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Summary

❖ Quantum Thermodynamics? 

❖ Motivation from Quantum Information Sciences.

❖ Recent progress and general trends in the field.

❖ Quantifying irreversibility at the quantum level.



We live in the age of quantum technologies

❖ Since its conception, quantum mechanics has already 
provided us with remarkable technologies:

❖ Lasers. 

❖ Semiconductors: solar panels, LEDs, computers, 
smartphones. 

❖ Nuclear magnetic resonance, electron microscopy, etc.

❖ These are now called Quantum Technologies 1.0 (UK 
Defence Science and Technology Laboratory)



But quantum mechanics also predicts other 
properties, such as coherence and entanglement, 

which are not usually employed in these 
applications.



Coherence
❖ In QM we learn that a superposition of 

states is also a valid state:  
 

❖ But when we construct the periodic table, 
we don’t care about this: we just “put” 
the electrons in each state. 

❖ That’s not very quantum: 

❖ Its quantum because the energy levels 
are discrete. 

❖ But other than that, its classical.
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Decoherence
❖ Coherences and entanglement are usually washed away very quickly by 

the contact of a system with its environment. 

❖ We start with a pure state:  
 

❖ Then the contact with the environment will gradually degrade the 
coherences:  
 

❖ If we wait long enough, we eventually get a classical state:
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Isolate, experiment, understand…
❖ And so began a long quest to isolate, 

experiment and understand with these more 
exotic quantum resources:

❖ Coherence, entanglement, squeezing, 
asymmetry, purity, discord, &c. 

❖ We now have are many platforms where we 
can have impressive control over individual 
quantum systems:

❖ Quantum optics, trapped ions, 
superconducting qubits, NMR,  NV 
centers in diamond, Bose-Einstein 
condensates, ultra-cold atoms in optical 
lattices, &c. 

Superconducting qubits



Quantum Technologies 2.0
❖ Together with these experimental advances, it also became clear that we could 

harness these quantum resources to produce new technologies:

❖ Secure communications with quantum cryptography. 

❖ Exponentially faster algorithms with quantum computers. 

❖ Higher sensitivity with quantum metrology.

❖ Will any of these ever see the light of day? 

❖ Based on the history of physics, we will definitely see some applications. 

❖ But even if no direct applications appear:

❖ What we learned so far in this field is already helping in many other areas, 
such as e.g. strongly correlated systems (in this context correlation = 
entanglement).



Quantum Thermodynamics
❖ It is now straightforward to define what is the goal of “Quantum 

Thermodynamics”:

❖ To understand the role of quantum resources in thermodynamic quantities such as 
heat and work.

❖ Topics of current interest include:

❖ The role of measurements in thermodynamic processes.

❖ Thermal transformations under the presence of quantum fluctuations. 

❖ How coherence, entanglement and squeezing affect the operation of heat 
engines.

❖ Irreversibility at the quantum level. 



Review of the recent literature



Quantum measurement



Thermal operations
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More general heat engines





Coherence producing engine



Measures of Irreversibility 



Entropy production
❖ The energy of a system satisfies a continuity equation:  
 

❖ For the entropy that is not true: 
 

❖ Π represents the entropy production rate due to the irreversible 
dynamics:

dhHi
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⇧ � 0 and ⇧ = 0 only in equilibrium

Dinâmica estocástica e irreversibilidade,  T. Tomé e M. J. de Oliveira



Traditional formulation
❖ The traditional theory of entropy production, for both quantum 

and classical systems, is based on the following formulas:
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J. Schnakenberg, Rev. Mod. Phys. 48, 571 (1976).
H. Spohn, J. Math. Phys., 19, 1227 (1978) 
T. Tomé and M. J. de Oliveira, Phys. Rev. Lett, 108, 020601 (2012)



Entropy production and loss of coherence
❖ The environment selects a preferred basis for the system. 

❖ When the system interacts with an environment, two things happen 
simultaneously:

❖ The populations adjust to the levels imposed by the bath: 

❖ The system looses coherence. 

❖ We may write the relative entropy as
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J. P. Santos, L. C. Céleri, GTL, M. Paternostro, arXiv:1707.08946

Entropy is produced due to the “classical” 
transitions between energy levels and also 

due to the loss of coherence



Problems with the standard formulation

❖ Difficult to extend to systems connected to multiple reservoirs.

❖ Cannot be extended to non-equilibrium reservoirs: 

❖ Squeezed baths, dephasing baths, engineered baths, &c. 

❖ Breaks down at T = 0.
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Spontaneous emission is at T = 0
❖ Every system is nature is connected to a bath:

❖ Vacuum fluctuations act as a zero-temperature bath.

❖ Explains why atoms emit photons and relax to the ground-state.

❖ The theory of open quantum systems accounts for this type of process 
quite naturally.

❖ Everything is well behaved.

❖ But Π and Φ diverge  
when T → 0.



Dynamics of open quantum systems



Most used approaches
❖ Keldysh Green’s functions (discussed in Altland’s book on Cond. Mat. Field Theory).

❖ Quantum Fokker-Planck-Kramers equation.

❖ M. J. de Oliveira, PRE, 94, 012128 (2016)

❖ Quantum Brownian motion:

❖ A. Caldeira and A. Leggett, Physica A, 121, 587 (1983). 

❖ L. Pucci, M. Esposito and L. Peliti, J. Stat. Mech. 13, P04005 (2013).



Lindblad dynamics

❖ Idea: the most general evolution of a closed system is a Unitary. The 
most general evolution of an open system is a Kraus map: 
 

❖ Lindblad’s theorem: if such a map is also Markovian (forms a semi-
group), then it can be expressed as a Lindblad master equation.
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Open quantum harmonic oscillator
❖ We revisit this problem using the simplest model in quantum 

mechanics: the harmonic oscillator:  
 

❖ The dissipator describing the contact with a thermal bath is 
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Classical dynamics describes 
emission and absorption of 

quanta. 
But also captures quantum 

features.





Phase space
❖ Instead of using wavefunctions or density matrices, we work in phase 

space using the Wigner function:
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❖ Phase space is now the complex plane, with: 

❖ Thermal equilibrium is a Gaussian
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❖ For T = 0 this gives the vacuum state, which 
still has a non-zero width: quantum fluctuations.



Rényi-2 and Wigner entropy

❖ The authors of this paper showed that for quantum systems all Rényi 
entropies have thermodynamic significance.  
 

❖ The simplest one to use is the Rényi-2 entropy:  
 

❖ In PRL 109, 190502 (2012) the authors showed that for Gaussian states, this 
actually coincides with the Wigner entropy 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Quantum Fokker-Planck equation

❖ In terms of the Wigner function, the Lindblad equation becomes a 
quantum Fokker-Planck equation:

@tW = �i!
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❖ This is a continuity equation and J(W) is the irreversible component of the 
probability current.
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U. Seifert, Rep. Prog. Phys. 75, 126001 (2012)



Wigner entropy production and flux
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❖ We use 3 different methods to show that the Wigner entropy production 
for a harmonic oscillator will be:

❖ The entropy flux rate then becomes

❖ Now both Π and Φ remain finite at T = 0. 
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Experiments

Optomechanical 
system 

(Vienna)

BEC in a high-
finesse 
cavity 
(ETH)

M. Brunelli, et. al. arXiv:1602.06958



Generalizations



Spins and qubits

❖ We would like to have a similar framework for spin systems. 

|⌦i = e��Jze�✓Jy |J, Ji

Q(⌦) = h⌦|⇢|⌦i

⌃ = �
Z

d⌦Q(⌦) lnQ(⌦)

Spin coherent states:

Husimi-Q function:

Wehrl entropy:

❖ The Quantum Fokker-Planck equation is now written in terms of orbital 
angular momentum operators.
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J. P. Santos, L. C. Céleri, GTL, M. Paternostro, arXiv:1707.08946



Dephasing and amplitude damping
❖ The dephasing bath induces no population changes, only decoherence:

D(⇢) = ��

2
[Jz, [Jz, ⇢]]

⇧ =
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2
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Q

❖ It leads to no entropy flux, only an entropy production:

❖ We compare this with the amplitude damping:
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❖ We now see the separation of a contribution from population changes 
and a contribution from decoherence.
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J. P. Santos, L. C. Céleri, GTL, M. Paternostro, arXiv:1707.08946



Squeezed baths
❖ Example of a non-equilibrium reservoir. 
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Onsager theory for squeezing
❖ Our formalism allows us to cast this problem within the same 

thermodynamic framework of Onsager’s transport theory:

❖ Joint transport of energy and squeezing. 

❖ We can even define a Squeezing Peltier and Squeezing Seebeck effect. 

JE = T1,1�n̄+ T1,2�r

JS = T2,1�n̄+ T2,2�r

❖ Entropy production and flux can be written like in standard 
thermodynamics:
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Conclusions

❖ Quantum Information Sciences: understand and exploit the role of quantum 
resources, such as coherence and entanglement. 

❖ Quantum thermodynamics: understand how these resources affect properties 
such as heat, work and entropy production. 

❖ Theory of irreversibility for open quantum systems is incomplete. 

❖ We proposed an alternative for Gaussian states using the Wigner 
entropy. 

❖ This approach solves the T = 0 problem and is also useful to study 
engineered reservoirs. 
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Stochastic trajectories and fluctuation theorems

❖ We can also arrive at the same result using a completely 
different method. 

❖ We analyze the stochastic trajectories in the complex plane. 

❖ The quantum Fokker-Planck equation is equivalent to a 
Langevin equation in the complex plane:
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❖ We can now define the entropy produced in a trajectory 
as a functional of the path probabilities for the forward 
and reversed trajectories:

⌃[↵(t)] = ln
P[↵(t)]

PR[↵⇤(⌧ � t)]

he�⌃i = 1

❖ This quantity satisfies a fluctuation theorem
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❖ We show that we can obtain exactly the same formula for 
the entropy production rate if we define it as 



Example: RL circuit
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Example: two inductively coupled RL circuits
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GTL, T. Tomé and M. J. de Oliveira, J. Phys A. 46 (2013) 395001 



Example: evolution of a coherent state
❖ Consider the evolution of a harmonic 

oscillator starting from a coherent 
state:  
 

❖ The evolution remains as a (pure) 
coherent state:

⇢(0) = |µihµ|
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❖ The entropy is zero throughout, but Π and Φ would both be infinite.

❖ This is clearly an inconsistency of the theory.



Squeezed baths and gravitational waves



❖ For the squeezed bath we find that the entropy 
production rate is given by 
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❖ The entropy flux rate is given by 
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