THERMODYNAMIC UNCERTAINTY RELATIONS FROM FLUCTUATION THEOREMS

Gabriel T. Landi Instituto de Física da Universidade de São Paulo

Quarantine Thermo
The interwebs
March 20th, 2020

Summary

André M. Timpanaro, Giacomo Guarnieri, John Goold, GTL, "Thermodynamic uncertainty relations from exchange fluctuation theorems". *Phys. Rev. Lett.* **123**, 090604 (2019) (arXiv 1904.07574)

THE SECOND LAW

- The 1st law puts heat and work on similar footing and says that, in principle, one can be interconverted into the other.
- For a system coupled to two baths, for instance, we have:

$$\frac{dU}{dt} = \dot{Q}_h + \dot{Q}_c + \dot{W}$$

- Not all such processes, however, are actually possible.
 - This is the purpose of the 2nd law.

- The 2nd law deals with entropy.
 - Entropy, however, does not satisfy a continuity equation.
- There can be a flow of entropy from the system to the environment, which is given by the famous Clausius expression \dot{Q}/T .
- But, in addition, there can also be some entropy which is spontaneously produced in the process. The entropy balance equation thus reads

$$\frac{dS}{dt} = \dot{\Sigma} + \frac{\dot{Q}_h}{T_h} + \frac{\dot{Q}_c}{T_c}$$

- lacksquare The quantity $\dot{\Sigma}$ is called the **entropy production rate.**
- The second law can now be formulated mathematically by the statement

Why entropy production matters

1st and 2nd laws for a system coupled to two baths:

$$\frac{dU}{dt} = \dot{Q}_h + \dot{Q}_c + \dot{W} = 0$$
$$\frac{dS}{dt} = \dot{\Sigma} + \frac{\dot{Q}_h}{T_h} + \frac{\dot{Q}_c}{T_c} = 0$$

$$\eta = -\frac{\dot{W}}{\dot{Q}_h} = 1 + \frac{\dot{Q}_c}{\dot{Q}_h} = 1 - \frac{T_c}{T_h} - \frac{T_c}{\dot{Q}_h}\dot{\Sigma}$$

Entropy production is therefore the reason the efficiency is smaller than Carnot:

$$\eta = \eta_C - \frac{T_c}{\dot{Q}_h} \dot{\Sigma}$$

Carnot's statement of the 2nd law

"The efficiency of a quasi-static or reversible Carnot cycle depends only on the temperatures of the two heat reservoirs, and is the same, whatever the working substance. A Carnot engine operated in this way is the most efficient possible heat engine using those two temperatures."

Flow of heat

The 2nd law reads

$$\dot{\Sigma} = -\frac{\dot{Q}_h}{T_h} - \frac{\dot{Q}_c}{T_c} \ge 0$$

■ But if there is no work involved, $\dot{Q}_c = -\dot{Q}_h$

$$\dot{\Sigma} = \left(\frac{1}{T_c} - \frac{1}{T_h}\right) \dot{Q}_h \ge 0$$

Heat flows from hot to cold.

Clausius' statement of the 2nd law

"Heat can never pass from a colder to a warmer body without some other change, connected therewith, occurring at the same time."

Work from a single bath

• Finally, suppose there is only one bath present:

$$\dot{\Sigma} = -\frac{\dot{Q}_h}{T_h} = \frac{\dot{W}}{T_h} \ge 0$$

Positive work (in my definition) means an external agent is doing work on the system.

Kelvin-Planck statement of the 2nd law

"It is impossible to devise a cyclically operating device, the sole effect of which is to absorb energy in the form of heat from a single thermal reservoir and to deliver an equivalent amount of work."

Thermodynamics at the nanoscale

This process requires some work.
But now imagine doing the same with an RNA molecule.
The RNA molecule is constantly fluctuating due to Brownian motion.
Thus, every time we repeat the process, the work required to fold the molecule will be different.
\square Work is therefore a random variable and we must speak about a probability of work $P(W)$

Collin, et. al., Nature, 437 (2005)

Batalhão, et. al., Phys. Rev. Lett. 113 (2014).

☐ The heat exchanged between two buckets of water practically does not fluctuate.

☐ But the heat exchanged between two harmonic oscillators does.

 \square Heat will therefore also be described by a prob. dist. P(Q)

J. R. Gomes-Solano, et. al., Phys. Rev. Lett. 106, 200602 (2011)

S. Pal et. al, Phys. Rev. A. 100, 042119 (2019)

Consequences of microscopic fluctuations

Fluctuation theorems

$$\frac{P(\Sigma)}{P(-\Sigma)} = e^{\Sigma}$$

Thermodynamic Uncertainty Relations

$$\frac{\mathrm{var}(\Sigma)^2}{\mathbb{E}(\Sigma)^2} \ge \frac{2}{\mathbb{E}(\Sigma)}$$

Fluctuation theorems

$$\frac{P(\Sigma)}{P(-\Sigma)} = e^{\Sigma}$$

Fluctuation theorems

- * The probability distributions of thermodynamic quantities cannot be arbitrary,
 - * They must satisfy a special symmetry known as a Fluctuation Theorem:

Work (Jarzynski-Crooks)

$$\frac{P_F(W)}{P_B(-W)} = e^{\beta(W - \Delta F)}$$

Heat (Jarzynski-Wójcik)

$$\frac{P(Q)}{P(-Q)} = e^{(\beta_c - \beta_h)Q}$$

- * In the case of work, we have a forward and a backward process (fold and unfold).
- For heat, $P_B = P_F$

* The two can be written in a unified way in terms of the entropy production.

Work:
$$\Sigma = \beta(W - \Delta F)$$

$$\frac{P_F(W)}{P_B(-W)} = e^{\beta(W - \Delta F)}$$

then

$$\frac{P_F(\Sigma)}{P_B(-\Sigma)} = e^{\Sigma}$$

Heat:
$$\Sigma = (\beta_c - \beta_h)Q$$

$$\frac{P(Q)}{P(-Q)} = e^{(\beta_c - \beta_h)Q}$$

then

$$\frac{P(\Sigma)}{P(-\Sigma)} = e^{\Sigma}$$

- * The case of heat is called an Exchange FT (EFT).
- * It is stronger because it represents a symmetry for the same distribution.
 - (Sometimes this happens for work too. But depends on the problem)

Experimental confirmation

Collin, et. al., Nature, 437 (2005)

Batalhão, et. al., Phys. Rev. Lett. 113 (2014).

J. R. Gomes-Solano, et. al., Phys. Rev. Lett. 106, 200602 (2011)

Thermodynamic Uncertainty Relations

$$\frac{\mathrm{var}(\Sigma)^2}{\mathbb{E}(\Sigma)^2} \ge \frac{2}{\mathbb{E}(\Sigma)}$$

Thermodynamic Uncertainty Relations (TURs)

$$\frac{\operatorname{var}(\dot{Q})}{\mathbb{E}(\dot{Q})^2} \ge \frac{2}{\mathbb{E}(\dot{\Sigma})}$$

$$\Sigma = \delta \beta Q$$
 (in the simplest case)

- Simple, elegant and powerful.
- Counterintuitive: To reduce the fluctuations, the process should be more irreversible.

- Derived only for the steadystate of classical Markov chains.
- Can be violated in many relevant scenarios (e.g. thermoelectrics).

A. C. Barato, U. Seifert, Physical Review Letters, 114, 158101 (2015)

Implications for mesoscopic engines

- In an autonomous engine the output power is \dot{W}
- The TUR in this case then reads

$$\frac{\operatorname{var}(\dot{W})}{\mathbb{E}(\dot{W})^2} \ge \frac{2}{\mathbb{E}(\dot{\Sigma})}$$

From our previously derived result:

$$\eta = \eta_C - \frac{T_c}{\dot{Q}_h} \dot{\Sigma} \quad \to \quad \mathbb{E}(\dot{\Sigma}) = \frac{\mathbb{E}(\dot{Q}_h)}{T_c} (\eta_C - \eta)$$

Thus:

$$\frac{\operatorname{var}(\dot{W})}{\mathbb{E}(\dot{W})^2} \ge \frac{2T_c}{\mathbb{E}(\dot{Q}_c)} \frac{1}{\eta_C - \eta}$$

Thus:

$$\frac{\operatorname{var}(\dot{W})}{\mathbb{E}(\dot{W})^2} \ge \frac{2T_c}{\mathbb{E}(\dot{Q}_c)} \frac{1}{\eta_C - \eta}$$

Finally, we note that $\eta = \frac{\mathbb{E}(W)}{\mathbb{E}(\dot{Q})}$, so that

$$\operatorname{var}(\dot{W}) \ge 2T_c |\mathbb{E}(\dot{W})| \frac{\eta}{\eta_C - \eta}$$

- If you wish to operate the engine close to Carnot efficiency, you pay the price that the fluctuations may become very large.
 - To curb fluctuations, the engine should be operated irreversibly!
 - Goes against everything we learn in undergraduate thermodynamics

Implications for mesoscopic autonomous heat engines

- In an autonomous engine the output power is defined by $P = \dot{W}$
- Thermal Machines: Otto Cycle

$$\eta = \eta_c$$
 if $\mathbb{E}(\dot{\Sigma}) = 0$

$$P = 0$$

Carnot efficiency achievable only at the expense of zero power

Implications for mesoscopic autonomous heat engines

However...

Campisi and Fazio 'The power of a critical engine'. Nat. Comms. 7, 11895 (2016).

"We focus on quantum Otto engines and show that when the working substance is at the verge of a second order phase transition diverging energy fluctuations can enable approaching the Carnot point without sacrificing power."

TURs explain: To approach Carnot efficiency at a finite power one must pay with diverging fluctuations!

PERSPECTIVE

https://doi.org/10.1038/s41567-019-0702-6

Thermodynamic uncertainty relations constrain non-equilibrium fluctuations

Jordan M. Horowitz 1,2,3 and Todd R. Gingrich 4

Experimental study of the thermodynamic uncertainty relation

Soham Pal,¹ Sushant Saryal,¹ D. Segal,^{2,3} T. S. Mahesh,¹ and Bijay Kumar Agarwalla^{1,*}

1912.08391

Thermodynamic uncertainty relation in atomic-scale quantum conductors

Hava Meira Friedman,¹ Bijay K. Agarwalla,² Ofir Shein-Lumbroso,³ Oren Tal,³ and Dvira Segal^{1,4,*}

2002.00284

TUR from FTs

André M. Timpanaro, Giacomo Guarnieri, John Goold, GTL, "Thermodynamic uncertainty relations from exchange fluctuation theorems". *Phys. Rev. Lett.* **123**, 090604 (2019) (arXiv 1904.07574)

EXCHANGE FLUCTUATION THEOREM

Fluctuation theorems for thermodynamic processes usually have the form

$$\frac{P_F(\Sigma)}{P_B(-\Sigma)} = e^{\Sigma}$$

- e.g. Crooks theorem for work: $\Sigma = \beta(W \Delta F)$
- FTs, however, compare a forward with a backward process.
- In some systems, both coincide. These are called Exchange FTs:

$$\frac{P(\Sigma)}{P(-\Sigma)} = e^{\Sigma}$$

- This is *much stronger*: it is a symmetry on a single probability distribution.
- **Example:** direct heat exchange: $\Sigma = \delta \beta Q$

We consider a system satisfying an exch fluctuation theorem.

$$\frac{P(\Sigma)}{P(-\Sigma)} = e^{\Sigma}$$

We proved the following theorem:

Theorem ("TUR de force"). For fixed finite $\mathbb{E}(\Sigma)$, the probability distribution $P(\Sigma)$ satisfying $P(\Sigma)/P(-\Sigma) = e^{\Sigma}$, with the smallest possible variance (the minimal distribution) is

$$P_{min}(\Sigma) = \frac{1}{2\cosh(a/2)} \left\{ e^{a/2} \delta(\Sigma - a) + e^{-a/2} \delta(\Sigma + a) \right\},\,$$

where the value of a is fixed by $\mathbb{E}(\Sigma) = a \tanh(a/2)$. For this distribution

$$\operatorname{Var}(\Sigma)_{min} = \mathbb{E}(\Sigma)^2 f(\mathbb{E}(\Sigma)),$$

where $f(x) = csch^2(g(x/2))$, csch(x) is the hyperbolic cosecant and g(x) is the function inverse of x tanh(x).

For any other distribution we must then have:

$$\frac{\mathrm{var}(\Sigma)}{\mathbb{E}(\Sigma)^2} \ge f(\mathbb{E}(\Sigma))$$

TUR de force ISTIGHT

- Our TUR is the tighest (saturable) bound for this scenario.
- And we know which thermodynamic process saturates it.
- This is relevant because, around the same time, similar papers appeared.
 - But all derived a looser bound with

$$f(x) = \frac{2}{e^x - 1}$$

This bound, however, is never tight.

Hasegawa & Vu 1902.06376.
Proesman & Horowitz 1902.07008.

Potts & Samuelsoon 1904.04913.

EXTENSION TO MULTIPLE CHARGES

We can also generalize our framework to Exchange FTs involving multiple charges:

$$\frac{P(\mathcal{Q}_1, \dots, \mathcal{Q}_n)}{P(-\mathcal{Q}_1, \dots, -\mathcal{Q}_n)} = e^{\sum_i A_i \mathcal{Q}_i}$$

- The entropy production in this case is $\Sigma = \sum_i A_i \mathcal{Q}_i$
- ex: heat engine FT:

$$\frac{P(Q_h, W)}{P(-Q_h, -W)} = e^{(\beta_h - \beta_c)Q_h + \beta_c W}$$

In this case we obtain the matrix bound

$$C - f(\mathbb{E}(\Sigma)) qq^{\mathrm{T}} \ge 0$$

$$q_i = \mathbb{E}(Q_i)$$

$$C_{ij} = \text{cov}(Q_i, Q_j)$$

M. Campisi, J. Pekola, R. Fazio, NJP, 17, 035012 (2015)

$$C - f(\mathbb{E}(\Sigma)) q q^{\mathrm{T}} \ge 0$$

$$q_i = \mathbb{E}(Q_i)$$

$$C_{ij} = \text{cov}(Q_i, Q_j)$$

- This says that the matrix above is positive semi-definite.
- As a consequence, all diagonal entries must be positive, which implies an individual TUR for each charge:

$$\frac{\operatorname{var}(\mathcal{Q}_i)}{\mathbb{E}(\mathcal{Q}_i)^2} \ge f(\mathbb{E}(\Sigma))$$

In addition, it also places a restriction on the sign on the covariances:

$$\frac{\mathbb{E}(\mathcal{Q}_i)^2}{\operatorname{var}(\mathcal{Q}_i)} + \frac{\mathbb{E}(\mathcal{Q}_j)^2}{\operatorname{var}(\mathcal{Q}_j)} \ge \frac{1}{f(\mathbb{E}(\Sigma))} \quad \to \quad \operatorname{sign}(C_{ij}) = \operatorname{sign}(\mathbb{E}(\mathcal{Q}_i)\mathbb{E}(\mathcal{Q}_j))$$

 T_A

SWAP engine

$$\langle Q_h \rangle = \epsilon_A (f_A - f_B)$$

$$\langle Q_c \rangle = -\epsilon_B (f_A - f_B)$$
 $f_i = \frac{1}{e^{\beta_i \epsilon_i} + 1}$

$$f_i = \frac{1}{e^{\beta_i \epsilon_i} + 1}$$

$$\langle W \rangle = -(\epsilon_A - \epsilon_B)(f_A - f_B)$$

$$\frac{\epsilon_B}{\epsilon_A} < \frac{\beta_A}{\beta_B}$$

Engine

$$\frac{\epsilon_B}{\epsilon_A} < \frac{\beta_A}{\beta_B} \qquad \qquad \frac{\beta_A}{\beta_B} < \frac{\epsilon_B}{\epsilon_A} < 1 \qquad \qquad 1 < \frac{\epsilon_B}{\epsilon_A}$$

Accelerator

$$1 < \frac{\epsilon_B}{\epsilon_A}$$

M. Campisi, J. Pekola, R. Fazio, NJP, 17, 035012 (2015)

SWAP engine

$$\frac{P(Q_H, W)}{P(-Q_H, -W)} = e^{(\beta_B - \beta_A)Q_H + \beta_B W}$$

ACHIEVABILITY OF THE OPTIMAL PROCESS

Theorem ("TUR de force"). For fixed finite $\mathbb{E}(\Sigma)$, the probability distribution $P(\Sigma)$ satisfying $P(\Sigma)/P(-\Sigma) = e^{\Sigma}$, with the smallest possible variance (the minimal distribution) is

$$P_{min}(\Sigma) = \frac{1}{2\cosh(a/2)} \left\{ e^{a/2} \delta(\Sigma - a) + e^{-a/2} \delta(\Sigma + a) \right\},\,$$

where the value of a is fixed by $\mathbb{E}(\Sigma) = a \tanh(a/2)$. For this distribution

$$\operatorname{Var}(\Sigma)_{min} = \mathbb{E}(\Sigma)^2 f(\mathbb{E}(\Sigma)),$$

where $f(x) = csch^2(g(x/2))$, csch(x) is the hyperbolic cosecant and g(x) is the function inverse of $x \tanh(x)$.

The minimal process is one which has only 2 points in the support.

But is this achievable in practice?

i.e., is the bound saturable?

Conclusions

- In this talk I discussed how TURs can be viewed as a consequence of Fluctuation Theorems.
- I believe that this is important because:
 - a. It sheds light on the phy
 - b. Shows that FTs not only additional constraints of

c. Introduces the idea of a optimizes a given therm

IFUSP