
Grand-canonical ensemble
Gabriel T. Landi

University of São Paulo
November 21, 2019

Contents
1 The Grand-canonical ensemble 2

1.1 Equilibrium minimizes the thermodynamic potential . . . . . . . . . 3
1.2 Non-interacting Hamiltonians . . . . . . . . . . . . . . . . . . . . . 5
1.3 Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 The “classical” limit . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Quantum gases 9
2.1 The density of states . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Density of states and Green’s functions (optional) . . . . . . . . . . . 12
2.3 First quantum correction to the classical limit . . . . . . . . . . . . . 14

3 Fermi gases 17
3.1 Ground-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Finite temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Bose gases and Bose-Einstein condensation 24
4.1 Solving for the chemical potential . . . . . . . . . . . . . . . . . . . 26
4.2 Physics below Tc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1



1 The Grand-canonical ensemble
The key behind second quantization is to remove the restriction that the number of

particles is fixed. Instead, the theory is built around the idea of Fock space, where the
number of particles is not fixed. This is highly advantageous when dealing with many-
body systems. This same idea, when extended to finite temperatures, is what we call
the Grand canonical ensemble. What we want is to consider some finite temperature
density matrix ρ ∼ e−βH where the number of particles is not fixed, but can fluctuate.
However, we cannot let it fluctuate arbitrarily since that would make no physical sense.

Instead, the basic idea of the grand-canonical ensemble is to impose that the num-
ber of particles is only fixed on average. That is, we impose that

〈N̂〉 = N, (1.1)

where N̂ is the number operator and N is the number of particles in the system. In some
systems, the number of particles does indeed fluctuate. This happens, for instance, in
chemical solutions: if we look at a certain region of a liquid, the number of molecules
there is constantly fluctuating due to molecules moving around from other parts. Of
course, in many other systems on the other hand, the number of particles is fixed.
However, it turns out that even in these cases, pretending it can may still give good
answers, provided N is large (the thermodynamic limit). The reason is because, as we
will show below, the variance of N̂ scales as var(N̂) ∼ N so that√

var(N̂)

〈N̂〉
∼

1
√

N
, (1.2)

which is thus small when N is large. Hence, when N is large, the grand-canonical
ensemble will give accurate answers, even if the number of particles is not actually
allowed to fluctuate. This is the idea behind ensemble equivalence: we are allowed
to use an ensemble where the number of particles fluctuate, even though it actually
doesn’t, because in the thermodynamic limit the fluctuations are small.

Our focus here will be on a system described within the language of second quan-
tization, with a HamiltonianH and a number operator N̂ . We assume that

[H , N̂] = 0, (1.3)

meaning that the number of particles is a conserved quantity. This means that H and
N̂ can be simultaneously diagonalized. The eigenvalues of N̂ are all possible numbers
of particles N. Thus, H is divided in sectors with well defined N; in other words,
H is block diagonal, so there are no terms connecting sectors with different N. The
eigenvalues E are thus labeled by two indices E(N, j), where j labels the quantum
states within each sector.

Suppose now that the system is in thermal equilibrium with exactly N particles.
The corresponding canonical partition function will be

Z(N) =
∑

j

e−βE(N, j). (1.4)

This is a constrained sum since we are only summing over that sector that has ex-
actly N particles. This constraint makes it notoriously difficult to compute the sum in
practice.
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Instead, in the grand-canonical ensemble we allow the number of particles
to fluctuate but only fix them on average [Eq. (1.1)]. To summarize what we
will learn below, to accomplish this we must introduce a new parameter µ,
called the chemical potential, so that the grand-canonical equilibrium state is
transformed to

ρeq =
e−β(H−µN̂)

Q
, Q = tr e−β(H−µN̂). (1.5)

Here Q is the partition function; I just use a different letter to distinguish it from
the canonical partition function Z. As can be seen, the chemical potential enters
by shifting the Hamiltonian from

H → H − µN̂ . (1.6)

The logic behind µ is twofold. When the number of particles is allowed to
fluctuate, the value of µ is fixed externally (like the temperature). As a conse-
quence the number of particles 〈N̂〉 = N(µ,T ) is interpreted as a function of
µ and T . Conversely, if the number of particles N is fixed, then µ = µ(N,T )
is to be interpreted as a function of N and T , which is to be determined as the
solution of the implicit equation

〈N̂〉 =
tr

(
N̂e−β(H−µN̂))

tr
(
e−β(H−µN̂)) = N. (1.7)

We will explore both scenarios in a second. But before that, we still have to
convince ourselves that Eq. (1.5) makes sense.

1.1 Equilibrium minimizes the thermodynamic potential
Max Ent principle for the canonical ensemble

We can make sense of Eq. (1.5) in terms of the Max Ent principle. When we first
learned about the canonical ensemble, we learned that equilibrium was the state which
minimized the free energy. In symbols, we define the free energy F(ρ) associated to an
arbitrary state ρ as

F(ρ) = 〈H〉ρ − TS (ρ). (1.8)

Out of all states ρ, the one which minimizes F(ρ) is the canonical state

ρcan =
e−βH

Z
. (1.9)

We can prove this by writing

F(ρ) = −T ln Z + TS
(
ρ||ρcan

)
, (1.10)

where S (ρ||σ) = tr(ρ ln ρ − ρ lnσ) is the quantum relative entropy. Since S (ρ||σ) ≥ 0
and S (ρ||σ) = 0 iff ρ = σ, it follows that the smallest value that F(ρ) can achieve is

Feq = −T ln Z, (1.11)
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which occurs when ρ = ρcan. The state with the smallest free energy is thus the thermal
state (1.9).

Alternatively, we could recast the problem in terms of entropy: we write

Feq = −T ln Z = Ueq − TS eq, (1.12)

where Ueq = 〈H〉th and S eq = S (ρcan) are the equilibrium energies and entropies. Using
this together with Eq. (1.8), we can rearrange Eq. (1.10) to read

S (ρ) = S eq + β
[
〈H〉ρ − Ueq

]
− S (ρ||ρcan). (1.13)

This is an identity comparing the entropy of any quantum state ρ with the entropy of
the equilibrium state (1.9). Consider now the following question: out of all states ρ
having 〈H〉ρ = Ueq, which has the highest entropy? Eq. (1.13) makes the answer to this
question transparent: If 〈H〉ρ = Ueq then second term vanishes. Since the first term is
independent of ρ, to make S (ρ) as large as possible we must minimize the second term.
The minimum is thus achieved when ρ = ρcan.

Max Ent principle for the grand-canonical ensemble

The logic we just used can now be extended to the grand-canonical ensemble. After
all, if the principle works for the canonical ensemble (and we know it does because it
matches experiment), then it must also work for the grand-canonical ensemble. To
impose the condition (1.1), we ask

Out of all states ρ with fixed 〈H〉ρ = U and 〈N̂〉ρ = N, which has the highest entropy?

It is easy to address this question using the result from the canonical ensemble. For, as
we saw in (1.6), all we need to do is replaceH withH − µN̂ . Eq. (1.13) then becomes

S (ρ) = S th + β
(
〈H〉ρ − U

)
+ βµ

(
〈N̂〉 − N

)
− S (ρ||ρeq), (1.14)

where the relative entropy is now between the state ρ and the grand-canonical state (1.5).
With this formula, we are then able to conclude that the state (1.5) is the state with the
highest possible entropy, given that 〈H〉ρ = U and 〈N̂〉ρ = N.

The thermodynamic potential

Just like we went back and forth between free energy and entropy in the case of the
canonical ensemble, in the case of the grand-canonical ensemble we can move between
entropy and a new thermodynamic quantity, called thermodynamic potential (I guess
at this point people ran out of creativity for naming it). It is defined as

Φ(ρ) = 〈H〉ρ − µ〈N̂〉ρ − TS (ρ). (1.15)

Rearranging (1.14) we get

Φ(ρ) = Φeq + TS (ρ||ρeq), (1.16)

where
Φeq = Ueq − µNeq − TS eq.

Eq. (1.16) allows us to conclude that the grand-canonical state (1.5) is the state mini-
mizes the thermodynamic potential.
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From now on, since we will be mostly interested in equilibrium states, I
will simplify the notation and write only

Φ = U − µN − TS , (1.17)

where it is now implied that all quantities refer to equilibrium at the state (1.5).
We can also express Eq. (1.17) more simply as

Φeq = −T lnQ. (1.18)

This is the grand-canonical analog of Feq = −T ln Z. In fact, if we set µ = 0 we
recover exactly the canonical ensemble.

If we write the eigenvalues of the Hamiltonian as E(N, j), as in Eq. (1.4), then the
grand-canonical partition function Q in Eq. (1.5) can be written more explicitly as

Q =
∑
N, j

e−β(E(N, j)−µN).

We can now factor out this sum as

Q =
∑

N

e−βµN
∑

j

e−βE(N, j).

The sum in j is now exactly the canonical partition function Z(N) in Eq. (1.4). This
therefore provides us with a link between the canonical and grand-canonical partition
functions:

Q =
∑

N

zNZ(N), z = e−βµ, (1.19)

where z is called the fugacity (a name due to historical reasons). We therefore see that
Z(N) is obtained from a series expansion of Q as a function of z. Mathematically, this
transformation between Z(N) and Q is called the Z transform; it is the discrete version
of the Laplace transform.

1.2 Non-interacting Hamiltonians
We saw when we studied second quantization, that non-interacting Hamiltonians

could always be written as
H =

∑
α

εαa†αaα, (1.20)

where α is a set of single-particle states and the operators aα can be either bosonic or
fermionic. The number operator may be similarly written as

N̂ =
∑
α

a†αaα. (1.21)

Thus, the grand-canonical state (1.5) becomes

ρeq =
1
Q

exp
{
− β

∑
α

(εα − µ)a†αaα
}
. (1.22)
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To compute the partition function we notice that a†αaα commutes with a†α′aα′ for any
α, α′. As a consequence, we may write

Q =
∏
α

tr e−β(εα−µ)a†αaα . (1.23)

Each product can be computed independently.
For Fermions these traces generically look like

tr e−λa†a =
∑
n=0,1

e−λn = 1 + e−λ, (1.24)

where λ is any parameter. Whence,

Q =
∏
α

(
1 + e−β(εα−µ)

)
, (Fermions). (1.25)

Conversely, for Bosons we get

tr e−λa†a =

∞∑
n=0

e−λn =
1

1 − e−λ
, (1.26)

and hence
Q =

∏
α

( 1
1 − e−β(εα−µ)

)
, (Bosons). (1.27)

Occupation number

The average number of particles in state |α〉 is defined as

〈n̂α〉 = tr
{
n̂αρeq

}
, (1.28)

where n̂α = a†αaα is the corresponding number operator for this state. Opening this up
we get

〈n̂α〉 =

∏
α′

tr
(
n̂αe−β(εα′−µ)n̂α′ )

)
∏
α′

tr
(
e−β(εα′−µ)n̂α′

) .

Out of the product of all α′, the only one which will not cancel with a corresponding
term in the denominator will be that with α′ = α. Whence

〈n̂α〉 =

tr
(
n̂αe−β(εα−µ)n̂α

)
tr

(
e−β(εα−µ)n̂α

) .

For Fermions we get

tr
(
n̂e−λn̂

)
= 0 + e−λ = e−λ.

Combining this with Eq. (1.24) leads to the Fermi-Dirac distribution

〈n̂α〉 =
1

eβ(εα−µ) + 1
, (Fermions).
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Conversely, for Bosons we get

tr
(
n̂e−λn̂

)
=

∞∑
n=0

ne−λn =
e−λ

(e−λ − 1)2 .

Combining this with Eq. (1.26) yields the Bose-Einstein distribution

〈n̂α〉 =
1

eβ(εα−µ) − 1
, (Bosons).

To summarize, in the case of non-interacting Fermions the thermody-
namic potential Φ = −T lnQ reads

Φ = −T
∑
α

ln
(
1 + e−β(εα−µ)

)
, (1.29)

and the average occupation number of each state α is given by the Fermi-Dirac
distribution

〈n̂α〉 =
1

eβ(εα−µ) + 1
. (1.30)

Conversely, in the case of non-interacting Bosons we get

Φ = T
∑
α

ln
(
1 − e−β(εα−µ)

)
, (1.31)

and the Bose-Einstein distribution

〈n̂α〉 =
1

eβ(εα−µ) − 1
. (1.32)

In the case of Fermions, the value of µ can in principle be arbitrary. But for
Bosons, we could have 〈n̂α〉 < 0, which is of course unphysical. The condition
for this not to happen is to have µ < εα for all α; or,

µ < min(εα), for Bosons. (1.33)

This restriction on µ in the case of Bosons has dramatic consequences, being at
the core of Bose-Einstein condensation. We will study this in detail later on.

1.3 Fluctuations
Consider the thermodynamic potential Φ = −T ln tr e−β(H−µN̂). Differentiating with

respect to µ, we get

−
∂Φ

∂µ
=

tr
(
N̂e−β(H−µN̂))

tr
(
e−β(H−µN̂)) . (1.34)

Thus we conclude that

〈N̂〉 = −
∂Φ

∂µ
(1.35)
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This result is general, holding even in the presence of interactions. As a sanity check,
differentiating Eqs. (1.29) or (1.31) with respect to µ yields

〈N̂〉 =
∑
α

1
eβ(εα−µ) ± 1

=
∑
α

〈n̂α〉, (1.36)

as expected. Here the + sign is for Fermions and the minus for Bosons.
Next differentiate (1.34) again with respect to µ. This leads to

−
∂2Φ

∂µ2 = β
tr

(
N̂2e−β(H−µN̂))

tr
(
e−β(H−µN̂)) − β

[
tr

(
N̂e−β(H−µN̂))

tr
(
e−β(H−µN̂))

]2

.

We recognize in this the variance of N̂ , var(N̂) = 〈N̂2〉 − 〈N̂〉2. Whence,

var(N̂) =
1
β

∂〈N̂〉

∂µ
= −

1
β

∂2Φ

∂µ2 . (1.37)

This result is similar to what we found before in the canonical ensemble for the heat
capacity or the susceptibility. It shows that the fluctuations are proportional to the
derivative of the average with respect to µ. As a consequence, we see that since 〈N̂〉 =

N is the number of particles, var(N̂) will be similarly extensive in N. This means we
can write

∂〈N̂〉

∂µ
:= Nκ. (1.38)

The constant κ is intensive and can be shown in thermodynamics to be related to the
compressibility of the system. This therefore implies that√

var(N̂)

〈N̂〉
=

√
κ

Nβ
. (1.39)

The relative fluctuations therefore scale proportionally to 1/
√

N, which becomes neg-
ligible in the thermodynamic limit. This, as already discussed before, is the reason why
we can use the grand-canonical ensemble even in those situations where the number of
particles does not actually fluctuate.

1.4 The “classical” limit
The above results have to distinguish between Fermions and Bosons. When is this

really necessary? Is it possible to have limiting cases where it does not matter if the
particles are Fermions and Bosons? This is normally called the “classical” limit be-
cause it is the limit where quantum indistinguishibility no longer matters. I personally
don’t like this name because there are so many “classical limits” these days, you never
which one people mean. In any case, if we look at Eqs. (1.30) and (1.32), we see
that what distinguishes them is the ±1 term. If this term was negligible, the results
for Fermions and Bosons would be the same. The distinction between Fermions and
Bosons therefore becomes irrelevant whenever

eβ(εα−µ) � 1. (1.40)
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When this is the case we see that 〈n̂α〉 ' e−β(εα−µ). As a consequence, the particle
density in state α will be

〈n̂α〉

〈N̂〉
'

e−βεα∑
α

e−βεα
. (1.41)

Notice how the chemical potential cancels out. This is nothing but the good old
Maxwell-Boltzmann distribution. The left-hand side can simply be interpreted as the
probability of finding a particle in a single-particle state α.

We can also do the same for the thermodynamic potential in Eqs. (1.29) and (1.31).
Expanding ln(1 + x) ' x we get

Φ ' −T
∑
α

e−β(εα−µ) = −TzZ(1), (1.42)

where z = eβµ and Z(1) is the single-particle partition function

Z(1) =
∑
α

e−βεα . (1.43)

Since Φ = −T lnQ, Eq. (1.42) implies that Q ' ezZ(1). Expanding this in a Taylor series
in z then yields

Q =

∞∑
N=0

zN [Z(1)]N

N!
. (1.44)

Comparing with Eq. (1.19) we then reach the pretty neat conclusion that, in this limit,

Z(N) '
[Z(1)]N

N!
(1.45)

The partition function of N particles is simply the partition function of a single particle
to the power N. There is also a combinatorial factor of 1/N! to take into account the
fact that the particles are still indistinguishable, so there are N! equivalent ways of
rearranging them. This makes sense: in the Fock representation we don’t care about
which particle is in which state. All we care about is how many particles are on a given
state. Historically, this factor is usually called the correct Boltzmann counting.

2 Quantum gases
Let us now consider a specific case of non-interacting systems. Namely, free parti-

cles trapped in a d-dimensional box. This is what we call a Quantum Gas. We assume
the box has linear dimension L with periodic boundary condition (PBC). The natural
single-particle states are then of the form |k, s〉, where k = (k1, . . . , kd) are the momenta
in d dimensions and s = S , S − 1, . . . ,−S + 1,−S are the spin values (which can take
a total of 2S + 1 different values). I am assuming here a general spin S system just to
make it slightly more general. But almost ways we either take either a spinless system
(S = 0) or spin 1/2. Due to PBC, the k values are quantized as

ki =
2π`i

L
, `i = 0,±1,±2,±3, . . . . (2.1)

Moreover, the second quantized Hamiltonian is

H =
∑
k,s

εk a†
k,sak,s, (2.2)
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where

εk =
~2k2

2m
=

k2
1 + . . . + k2

d

2m
. (2.3)

where, here, I reintroduced ~ just for completeness. Notice how the energies depend
only on k = |k|.

The condition (1.33) for the chemical potential in the case of Bosons becomes, in
this case,

µ < 0. (2.4)

Thus, while for Fermions the chemical potential is arbitrary, for Bosons it is always
negative.

2.1 The density of states
The average occupation number is given by Eqs. (1.30) or (1.32):

〈N̂〉 =
∑
k,s

1
eβ(εk−µ) ± 1

. (2.5)

To carry out this sum, we transform it into an integral. This is justified when the box
size L is large, so that the discreteness of (2.1) becomes very fine. It is actually easier
to do this in a slightly more general context. Consider an arbitrary sum of the form∑

k,s

f (k),

where f (k) is an arbitrary function which depends only on the absolute value of k. To
convert it into an integral we introduce the convenient 1:

1 =

( L
2π

)d

∆k1 . . .∆kd (2.6)

We then get ∑
k,s

f (k) =
∑
k

∆k1 . . .∆kd f (k),

where we also introduced the factor (2S +1) which comes from the sum over s. Written
in this way, the expression has the form of a Riemann sum. When L is large, the ∆ki

become infinitesimal, so that we are allowed to convert the sum to an integral:

∑
k,s

f (k) = (2S + 1)
( L
2π

)d ∫
ddk f (k). (2.7)

This result is already nice. It provides a recipe to go from a k sum to a k integral.
But we can also go a step further and exploit the fact that f (k) depends only on

k = |k|. Introduce the d-dimensional solid angle ddk = kd−1 dk dΩd. We can then carry
out the integral over dΩd. The result is the area of a d-dimensional sphere:∫

dΩd =
dπd/2

Γ
( d

2 + 1
) , (2.8)
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where Γ(x) is the Gamma function. For instance, if d = 3 the above expression sim-
plifies to the familiar 4π, whereas if d = 2 we get 2π. With this change, Eq. (2.7)
becomes

∑
k,s

f (k) = (2S + 1)
( L
2π

)d dπd/2

Γ
( d

2 + 1
) ∞∫

0

dk kd−1 f (k). (2.9)

I know this seem a bit messy. But if you think about it, everything here is just a bunch
of silly numbers. These numbers represent the coefficient that you have to multiply
when you want to go from a sum to an integral.

Finally, we can also go one step further and convert the k integral into an integral
over ε. To do this we change variables using Eq. (2.3):

ε =
~2k2

2m
→ dε =

~2k
m

dk.

Thus

dk kd−1 =
m
~2

(
2mε
~2

) d
2−1

dε.

Eq. (2.9) then finally becomes

∑
k,s

f (k) = (2S + 1)
( L
2π

)d dπd/2

Γ
( d

2 + 1
) 1

2

(
2m
~2

)d/2 ∞∫
0

dε ε
d
2−1 f (ε).

This still looks somewhat messy. But what we do now is to throw every-
thing that is ugly under the carpet by defining the density of states (DOS)

D(ε) = (2S + 1)
( L
2π

)d dπd/2

Γ
( d

2 + 1
) 1

2

(
2m
~2

)d/2

ε
d
2−1. (2.10)

so that our recipe finally becomes

∑
k,s

f (k) =

∞∫
0

dε D(ε) f (ε). (2.11)

The DOS therefore quantifies the weight that you get from going from a k
sum to an integral in ε. With this expression, we can now write down any
thermodynamic quantity we wish. For instance, the average number of particles
will be

〈N̂〉 =

∫
dε D(ε)n̄(ε), (2.12)

where
n̄(ε) :=

1
eβ(ε−µ)±1 . (2.13)
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Similarly, the internal energy is

U =

∫
dε D(ε) ε n̄(ε). (2.14)

The DOS for d = 1, 2 and 3 reads

D(ε) = (2S + 1)
L
√

2π

√
m
~2

1
√
ε
, d = 1, (2.15)

D(ε) = (2S + 1)
mL2

2π~2 , d = 2, (2.16)

D(ε) = (2S + 1)
L3

√
2π2

( m
~2

)3/2 √
ε, d = 3. (2.17)

What is important about these results is how D(ε) depends on ε. The coefficients in
front are just a bunch of numbers.

To finish, I also want to mention that there is an alternative, more elegant, way of
defining the density of states. Instead of (2.11), we can define it as

D(ε) =
∑
k,s

δ(ε − εk). (2.18)

Here ε is just the argument of D(ε) and varies continuously; εk, on the other hand, are
the energy eigenvalues. The reason why this definition is equivalent to Eq. (2.11) is
most easily understood by doing a sort of reverse process. Consider the integral∫

dε f (ε)D(ε) =

∫
dε

∑
k,s

f (ε)δ(ε − εk).

We now carry out the integral over ε. The δ functions will then replace all ε with
εk and we reach the left-hand side of Eq. (2.11). Thus, Eq. (2.18) can be viewed as a
slightly more sophisticated way of defining the DOS. The reason why this is interesting
is because it shows how the density of states can actually be viewed as a comb of delta
functions. However, this comb is so finely packed together, that it forms a continuous
curve, which is D(ε).

2.2 Density of states and Green’s functions (optional)
Consider a non-interacting system described by the single-particle Hamiltonian H

(maybe I could call this H1 to emphasize it’s single particle. But I’ll call it H for
simplicity). We assume this Hamiltonian can be diagonalized as

H|k〉 = εk |k〉, (2.19)

where k is just a quantum number; it can mean, for instance (k, σ). But the argument
I will use below is actually a bit more general. We now define the retarded Green’s
function

G(ε) = lim
s→0

1
ε + is − H

. (2.20)
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Figure 1: The poles of tr G(ε) [Eq. (2.20)] occur at ε = εk − is.

Here 1/A is just a fancy way of writing the matrix inverse A−1. This is interpreted as a
continuous function of a parameter ε. Moreover, s is a tiny number which is left there
to ensure that G never blows up when ε touches one of the eigenvalues εk. Sometimes
we do not write the lim

s→0
explicitly. But this limit is always there in principle.

The point I want to stress here is that the Green’s function (2.20) actually contains
the DOS in it. To see that, take the trace of G(ε) using the |k〉 basis:

tr G(ε) =
∑

k

〈k|
1

ε + is − H
|k〉

=
∑

k

1
ε + is − εk

=
∑

k

(ε − εk) − is
(ε − εk)2 + s2

We see that tr G(ε) will have poles in the complex plane whenever ε = εk − is (see
Fig. 1). Thus, by knowing the pole structure of tr G(ε) one can infer the eigenvalues of
H.

Next let us focus on the imaginary part of tr G(ε):

Im
[
tr G(ε)

]
= − lim

s→0

∑
k

s
(ε − εk)2 + s2 . (2.21)

We now use the identity
lim
s→0

s
x2 + s2 = πδ(x), (2.22)

which leads to
Im

[
tr G(ε)

]
= −π

∑
k

δ(ε − εk). (2.23)

The quantity on the right-hand side is nothing but the DOS (2.18). Thus, we conclude
that

D(ε) = −
1
π

Im
[
tr G(ε)

]
= −

1
π

lim
s→0

Im
∑

k

1
ε + is − εk

. (2.24)

This kind of relation is used to evaluate the DOS numerically in systems for which the
energy levels εk are too complicated.

Finally, we mention that the trace in Eq. (2.24) can be taken with respect to any
basis we want. This allows us to define density of states for specific sectors. For
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instance, suppose we have a model where the energy eigenvalues depend on the spin
projection; something like εk,σ. We can then use the basis |k, σ〉 to take the trace
in (2.24), which allows us to decompose

D(ε) =
∑
σ

Dσ(ε), Dσ(ε) = −
1
π

Im
∑
k

〈kσ|G(ε)|kσ〉. (2.25)

The quantities Dσ(ε) can be interpreted as the density of states within the sector of spin
σ. This kind of idea therefore allows us to address how many states are available within
a given subspace.

As another example, suppose we actually have a tight-binding model where we
label the position states as |n〉, with n = 1, 2, . . . , L. In this case we can write (2.24) as

D(ε) =

L∑
n=1

Dn(ε), Dn(ε) = −
1
π

Im〈n|G(ε)|n〉. (2.26)

Each Dn(ε) therefore quantifies the density of states available at position n. It would
be interesting to apply this to the Aubry-André model. I don’t think anyone ever did
this...

2.3 First quantum correction to the classical limit
We saw in Sec. 1.4 that the classical limit corresponds to eβ(εk−µ) � 1. Since this

must be true for all energies, this implies that e−βµ � 1. Since β > 0 we therefore see
that in the classical limit µ < 0. Let us now expand on this and include also the first
quantum correction to this classical limit.

For convenience, introduce a symbol

ζ =

+1 fermions
−1 bosons.

(2.27)

This way we can write the occupation number as

n̄(ε) =
1

eβ(ε−µ) + ζ
. (2.28)

We now write this as
n̄(ε) = e−β(ε−µ) 1

1 + ζe−β(ε−µ) .

When e−β(ε−µ) � 1 we can then expand this using (1 + x)−1 ' 1 − x. This then yields

n̄(ε) ' e−β(ε−µ)
[
1 − ζe−β(ε−µ)

]
. (2.29)

For concreteness, let us now focus on the case of a quantum gas in 3D. To be a bit
more concise, let us also write the density of states, Eq. (2.17), as

D(ε) = αV
√
ε, α = (2S + 1)

1
√

2π2

( m
~2

)3/2
. (2.30)
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We then get

〈N̂〉 ' αV

∞∫
0

dε
√
ε
[
e−β(ε−µ) − ζe−2β(ε−µ)

]

= αV
{

eβµ
∞∫

0

dε
√
ε e−βε − ζe2βµ

∞∫
0

dε
√
εe−2βε

}

= αV
{
eβµ
√
π

2β3/2 − ζe2βµ
√
π

2(2β)3/2

}
.

There are a bunch of annoying constants here.

To simplify them a bit, we introduce the de Broglie thermal wavelength

λ =
1

(2S + 1)1/3

√
2π~2

mT
. (2.31)

Using also the fugacity z = eβµ we can finally write the result as

N =
V
λ3

(
z −

ζz2

23/2

)
, (2.32)

where I already wrote N instead of 〈N̂〉 for simplicity. I think this result ex-
plains well the idea behind the chemical potential. This is an equation relating
µ (which appears in z) with the particle density N/V .

Recall that in the classical limit z = eβµ � 1. Thus, to first order we can neglect the
term proportional to z2, which then leads to

βµ = ln
{
λ3N/V

}
. (2.33)

This yields a condition for the validity of the classical limit. Namely,

N
V
�

1
λ3 . (2.34)

This result is pretty neat. The quantity V/N represents roughly the average volume
occupied by each particle, whereas λ is the typical wavelength associated with the
quantum wavepackets at a temperature T . The classical limit will thus be justified when
the volume V/N they can occupy is much larger than λ3. That is, when the confinement
of the particles is not significant so as to allow for the effects of indistinguishability to
have an effect.

Next we consider the first quantum correction, obtained by solving Eq. (2.32) with
respect to z. To do so it is useful to have an idea about inverse series. Eq. (2.32)
expresses λ3N/V as a power series in the small parameter z. What we want is to invert
this and write z as a power series in the (also small) parameter λ3N/V . This can be
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Figure 2: First quantum correction to the chemical potential, comparing the classical case (C)
with that of Bosons (B) and Fermions (F). The curves were made using Eq. (2.37).

done using the following inverse series: 1

y = ax + bx2 + O(x)3 → x =
y
a
−

by2

a3 + O(y)3. (2.35)

We then get

z = λ3N/V +
ζ

22/3

(
λ3N/V

)2
. (2.36)

Or, in terms of the chemical potential,

βµ = ln
{
λ3N/V +

ζ

22/3

(
λ3N/V

)2
}
. (2.37)

The situation is depicted in Fig. 2. For very high temperatures the curves for Bosons
and Fermions coincide with the classical limit [Eq. (2.33)]. As the system is cooled
down, however, the quantities V/N and λ3 start to become of the same magnitude and
the indistinguishability of the particles begins to matter. As a consequence, the curves
for Bosons and Fermions deviate from the classical behavior. In particular, as can be
seen in Eq. (2.37), the chemical potential for Bosons (ζ = −1) is always smaller than
that for Fermions (ζ = +1).

Next let us look at the average energy (2.14). Using again the expansion of n̄(ε) in
Eq. (2.29) and carrying out the integrals, as before, we find

U =
3T
2

V
λ3

(
z −

ζ

25/2 z2
)
. (2.38)

This result is correct, but is expressed in terms of the chemical potential (in z). This is
not very useful. It would be better to have the result expressed in terms of N. To do
that, we can use Eq. (2.36) to get rid of z. We also need

z2 =

(
λ3N/V +

ζ

22/3

(
λ3N/V

)2
)2

' (λ3N/V)2.

1 This can be understood as follows. Start with y = ax + bx2. We now assume that the inverse can
also be expressed in a power series, as x = cy + dy2, for some coefficients c and d. Plugging this ansatz in
y = ax + bx2 yields the equation

y = acy + (ad + bc2)y2 + O(y3).
In order to satisfy this (up to second order) we must then have c = 1/a and d = −bc2/a, which leads to
Eq. (2.35).
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We then get

z −
ζ

25/2 z2 = λ3N/V +
ζ

22/3

(
λ3N/V

)2
−

ζ

25/2 (λ3N/V)2

= λ3N/V +
ζ

25/2 (λ3N/V)2.

Substituting this in Eq. (2.38) and simplifying a bit, we get

U =
3
2

NT
(
1 +

ζ

25/2 λ
3N/V

)
. (2.39)

This result is pretty cool. The value of 3NT/2 is simply the classical internal
energy of an ideal gas. When quantum corrections become important, however,
we see that for Fermions the Pauli exclusion principle increases the energy of
the gas, whereas for Bosons the energy is reduced instead. What is surprising
about this is that there are no interactions involved; the gas is ideal and the
energy is purely kinetic. A set of Bosons or Fermions at the same temperature
will thus have different energies, even though they do not interact. Thus, for
instance, if we have a mixture of He-3 (which are fermions) and He-4 (which
are bosons), each species will have a different average energy, solely due to
quantum effects.

3 Fermi gases
Let us now focus on the case of Fermions. The most important example of a Fermi

gas are the electrons in a metal. The conduction electrons are only weakly bound to the
atomic nuclei, so that they can pretty much more around freely. Their only constraint is
that they cannot leave the metal; there is a potential barrier to do so (which is the work
function for those who studied the photoelectric effect). Thus, electrons in a metal are
naturally trapped in a box of length L, so that the momentum quantization rules of
Sec. applies.

3.1 Ground-state
The density of states (DOS) for a 3D electron gas is given by Eq. (2.17) with S =

1/2; viz,

D(ε) = αV
√
ε, α =

√
2

π2

( m
~2

)3/2
. (3.1)

As our first step, let us compute the Fermi level. Recall that the word “Fermi” is
associated with “highest filled”. The Fermi level is a zero temperature property; it
refers to the ground-state. We pile up the electrons, state by state, until we reach a total
of Ne particles. The Fermi energy will thus be the energy of the highest filled state.

This is one of those cases where the DOS comes quite in handy. The DOS already
contains all factors that come from changing from a k-sum to an integral in energy.
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Thus, in terms of it, the Fermi energy εF is the implicit solution of

εF∫
0

dε D(ε) = Ne. (3.2)

Solving the integral we find

αV
2
3
ε3/2

F = Ne, (3.3)

or

εF =
~2

2m
(3π2ne)2/3, (3.4)

where ne = Ne/V . The Fermi energy therefore increases algebraically with the electron
density ne, with an exponent 2/3.

As a sanity check, we can also compute the Fermi level in a slightly more pedantic
way. Recall that the ki are discretized as in Eq. (2.1). In k-space, this leads to a grid of
points like that shown in Fig. 3. We then start filling out these states, with 2 electrons
in each site (because of spin). Since we must fill first states with the smallest energy,
the filling is done through concentric spheres (as shown in the figure). When we reach
the Fermi level we will have filled a sphere with a total volume of 4πk3

F/3.
However, this same sphere can also be picture as made up of tiny cubes of volume

∆kx∆ky∆kz =

(
2π
L

)3

.

And since there are Ne particles and each “cube” can take two particles, we will fill a
volume of N

2 (2π/L)3. Since this must match 4πk3
F/3, we get

4πk3
F

3
=

N
2

(
2π
L

)3

,

which leads to a Fermi momentum

kF = (3π2ne)1/3. (3.5)

Plugging this in the dispersion relation εk = ~2k2/2m then yields the Fermi energy (3.4).
We can also compute the total ground-state energy. It is defined as

Egs =

εF∫
0

dε εD(ε). (3.6)

Carrying out the integration we find

Egs = αV
2
5
ε5/2

F .

We can write this in a slightly prettier way using Eq. (3.3) to eliminate the constants in
front. We then get

Egs =
3
5

NεF . (3.7)
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Figure 3: Grid of available states in k-space. The Fermi energy is determined by specifying how
many points lie inside a sphere of radius kF .

The average energy per electron is therefore 3/5 of the Fermi energy. It is not exactly
1/2 because the density of states (3.1) is not uniform in ε: the higher the energy, the
higher is the number of available states.

From the Fermi energy and momentum we can also compute other “Fermi” quan-
tities. For instance, the Fermi velocity is

vF =
~kF

m
=
~

m
(3π2ne)1/3. (3.8)

This yields the typical velocity of electrons around the Fermi level. The reason why
this is important is because the electrons around the Fermi level are the ones which can
be excited to empty states. And it is through these excitations that the physics happens.
For instance, when you apply an electric potential, the electrons will begin to move
around. This “moving around” means that you are exciting electrons to states above
the Fermi level. The typical velocities of these electrons will therefore be of the order
of vF .

Similarly, we can also define the Fermi temperature from the relation

kBTF = εF , (3.9)

where, just for now, I reinstitute Boltzmann’s constant. The Fermi temperature is sim-
ply a measure of the typical energies involved in an electron gas, but measured in
Kelvin instead of eV. For typical metals the Fermi energy is εF ∼ 1 − 10 eV. This
yields a Fermi temperature of the order of 104 K, a remarkably high value. This result
is extremely important. It means that as far as the electron gas is concerned, room
temperature (300 K) is actually a very very low temperature. Thus, the regime which
matters for electron gases is actually the far opposite as that studied in the first quan-
tum correction, Sec. 2.3. The interesting regime here is actually in the deep quantum
regime, where quantum effects are very strong.

3.2 Finite temperatures
Now let us turn to the Fermi gas at finite temperatures. The Fermi-Dirac distribution

n̄(ε) =
1

eβ(ε−µ) + 1
, (3.10)
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Figure 4: Fermi-Dirac distribution (3.10) as a function of ε for low temperatures.

looks somewhat like Fig. 4 at low temperatures. It is essentially 1 when ε < µ and 0
otherwise. Indeed, in the limit where T → 0 (or β → ∞) the Fermi-Dirac function
becomes the Heaviside theta function:

lim
T→0

n̄(ε) = θ(µ − ε), (3.11)

where

θ(x) =

1 x > 0,

0 x < 0.
(3.12)

In the limit of zero temperature, all states below µ are occupied, whereas all states
above µ are empty.

If we think about it for a second, we therefore conclude that at zero temperatures
the chemical potential becomes the Fermi energy:

lim
T→0

µ = εF . (3.13)

The chemical potential can therefore be viewed as a sort of generalization of the notion
of Fermi energy to finite temperatures. In this case the Fermionic occupations are not
sharp, but instead are a bit blurred like in Fig. 4. In the vicinity of µ the different states
have some finite probabilities of being occupied, which are neither 0 nor 1.

The average number of particles and average energy are computed using Eqs. (2.12)
and (2.14):

Ne = 〈N̂〉 =

∞∫
0

dε D(ε)n̄(ε), (3.14)

U = 〈H〉 =

∞∫
0

dε D(ε) ε n̄(ε). (3.15)

As discussed in the previous section, all that matters for fermionic systems like this
are very low temperatures. The integral in Eq. (3.14), for instance, will look a bit like
that in Fig. 5. If we had T = 0 we would get exactly the integral in Eq. (3.2). Since
T , 0 the integral is distorted. But since all that matters are low temperatures, the
integral is not distorted too much. Only slightly. And only in the vicinity of µ. The
integrals in (3.14) and (3.15) are from 0 to ∞. However, the Fermi-Dirac distribution
n̄(ε) essentially cuts this off above µ. The cut-off is not 100% sharp, but it is pretty
abrupt.
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Figure 5: The integrand in Eq. (3.14) for low temperatures.

Since these integrals cannot be computed analytically, one must resort to
approximations. In the context of Fermions, the most useful one is the Som-
merfeld expansion. It exploits the above results that the Fermi-Dirac distribu-
tion cuts-off any integrals high above µ. Given any function g(ε) it reads,

∞∫
0

dε g(ε)n̄(ε) '

µ∫
0

dε g(ε) +
π2

6
(kBT )2g′(µ). (3.16)

The first term is what would survive in the limit T → 0. The second term repre-
sents the first correction, given as powers of T and depending on the derivative
of g around ε = µ. One can also continue the expansion and find higher order
corrections. I will not derive Eq. (3.16) here. The derivation is quite boring and
can be found on Wikipedia. One thing which is a bit tricky in the Sommerfeld
expansion is that the right-hand side is a function of µ. Thus, for instance, the
first term is still temperature-dependent, since µ is implicitly a function of T .

Finite temperature correction to the chemical potential

Let us now apply this expansion. We begin by using it in Eq. (3.14), which yields

Ne =

µ∫
0

dεD(ε) +
π2

6
(kBT )2D′(µ). (3.17)

To proceed from here is actually quite tricky. What we are interested in is a temperature
expansion of the relevant quantities in powers of T . But in Eq. (3.17) µ is a function of
temperature, so even the limit of integration is a function of T .

We will learn in a second that the first correction to µ is of order T 2, so that we may
expand

µ ' εF − η(kBT )2, (3.18)

where η is a constant to be determined. If we then restrict ourselves only to terms at
most of order T 2, we can simplify the last term in Eq. (3.17) as

π2

6
(kBT )2D′(µ) '

π2

6
(kBT )2D′(εF). (3.19)
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As for the first term, we split the integral as

µ∫
0

dεD(ε) =

εF∫
0

dεD(ε) −

εF∫
µ

dεD(ε). (3.20)

The first integral already appeared before in [Eq. (3.2)] and reads

εF∫
0

dε D(ε) = Ne. (3.21)

This result continues to hold, irrespective of whether we are at finite temperatures or
not; it is merely a definition of εF .

The last term in Eq. (3.20) can be expanded in a power series because µ and εF are
very close to each other. This leads to

εF∫
µ

dεD(ε) ' (εF − µ)D
(
εF + µ

2

)

= η(kBT )2D
(
εF −

η

2
(kBT )2

)
' η(kBT )2

[
D(εF) −

η

2
(kBT )2D′(εF)

]
.

The last term is already of order T 4 and may thus be neglected. We therefore conclude
that

εF∫
µ

dεD(ε) = (εF − µ)D(ε). (3.22)

Plugging this in Eq. (3.20) yields an approximation for the integral involving µ in the
limits of integration. I will write down the result for a generic function g(ε), since this
will appear again in a second:

µ∫
0

dε g(ε) '

εF∫
0

dε g(ε) + (µ − εF)g(εF). (3.23)

In the particular case of g(ε) = D(ε) we get, using also Eq. (3.21),

µ∫
0

dεD(ε) ' Ne + (µ − ε)D(εF). (3.24)

Finally, plugging this back in Eq. (3.17) and using also Eq. (3.19) we find

Ne = Ne + (µ − ε)D(εF) +
π2

6
(kBT )2D′(εF),
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Solving for µ:

µ = εF −
π2

6
(kBT )2 D′(εF)

D(εF)
. (3.25)

This gives the chemical potential as a function of T and Ne (which is encoded in εF).
The chemical potential is lowered with respect to εF due to thermal fluctuations, by a
factor proportional to the sensitivity of D(εF) around the Fermi level.

One thing which you may not have noticed is that in deriving Eq. (3.25) nowhere
did we use the actual form of the density of states. This result is therefore general and
holds for any kind of non-interacting Fermi gases. All that is going to change is the
shape of D(ε).

Energy and heat capacity

Let us now repeat the steps for the internal energy (3.15). Using the Sommerfeld
expansion (3.16) we find

U ='

µ∫
0

dε D(ε)ε +
π2

6
(kBT )2

[
D(µ) + µD′(µ)

]
. (3.26)

Using the same logic as in Eq. (3.19) we can simplify the last term by simply replacing
µ with εF . As for the first term, we use Eq. (3.23) with g(ε) = εD(ε), which yields up
to order T 2,

U '

εF∫
0

dε D(ε)ε + (µ − εF)εF D(εF) +
π2

6
(kBT )2

[
D(εF) + εF D′(εF)

]
.

The first term is nothing but the ground-state energy Egs in Eq. (3.7). As for the re-
maining terms, there turns out to be a cancelation when we substitute Eq. (3.25) for
µ:

εF

{
(µ − εF)D(εF) +

π2

6
(kBT )2D′(εF)

}
= 0.

Whence, we are left only with

U =
3
5

NεF +
π2

6
(kBT )2D(εF). (3.27)

The heat capacity is therefore

C =
∂U
∂T

= NγT, γ =
π2k2

B

3
D(εF). (3.28)

The heat capacity of an electron gas is therefore linear in temperature; the coef-
ficient γ is called the Sommerfeld coefficient and is very frequently measured
in the lab. By determining the Sommerfeld coefficient one can extract infor-
mation about the density of states at the vicinity of the Fermi level, D(εF). If
you think about it, this is somewhat remarkable: from the heat capacity, which
is a very bulky thermal-ish property, one can actually learn something valuable
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about the electronic structure of the material. This is not the only situation
where this happens. I’m always amazed by how much information is contained
in C.

4 Bose gases and Bose-Einstein condensation
We next turn to a more detailed analysis of a Bose gas. For simplicity, I will assume

that the Bosons have spin 0. This doesn’t change anything. Just avoids having to
include a sum over s. The thermodynamic potential and the Bose-Einstein occupation
number are

Φ = T
∑
k

ln
{
1 − e−β(εk−µ)

}
, (4.1)

and
n̄k =

1
eβ(εk−µ) − 1

, (4.2)

with the dispersion relation εk = ~2k2/2m.
As already discussed before, n̄k must be non-negative by construction. And since

this must be true for all εk, we see that this constraints the allowed values of µ to

µ < 0. (4.3)

No such constraint exists in the case of Fermions. And, as we will see, it leads to
dramatic consequences; namely, Bose-Einstein condensation (BEC).

Before delving into the full Bose gas, it is therefore useful to emphasize once again
why this kind of constraint exists. Consider a system with only one single-particle state
available, with Hamiltonian

H = εa†a. (4.4)

The partition function in the grand-canonical ensemble is

Q = tr e−β(ε−µ)n̂ =

∞∑
n=0

e−β(ε−µ)n.

This is a geometric series
∑∞

n=0 xn, with x = e−β(ε−µ). Such a sum only converges if
|x| < 1, which imposes the constraint that µ < ε. This is what is happening in (4.3),
except that there, µ < εk for all energies εk. Thus

µ < min
k
εk = 0.

Another way of seeing this is by looking at what happens if we take the limit of
T → 0. In this case the system should tend to the ground-state. But we are in the
grand-canonical ensemble, so this is the ground-state in Fock space, where the number
of particles can vary. One should, therefore, find the configuration for which

H − µN̂ = (ε − µ)n̂,

has the smallest possible energy. If ε − µ > 0, this will be a configuration with zero
particles. But if ε − µ < 0 we can minimize the energy more and more by just putting
more and more particles in that state. The ground-state would therefore be thermo-
dynamically unstable in the sense that we could always make the energy smaller and
smaller, as we wish. This is why we must have ε − µ > 0.
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Ok. Now let’s go into the actual Bose gas. The total number of particles is

N =
∑
k

n̄k. (4.5)

We could convert this to an integral using the density of states. If we assume our gas is
again in 3D (with spin 0) then the DOS reads [Eq. (2.17)]:

D(ε) = αV
√
ε, α =

1
√

2π2

( m
~2

)3/2
., (4.6)

In the case of a Bose gas, however, there is something tricky about converting the sum
to an integral.

Recall that the DOS is defined from the general recipe∑
k

f (εk) =

∫
dε f (ε)D(ε).

Now, this recipe assumes that the function f (εk) is a smooth function of ε. I mean,
of course: if f (ε) is a super weird function, with discontinuities and divergences and
etc., then we cannot expect that the integral (which is a smooth guy) will capture the
ruggedness of the sum.

The whole point about Bose gases is that the sum (4.5) is not smooth. We can con-
vince ourselves of that by looking at the ground-state when T → 0. Since the bosons
do not satisfy the Pauli exclusion principle, the ground-state will simply correspond to
putting all N particles in the state with k = 0. Thus, in the ground-state we will have
n̄0 = N and n̄k = 0 for all k , 0. This is definitely very very far from “smooth”. Even if
the temperature is small, but not exactly zero, we should still have a very high concen-
tration of particles around k = 0, which goes down very quickly as we increase k. Of
course, for high values of k the function n̄k should once again be pretty smooth. After
all, there are tons and tons of k values, all very finely spaced. The only real problem is
for k = 0 and k very very small.

The idea, therefore, is that we can convert Eq. (4.5) into an integral. But before
doing that, we should separate the part of N which is not smooth. Something like

N =
∑

k’s close to 0

n̄k +
∑

other k’s

n̄k. (4.7)

The first term contains the non-smooth parts; we will simply call it N0. Of course, we
do not know the value of N0 yet. Perhaps it can even turn out that N0 = 0. But we
already know that, at least for T → 0, N0 should be non-zero. So we will leave N0
here hanging as one of the variables of the problem. Henceforth we shall refer to it as
the condensate fraction because N0/N represent the fraction of particles which have
“condensed” in the k ∼ 0 states.

The last term in Eq. (4.7), on the other hand, is a smooth sum and can thus be
converted to an integral:

∑
other k’s

n̄k '

∞∫
0

dεD(ε)n̄(ε).

Rigorously speaking, the integral should not start at zero. But it will start somewhere
so close to zero, that it doesn’t matter. Setting the lower limit of integration to zero will
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not make a difference. We therefore conclude that

N = N0 +

∞∫
0

dεD(ε)n̄(ε). (4.8)

4.1 Solving for the chemical potential
Eq. (4.8) should be viewed as an implicit equation for µ(N,T ) and N0(N,T ). We

try to find a value of µ which gives us the correct N. If that cannot be done, then we
use N0 to compensate. You will see how it works. It’s kind of fun.

First, we make the equation more explicit. Using Eq. (4.6) and setting x = βε, we
get

αV

∞∫
0

dε
√
ε

eβ(ε−µ) − 1
=

1
√

2π2

( m
~2

)3/2
VT 3/2

∞∫
0

dx
√

x
z−1ex − 1

,

where z = eβµ. Introducing again the De Broglie thermal wavelength

λ =

√
2π~2

mT
, (4.9)

yields

αV

∞∫
0

dε
√
ε

eβ(ε−µ) − 1
=

2V
√
πλ3

∞∫
0

dx
√

x
z−1ex − 1

.

Plugging this in Eq. (4.8) we then field

n = n0 +
2
√
πλ3

∞∫
0

dx
√

x
z−1ex − 1

, (4.10)

where n = N/V and n0 = N0/V .
The integral on the right-hand side of Eq. (4.10), is a function only of z. Let us call

it

g(z) =
2
√
π

∞∫
0

dx
√

x
z−1ex − 1

. (4.11)

Eq. (4.10) is then written more simply as

g(z) = λ3(n − n0). (4.12)

It is kind of nice that we were able to write this integral in this way. It is a pity that the
integral cannot be solved analytically, but at least we converted it into a function of a
single parameter z. This makes it much easier to analyze it. A plot of this function is
shown in Fig. 6. As can be seen, it is always positive. At the point z → 1 (i.e. µ → 0)
it has the value

g(1) = ζ(3/2) ' 2.31516, (4.13)
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Figure 6: The function g(z) in Eq. (4.11). Since z = eβµ, the point z = 1 corresponds to µ = 0.
The horizontal line represents the typical solution of Eq. (4.14).

where ζ(x) is the Riemann zeta function.
We now try to solve Eq. (4.10). Fix n at some value (the experimentally determined

particle density in the gas). Moreover, let us first look for solutions which have n0 = 0.
The equation then becomes

g(z) = λ3n. (4.14)

We then start to change the temperature T (which enters into λ) and try to find the value
of z which solves this equation. This is tantamount to drawing a horizontal line in the
plot of g(z), as depicted in Fig. 6.

If we decrease T (cool down) we increase λ [Eq. (4.9)]. The horizontal line there-
fore goes up. But eventually a limiting value is reached because the function g(z) stops
at g(1) = 2.31516. If λ3n is increased above that, it is impossible to find a z which
solves (4.14). This special point therefore defines the critical temperature for the
BEC,

′g(1) = λ3(Tc)n. (4.15)

Using Eq. (4.9), (
2π~2

mTc

)3/2

n = ζ(3/2),

or

Tc = 3.3125
~2

m
n2/3. (4.16)

The critical temperature occurs at z = 1 or µ = 0. A plot of the chemical potential as a
function of T will therefore look like that in Fig. 7. For large temperatures µ < 0. As
we cool down, it starts going up and then eventually reaches µ = 0 exactly at T = Tc.

4.2 Physics below Tc

What happens below Tc? Well, Fig. 6 graphically shows us that it is impossible to
find a value of z (or µ) which will solve Eq. (4.11). The only solution, therefore, is to
look for solutions which have n0 , 0. Below Tc the only solutions are those in which
the condensate fraction is non-zero. This is the Bose-Einstein condensation. As the
system is cooled sufficiently, a transition occurs at a sharp value Tc, where particles
begin to accumulate in the k = 0 state. Bose-Einstein condensation is therefore not
a condensation in real space; it is a condensation in momentum space. The zero

27



�

μ

��

Figure 7: The chemical potential as a function of temperature. Obtained from the numerical
solution of Eq. (4.14).
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Figure 8: The condensate fraction n0 as a function of temperature, Eq. (4.18).

momentum state is completely delocalized in space, so the particles are not within the
same region of space.

Below Tc, we must therefore return to Eq. (4.12). Now the chemical potential is
fixed at µ = 0 and we must instead solve for n0. That is, we find

g(1) = λ3(n − n0). (4.17)

It is convenient to use Eq. (4.15) to substitute g(1):

nλ3(Tc) = λ3(T )(n − n0).

Using Eq. (4.9) we can write this more neatly as

n0 = n
[
1 −

(
T
Tc

)3/2 ]
. (4.18)

This gives the fraction n0/n of particles which are in the condensate state. When
T → 0 this fraction tends to 1: at zero temperature all particles condensed
onto the ground-state. As T increases, however, this fraction goes down until
reaching zero at T = Tc. Of course, please note that it is not n0 which tends
to zero specifically; it is the fraction n0/n. What I am trying to say is that the
remarkable feature of T < Tc is that the occupation n0 is macroscopically large.
Above Tc all momentum states have some degree of occupation. But no state
concentrates so many particles, so as to have a macroscopic occupation.
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