thermodynamic process saturates it.
- This is relevant because, around the same time, similar papers appeared.
 - But all derived a looser bound with

$$f(x) = \frac{2}{e^x - 1}$$

This bound, however, is never tight.

Hasegawa & Vu 1902.06376.
Proesman & Horowitz 1902.07008.

Potts & Samuelsoon 1904.04913.

EXTENSION TO MULTIPLE CHARGES

We can also generalize our framework to Exchange FTs involving multiple charges:

$$\frac{P(\mathcal{Q}_1, \dots, \mathcal{Q}_n)}{P(-\mathcal{Q}_1, \dots, -\mathcal{Q}_n)} = e^{\sum_i A_i \mathcal{Q}_i}$$

- The entropy production in this case is $\Sigma = \sum_i A_i \mathcal{Q}_i$
- ex: heat engine FT:

$$\frac{P(Q_h, W)}{P(-Q_h, -W)} = e^{(\beta_h - \beta_c)Q_h + \beta_c W}$$

In this case we obtain the matrix bound

$$C - f(\mathbb{E}(\Sigma)) qq^{\mathrm{T}} \ge 0$$

$$q_i = \mathbb{E}(Q_i)$$

$$C_{ij} = \text{cov}(Q_i, Q_j)$$

$$C - f(\mathbb{E}(\Sigma)) q q^{\mathrm{T}} \ge 0$$

$$q_i = \mathbb{E}(Q_i)$$

$$C_{ij} = \text{cov}(Q_i, Q_j)$$

- This says that the matrix above is positive semi-definite.
- As a consequence, all diagonal entries must be positive, which implies an individual TUR for each charge:

$$\frac{\operatorname{var}(\mathcal{Q}_i)}{\mathbb{E}(\mathcal{Q}_i)^2} \ge f(\mathbb{E}(\Sigma))$$

- In addition, it also places restrictions on the covariances:
 - If G is psd then $G_{ij}^2 \leq G_{ii}G_{jj}$
- Correlations between thermodynamic quantities has so far been largely unexplored.

 T_A

SWAP engine

$$\langle Q_h \rangle = \epsilon_A (f_A - f_B)$$

$$\langle Q_c \rangle = -\epsilon_B (f_A - f_B)$$
 $f_i = \frac{1}{e^{\beta_i \epsilon_i} + 1}$

$$f_i = \frac{1}{e^{\beta_i \epsilon_i} + 1}$$

$$\langle W \rangle = -(\epsilon_A - \epsilon_B)(f_A - f_B)$$

$$\frac{\epsilon_B}{\epsilon_A} < \frac{\beta_A}{\beta_B}$$

Engine

$$\frac{\epsilon_B}{\epsilon_A} < \frac{\beta_A}{\beta_B} \qquad \qquad \frac{\beta_A}{\beta_B} < \frac{\epsilon_B}{\epsilon_A} < 1 \qquad \qquad 1 < \frac{\epsilon_B}{\epsilon_A}$$

Accelerator

$$1 < \frac{\epsilon_B}{\epsilon_A}$$

M. Campisi, J. Pekola, R. Fazio, NJP, 17, 035012 (2015)

SWAP engine

$$\frac{P(Q_H, W)}{P(-Q_H, -W)} = e^{(\beta_B - \beta_A)Q_H + \beta_B W}$$

Conclusions

- In this talk I tried to discuss the idea of **optimizing the support in thermodynamic processes**.
- I feel that this is important because it sheds light on:
 - a. What are the ultimate lin
 - b. Which sorts of processes
 - c. What are the ideal proce machine;

