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—~COND LAW

The Ist law puts heat and work on similar footing and says that, in
principle, one can be interconverted into the other.

For a system coupled to two baths, for instance, we have:
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Not all such processes, however, are actually possible.

This is the purpose of the 2nd law. C



The 2nd law deals with entropy.
= Entropy, however, does not satisfy a continuity equation.

There can be a flow of entropy from the system to the environment, which is given by
the famous Clausius expression Q/T.

But, in addition, there can also be some entropy which is spontaneously produced in the
process. The entropy balance equation thus reads

dt T, T,

The quantity X is called the entropy production rate.

The second law can now be formulated mathematically by the statement




Why entropy production matters

Ist and 2nd laws for a system coupled to two baths:
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The efficiency of the engine may then be written as
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Entropy production is therefore the reason the efficiency is smaller than Carnot:
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“The efficiency of a quasi-static or reversible Carnot

cycle depends only on the temperatures of the two heat
reservoirs, and is the same, whatever the working

substance. A Carnot engine operated in this way is the
most efficient possible heat engine using those two
temperatures.”




Flow of heat

The 2nd law reads

But if there is no work involved, Q. = —Q,,

Heat flows from hot to cold.



“Heat can never pass from a colder to a warmer body

without some other change, connected therewith,
occurring at the same time.”




Work from a single bath

Finally, suppose there 1s only one bath present:
T +
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Positive work (in my definition) means an external agent is doing work on
the system.



“It is impossible to devise a cyclically operating device,
the sole effect of which is to absorb energy in the form of

heat from a single thermal reservoir and to deliver an

equivalent amount of work.”




| Thermodynamics at the nanoscale




This process requires some work.

But now imagine doing the same with an RNA molecule.

The RNA molecule is constantly fluctuating due to
Brownian motion.

Thus, every time we repeat the process, the work required
to fold the molecule will be different.

Work is therefore a random variable and we must
speak about a probability of work P(W)
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Collin, et. al., Nature, 437 (2005) Batalhao, et. al., Phys. Rev. Lett. 113 (2014).




> e g ~—

The exact same thing happens for heat.

M
The heat exchanged between two buckets of water J '
practically does not fluctuate. %

But the heat exchanged between two harmonic
oscillators does.
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Heat will therefore also be described by a prob. dist. P(Q)
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S. Pal et. al, Phys. Rev. A. 100, 042119 (2019)




Consequences ol microscopic
fluctuations
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Fluctuation theorems

<= 'T'he probability distributions of thermodynamic quantities

cannot be arbitrary;

= T'hey must satisty a special symmetry known as a

Fluctuation Theorem:

Work (Jarzynski-Crooks)

Pp(W)
= )

D

Heat (Jarzynski-Wojcik)
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<= In the case of work, we have a forward and a backward process

(fold and unfold).

= For heat, Py = Py




<= 'T'he two can be written in a unified way 1n terms of the

entropy production.

Work: 2 = (W — AF)

Pp(W) _ oB(W-AF)
Pg(—W)
then
o) =3
leple20)

Heat: £ = (5. — )0

Py
=

then

PE) _ 5
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<= 'T'he case of heat 1s called an Exchange F1' (EF ).

= [t 13 stronger because 1t represents a symmetry for the same distribution.

= (Sometimes this happens for work too. But depends on the problem)




Experimental confirmation
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Thermodynamic
Uncertainty
Relations
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Thermodynamic Uncertainty Relations (TURs)

= Simple, elegant and powerful.

= Counterintuitive: To reduce
the fluctuations, the process
should be more irreversible.

.
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= Derived only for the steady-
state of classical Markov
chains.

= Can be violated in many
relevant scenarios (e.g.
thermoelectrics).

Y =468 Q (in the simplest case)

A. C. Barato, U. Seifert, Physical Review Letters, 1 14, 158101 (2015)



Implications for mesoscopic engines

In an autonomous engine the output power is W

The TUR in this case then reads
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From our previously derived result:

77—77(1—@E — E&X)= T

Thus:
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P. Pietzonka and U. Seifert, Phys. Rev. Lett., 120, 190602 (2017)



Thus:

var (W oT., 1
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[V&I(W) > 2T, |E(W) 77077_ Ut]

If you wish to operate the engine close to Carnot efficiency, you pay
the price that the fluctuations may become very large.

To curb fluctuations, the engine should be operated irreversibly!

Goes against everything we learn in undergraduate
thermodynamics &

P. Pietzonka and U. Seifert, Phys. Rev. Lett., 120, 190602 (2017)



Implications for mesoscopic autonomous heat engines

In an autonomous engine the output power is defined by P =W

Thermal Machines: Otto Cycle

) n=n. if EE)=0
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Carnot efficiency achievable only at the expense of zero power




Implications for mesoscopic autonomous heat engines

»= However...
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Campisi and Fazio “The power of a critical engine’. Nat. Comms. 7, | 1895 (2016).

“We focus on quantum Otto engines and show that when the working substance is at the verge of a second order phase
transition diverging energy fluctuations can enable approaching the Carnot point without sacrificing power.”
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PERSPECTIVE

Thermodynamic uncertainty relations constrain
non-equilibrium fluctuations

Jordan M. Horowitz®'23 and Todd R. Gingrich®*

Experimental study of the thermodynamic uncertainty relation

Soham Pal,! Sushant Saryal,! D. Segal,>? T. S. Mahesh,! and Bijay Kumar Agarwalla®:*
1912.08391

Thermodynamic uncertainty relation in atomic-scale quantum conductors

Hava Meira Friedman,! Bijay K. Agarwalla,? Ofir Shein-Lumbroso,? Oren Tal,® and Dvira Segall:4 *
2002.00284



TUR from FTs

Andre M.Timpanaro, Giacomo Guarnieri, John Goold, GTL,

“Thermodynamic uncertainty relations from exchange fluctuation theorems’.

Phys. Rev. Lett. 123,090604 (2019) (arXiv 1904.07574)
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- XCHANGE FLUCTUATION THEOREM

Fluctuation theorems for thermodynamic processes usually have the form

Pr(Y) 5

e.g. Crooks theorem for work: > = g(W — AF)

FTs, however, compare a forward with a backward process.

In some systems, both coincide.These are called Exchange FTs:

A

This is much stronger: it is a symmetry on a single probability distribution.

Example: direct heat exchange: 3 = §80Q



We consider a system satisfying an exch
fluctuation theorem. =e

We proved the following theorem:

Theorem (“TUR de force”). For fixed finite E(X), the
probability distribution P(X) satisfying P(X)/P(-X) =
e, with the smallest possible variance (the minimal

distribution) is

Pin(X) = > coslll(a/Z) {e“/26 C—a)+e“?5( +a) },

where the value of a is fixed by E(X) = atanh(a/2).

For this distribution For any other distribution
Var(®),.;, = BE)2FER)), we must then have:

where f(x) = cschz(g(x/2)), csch(x) is the hyperbolic \ISEZ(D?Z) > f(E(X))

cosecant and g(x) is the function inverse of x tanh(x).



TUR de force ISTIGHT

Our TUR is the tighest (saturable) bound for this scenario.
And we know which thermodynamic process saturates it.
This is relevant because, around the same time, similar papers appeared.

But all derived a looser bound with

2
et — 1

fla) =

This bound, however, is never tight.

Hasegawa & Vu 1902.06376.
Proesman & Horowitz 1902.07008.
Potts & Samuelsoon 1904.0491 3.



=X TENSION TO MULTIPLE CHARGES

® We can also generalize our framework to Exchange FTs involving multiple

charges:
P(Q1,-.,Qn)  _ 5 a0

P(_Qla IR _Qn)

= The entropy production in this case is & =) 4,0,

= ex: heat engine FT:

PQnW)  _ (8u-B)Qn+8.W
P(_Qha _W)

= |n this case we obtain the matrix bound

q; = E(Q;)
Ci; = cov(Qi, 95 )

M. Campisi, J. Pekola, R. Fazio, NJP, 17,035012 (2015)




¢ = E(Q;)
Cij = cov(9Q;, 9;)
= This says that the matrix above is positive semi-definite.

= As a consequence, all diagonal entries must be positive, which implies an
individual TUR for each charge:

var(Q;)
£ = 1 EX)

= In addition, it also places a restriction on the sign on the covariances:

(@) (]  TEE) S0 = SmEQIE(O)




SWAP engine
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ACHIEVABILITY OF THE OPTIMAL PROCESS

Theorem (“TUR de force”). For fixed finite E(X), the The minimal process is one
probability distribution P(X) satisfying P(X)/P(=X) = which has only 2 points in

e*, with the smallest possible variance (the minimal the support.

distribution) is

Pin(2) = : {ea/25(z —a)+e %5 (T + a) } But is this achievable in
PecEE2) practice!

where the value of a is fixed by E(X) = atanh(a/2).

For this distribution i.e., is the bound saturable?

Var(2)min = BE)? f(EX)),

where f(x) = csch®(g(x/2)), csch(x) is the hyperbolic
cosecant and g(x) is the function inverse of x tanh(x).
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* In this talk | discussed how TURs can be viewed as a consequence of Fluctuation
Theorems.

* | believe that this is important because:

a. It sheds light on the phy

b. Shows that FTs not only_

c. Introduces the idea of aj
optimizes a given therm

<
o
e
(@]
(V)]

www.fmt.if.usp.br/~gtlandi




