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1 Introduction

The dynamics of open quantum systems have been studied extensively in the fields of quantum optics, quantum
information. The main goal is to describe the nonunitary behavior resulting from the fact that the system is
not closed. Usually, such master equations are obtained by considering a microscopic model for the interaction
of the system under study and the environment, and tracing out the environment variables in some exact or,
most of the times, perturbative treatment. Usually, the presence of interactions among parts of the system or
its subsystems is not taken into account in the derivation of the master equation. It is not uncommon to find
examples of such a phenomenological approach where one considers the response of a system to the environment
to be exactly the same regardless of whether it is coupled or not to another quantum system. As an illustrative
example, let us consider the Jaynes-Cummings model describing the interaction of a single-mode quantized
electromagnetic field in a cavity and a two-level atom in the rotating wave approximation. When considering
cavity losses at a decay rate κ, one usually describes the open system by using a master equation in the form1

∂tρ = −i[HJC , ρ] + κ(aρa† − {a†a, ρ}/2) (1)

As we know, the second term, the Lindblad dissipator, accounts for the losses. The potential problem of
using Eq. (1) resides in the fact that the derivation of the Lindblad dissipator was realized in another different
microscopic model, and not the Jaynes-Cummings plus environment. Actually, this dissipator is deduced for
a cavity mode losing photons to the vacuum environment without the presence of the atom. For this reason,
the use of Eq. (1) is a phenomenological approach. A microscopic derivation of the master equation for the
Jaynes-Cummings model with cavity losses is found in [1].

Usually, this kind of phenomenological approach works well when the subsystems (in the above case, the
mode and the atom) are weakly coupled.

1.1 Master equation for qubits in a common environment

In this section, we would like to discuss about the following system: an a priori non-interacting set of qubits
which are interacting with a global bosonic reservoir. This system is been shown in Fig. 1(a).

As we have seen before, when we have just one qubit interacting with a bosonic reservoir, the master equation
for the system can be written as 2

∂tρ = −i[H1, ρ] +D1(ρ) (2)

with H1 = ω1

2 σ
z
1 and

D1(ρ) = γ(1 + n̄)(σ−1 ρσ
+
1 − {σ

+
1 σ
−
1 , ρ}/2) + γn̄(σ+

1 ρσ
−
1 − {σ

−
1 σ

+
1 , ρ}/2) (3)

A ingenuous way to describe a set of M two-level system interacting with a common global reservoir could
be just by adding a new dissipator for each two-level system. In this case we would have,

∂tρ = −i[HS , ρ] +

M∑
i=1

Di(ρ) (4)

where HS =
∑M
i=1 ωiσ

z
i /2 and

Di(ρ) = γ(1 + n̄)(σ−i ρσ
+
i − {σ

+
i σ
−
i , ρ}/2) + γn̄(σ+

i ρσ
−
i − {σ

−
i σ

+
i , ρ}/2) (5)

The Eq. (4) is an example of a phenomenological master equation for our system. This master equation would
be correct if we were describe a collection of two-level system interacting individually with local baths, as shown
in Fig. 1(b), but that is not the case. Next section we will derive what we call a microscopic master equation
for the system of interest.

1Here HJC stands for the well-know Jaynes-Cummings Hamiltonian HJC = ω0
2
σz + ωa†a+ g(a†σ− + σ+a).

2We mean, by using the traditional approach via the Born-Markov approximations.
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Figure 1: (a) Set of two-level system interacting with a global reservoir. (b) Set of two-level system interacting
individually with local reservoirs.

Derivation of the master equation

Let us start by writing the system Hamiltonian of the total system

HT = HS +HE +HSE (6)

where

HS =

M∑
i=1

ωiσ
z
i /2 (7)

HE =
∑
k

νka
†
kak (8)

HSE = −i
∑
k

M∑
i=1

(gikσ
+
i ak − g

∗
ikσ
−
i a
†
k) (9)

The density operator of the total system, ρT , obeys the von-Neumann equation,

∂tρT = −i[HT , ρT ] (10)

First, let us go to the interaction picture, ρ̃T = eiH0tρT e
−iH0t, with H0 = HS +HE . So we find

∂tρ̃T = −i[V (t), ρ̃T ] (11)

where V (t) = eiH0tHSEe
−iH0t, can be rewritten as

V (t) = −i
∑
k

M∑
i=1

(gikσ
+
i ake

i∆ikt − g∗ikσ−i a
†
ke
−i∆ikt) (12)

where ∆ik = ωi − νk. For the initial time t = 0, direct integration of Eq. (11) leads to the following first order
solution in V (t)

ρ̃T (t) = ρ̃T (0)− i
∫ t

0

dt′ [V (t′), ρ̃T (t′)] (13)

Substituting Eq. (13) back into the right side of Eq. (11), we obtain the integro-differential equation

∂tρ̃T = −i[V (t), ρ̃T (0)]−
∫ t

0

dt′[V (t), [V (t′), ρ̃T (t′)] (14)

We can continue the procedure to obtain an infinite series of integral terms, which can be regarded as an exact
explicit solution for ρ̃T (t). The usual practice however is to introduce approximations into the exact second
order equation. By tracing Eq.(14) over the bath, and noting that TrE{ρ̃T (t)} = ρ̃S(t), we obtain

∂tρ̃S = −iTrE

{
[V (t), ρ̃T (0)]

}
−
∫ t

0

dt′ TrE

{
[V (t), [V (t′), ρ̃T (t′)]

}
(15)

We choose an initial state of the system that has no correlations between the two-level systems and the envi-
ronment, ρ̃T (0) = ρ̃S(0)⊗ ρE(0). We will assume the interaction between the two-level system and bath to be
very weak, and then there is no back reaction of the two-level system on the bath. Thus, we can make our first
approximation, the weak coupling or Born approximation, in which we assume that the effect of the system on
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the bath is very small, so that the state of the bath, appearing as a large reservoir to the two-level systems,
does not change in time. Therefore, we can rewrite Eq.(15)

∂tρ̃S = −iTrE

{
[V (t), ρ̃S(0)⊗ ρE(0)]

}
−
∫ t

0

dt′TrE

{
[V (t), [V (t′), ρ̃S(t′)⊗ ρE ]

}
(16)

Where here we are using a shorter notation ρE = ρE(0). If we change the time variable to t′ = t− τ , we obtain

∂tρ̃S = −iTrE

{
[V (t), ρ̃S(0)⊗ ρE(0)]

}
−
∫ t

0

dτ TrE

{
[V (t), [V (t− τ), ρ̃S(t− τ)⊗ ρE ]

}
(17)

Let us consider the trace over the field modes of the double commutator in the second term of Eq. (17), which
can be written as

TrE

{
[V (t), [V (t− τ), ρ̃S(t− τ)⊗ ρE ]

}
= TrE

{
V (t)V (t− τ)ρ̃S(t− τ)⊗ ρE ]

}
− TrE

{
V (t)ρ̃S(t− τ)⊗ ρEV (t− τ)]

}
− TrE

{
V (t− τ)ρ̃S(t− τ)⊗ ρEV (t)]

}
+ TrE

{
ρ̃S(t− τ)⊗ ρEV (t− τ)V (t)]

}
(18)

To calculate the first term on the right-hand side of Eq. (18), we substitute the explicit expression for the
interaction Hamiltonian Eq. (12), and obtain

TrE

{
V (t)V (t− τ)ρ̃S(t− τ)⊗ ρE ]

}
= −

∑
k,k′

M∑
i,j=1

TrE

{
(gikσ

+
i ake

i∆ikt − g∗ikσ−i a
†
ke
−i∆ikt)(gjk′σ

+
j ak′e

i∆jk′ (t−τ) − g∗jk′σ−j a
†
k′e
−i∆jk′ (t−τ))ρ̃S(t− τ)⊗ ρE

}
(19)

Let us define ak(t) = ake
−iνkt. Then we can write

TrE

{
V (t)V (t− τ)ρ̃S(t− τ)⊗ρE ]

}
= −

∑
k,k′

M∑
i,j=1

[
+gikgjk′σ

+
i σ

+
j e

+iωit+iωj(t−τ) TrE

{
ak(t)ak′(t− τ)ρE

}
−g∗ikgjk′σ−i σ

+
j e
−iωit+iωj(t−τ) TrE

{
a†k(t)ak′(t− τ)ρE

}
−gikg∗jk′σ+

i σ
−
j e

+iωit−iωj(t−τ) TrE

{
ak(t)a†k′(t− τ)ρE

}
+g∗ikg

∗
jk′σ

−
i σ
−
j e
−iωit−iωj(t−τ)) TrE

{
a†k(t)a†k′(t− τ)ρE

}]
ρ̃S(t− τ) (20)

In order to calculate the second order correlations functions of the field operator we assume that are in a finite
temperature thermal state. In this case, the field correlation functions are given by

TrE

{
ak(t)ρE

}
= 0 (21)

TrE

{
ak(t)ak′(t− τ)ρE

}
= 0 (22)

TrE

{
a†k(t)ak′(t− τ)ρE

}
= n̄kδk,k′e

+iνkte−iνk′ (t−τ) (23)

TrE

{
ak(t)a†k′(t− τ)ρE

}
= [n̄k + 1]δk,k′e

−iνkteiνk′ (t−τ) (24)

TrE

{
a†k(t)a†k′(t− τ)ρE

}
= 0 (25)

where n̄k = Tr{a†kakρE} is the average number of quanta in the mode k. If we use the definition

D(t) =

M∑
i=1

gikσ
†
i e
iωit (26)

and the correlation functions, we can write

TrE

{
V (t)V (t− τ)ρ̃S(t− τ)⊗ ρE ]

}
=
∑
k

[
D†(t)D(t− τ)n̄ke

+iνkτ +D(t)D†(t− τ)[n̄k + 1]e−iνkτ
]
ρ̃S(t− τ) (27)
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Proceeding in a similar manner, we calculate the remaining three terms in Eq. (18).

TrE

{
V (t)ρ̃S(t− τ)⊗ ρEV (t− τ)]

}
=
∑
k

[
D(t)ρ̃S(t− τ)D†(t− τ)n̄ke

−iνkτ +D†(t)ρ̃S(t− τ)D(t− τ)[n̄k + 1]eiνkτ
]

(28)

TrE

{
V (t− τ)ρ̃S(t− τ)⊗ ρEV (t)]

}
=
∑
k

[
D(t− τ)ρ̃S(t− τ)D†(t)n̄ke

iνkτ +D†(t− τ)ρ̃S(t− τ)D(t)[n̄k + 1]e−iνkτ
]

(29)

TrE

{
ρ̃S(t− τ)⊗ ρEV (t− τ)V (t)]

}
=
∑
k

ρ̃S(t− τ)

[
D(t− τ)D†(t)[n̄k + 1]eiνkτ +D†(t− τ)D(t)n̄ke

−iνkτ
]

(30)

By using these results, the master equation Eq. (17) simplifies to

∂tρ̃S =

∫ t

0

dτ
∑
k

{
[D(t− τ)ρ̃S(t− τ), D†(t)]n̄ke

iνkτ + [D†(t), ρ̃S(t− τ)D(t− τ)][n̄k + 1]eiνkτ

+[D(t), ρ̃S(t− τ)D†(t− τ)]n̄ke
−iνkτ + [D†(t− τ)ρ̃S(t− τ), D(t)][n̄k + 1]e−iνkτ

}
(31)

Note also that we can write∫ t

0

dτ
∑
k

[D†(t− τ)ρ̃S(t− τ), D(t)][n̄k + 1]e−iνkτ=

M∑
i,j=1

[
σ−i

(∑
k

e−i(ωi−ωj)t[n̄k + 1]g∗ikgjk

∫ t

0

dτe−i(νk−ωi)τ ρ̃S(t− τ)

)
︸ ︷︷ ︸

=Xij(t)

, σ+
j

]
(32)

and ∫ t

0

dτ
∑
k

[D(t− τ)ρ̃S(t− τ), D†(t)]n̄ke
iνkτ=

M∑
i,j=1

[
σ+
i

(∑
k

ei(ωi−ωj)tn̄kgikg
∗
jk

∫ t

0

dτei(νk−ωi)τ ρ̃S(t− τ)

)
︸ ︷︷ ︸

=Yij(t)

, σ−j

]
(33)

By using the definitions Xij and Yij , we can rewrite the Eq. (31) as

∂tρ̃S =

M∑
i,j=1

{
[σ−j Xij(t), σ

+
i ] + [σ+

j Yij(t), σ
−
i ] + [σ−i , X

†
ij(t)σ

+
j ] + [σ+

i , Y
†
ij(t)σ

−
j ]
}

(34)

Continues Limit and Markov approximation

The functions Xij(t) and Yij(t) involve a summation over the reservoir oscillators. We change this summation
to an integration by introducing a density of states G(νk) such that G(νk) dνk gives the number of oscillators
with frequency in the interval νk to νk + dνk.

Xij(t) =

∫
dνk G(νk)e−i(ωi−ωj)t[n̄k + 1]g∗ikgjk

∫ t

0

dτe−i(νk−ωi)τ ρ̃S(t− τ) (35)

Yij(t) =

∫
dνk G(νk)ei(ωi−ωj)tn̄kgikg

∗
jk

∫ t

0

dτei(νk−ωi)τ ρ̃S(t− τ) (36)

Here we can make our third approximation, the Markov approximation, in which we replace ρ̃S(t− τ) by ρ̃S(t)
and extend the integral to infinity.

Under the Markov approximation we can evaluate the integral over τ to obtain

lim
t→∞

∫ t

0

dτ ρ̃S(t− τ)eixτ ' ρ̃S(t)

[
πδ(x) + iP 1

x

]
(37)

Now we can write,

Xij(t) =

∫
dνk g

∗
ikgjkG(νk)e−i(ωi−ωj)t[n̄k + 1]

[
πδ(νk − ωi)− iP

1

νk − ωi

]
ρ̃S(t) (38)

Xij(t) = ρ̃S(t)e−i(ωi−ωj)t
[
n̄+ 1

](γij
2
− iΛij

)
(39)
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where we are using the definitions

γij = 2π

∫
dνk g

∗
ikgjkG(νk)δ(νk − ωi) (40)

Λij =

∫
dνk

g∗ikgjkG(νk)

νk − ωi
(41)

And for Yij we have (again using the definitions Eq.(40)) and (41)),

Yij(t) =

∫
dω G(ω)ei(ωi−ωj)tn̄kgikg

∗
jk

[
πδ(νk − ωi) + iP 1

νk − ωi

]
ρ̃S(t) (42)

Yij(t) = ρ̃S(t)ei(ωi−ωj)t n̄

(
γij
2

+ iΛij

)
(43)

Substituting the Eq. (39) and Eq. (43) in the master equation Eq. (34) we find

∂tρ̃S =

M∑
i,j=1

{(γij
2
− iΛij

)
(n̄+ 1)[σ−j ρ̃S(t), σ+

i ]e−i(ωi−ωj)t +
(γij

2
+ iΛij

)
n̄[σ+

j ρ̃S(t), σ−i ]ei(ωi−ωj)t

+
(γ∗ij

2
+ iΛ∗ij

)
(n̄+ 1)[σ−i , ρ̃S(t)σ+

j ]e+i(ωi−ωj)t +
(γ∗ij

2
− iΛ∗ij

)
n̄[σ+

i , ρ̃S(t)σ−j ]e−i(ωi−ωj)t
}

(44)

In order to simplify Eq. (44), we will assume that:

• the coupling gik in such way that γij and Λij are real,

{γij ,Λij} ∈ < (45)

• the frequency ωi are such that ωi − ωj � ω0 where ω0 =
∑M
i=1 ωi/M . By using this, we can make the

approximation,
γij = γji and Λij = Λji (46)

By using this approximations, we can write

∂tρ̃S =

M∑
i,j=1

iΛij

{
(n̄+ 1)[σ+

i σ
−
j ρ̃S − ρ̃Sσ

+
i σ
−
j ] + n̄[ρ̃Sσ

−
j σ

+
i − σ

−
j σ

+
i ρ̃S ]

}
e−i(ωi−ωj)t

+

M∑
i,j=1

γij

{
(n̄+ 1)[σ−j ρ̃Sσ

+
i − {σ

+
i σ
−
j , ρ̃S}/2]e−i(ωi−ωj)t + n̄[σ+

j ρ̃Sσ
−
i − {σ

−
i σ

+
j , ρ̃S}/2]e+i(ωi−ωj)t

}
(47)

Note that we can rewrite the first term of Eq. (49) as

M∑
i,j=1

iΛij

{
(n̄+ 1)[σ+

i σ
−
j ρ̃S − ρ̃Sσ

+
i σ
−
j ] + n̄[ρ̃Sσ

−
j σ

+
i − σ

−
j σ

+
i ρ̃S ]

}
e−i(ωi−ωj)t =

M∑
i 6=j
i,j=1

iΛij [σ
+
i σ
−
j , ρ̃S ]e−i(ωi−ωj)t

+

M∑
i=1

iΛii(n̄+ 1/2)[σzi , ρ̃S ] (48)

By substituting Eq.(48) in Eq. (49) and going back to the Schröedinger picture we have,

∂tρS = −i[Heff, ρS ] +

M∑
i,j=1

γij(n̄+ 1)[σ−j ρSσ
+
i − {σ

+
i σ
−
j , ρS}/2] + n̄[σ+

j ρSσ
−
i − {σ

−
i σ

+
j , ρS}/2] (49)

with

Heff =

M∑
i=1

1

2
(ωi − Λii(2n̄+ 1))σzi −

M∑
i>j
i,j=1

Λij(σ
+
i σ
−
j + σ−i σ

+
j ) (50)
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