



































































































































Statisticalmechanicsilecturet
Introduction to the Gibbs ensemble

A note on quantum us classical statistical mechanics can be constructed

for both classical and quantumsystems In thin course I will focus

on the quantum case and derive the classical case as a particular
case The only reason why I do him in because I think quantum

systems are more interesting

Recommended reading Feynman Stat Mech chapter d

Salinas chapter 5






































































































































Thermal equilibrium and the Gibbs ensemble

the 1stthing I want to do in this course is to introduce what

it means mathematically to say a system in in thermal

equilibriumOnce we have the math understanding what this means

physically and what are its consequences will
be much easier

Any physical system can be discrubed by a Hamiltonian

operatorH It doesn't matter if the system in a harmonic

oscillator a gas of 1023molecules or a spaceship You can always
at least in principle write down a Hamiltonian for it

Let us introduce the eigenvalues and eigenvectors of such a

Hamiltonian as

It Im En I m M O's 2 s

he number of eigenvalues can be finite of infinite For small

systems these eigenvalues will air general be countable Eo Es

the other hand if the system is composedof many particles

they will start to lie very close to each other favouring a quasi

continuum Notwithstanding every system can be described by a

familtonian and its corresponding eigenvalues and eigenvectors






































































































































This is all we need to define thermal equilibrium Here in the most

important result in statistical mechanics

when a physicalsystem with Hamiltonian s is in thermal

equilibrium at a certain temperature T the probability of

finding it in a certain energy eigenstate Im will be given

by

izIE.z.EE 121

where p Ikot and kB in Boltzmann's constant Thequantity
Z called the partition function in a normalization to ensure

that In In s

That's it Thin in all you need to know about statistical

mechanics






































































































































Eq 2 mathematically defines what thermal equilibrium in and says

nothing about how the system thermalizes towards it thin in fact can

be a very hard problem But it turns out that whatever the reason

manymany systems
in Nature have the tendency to thermalize And once

they do Eq 21applies

we cared therefore simply start applying Eq z blindly to a

bunch of problems and explain many propertiesof matter That
in to

say Eg z can be used to understand many problems even if you don't

understand the Eq itself Weird Eh Here we will try to alternate

back and forth between the two things I think Hui is the best

strategy to gain intuition






































































































































About Boltzmann's constant the value of KB in

kg I 380 X S 0
23 TIK 3

8 Gs 7 x s 0
5 eV1k

thus we see that boy is such that KBT has units of energy the

Boltzmann constant only exists for
historical reasons we chose

to measure temperature in kelvins We could've just as well

measure temperature in units of energy this is what lust

means It thus makes no sense to keep using WB We can

simply agree from now on that WBT t or what in equivalent

set up K

This means that from now on temperature is measured

in electron Volts For instance

T 300 K ma WBT O 0258 eV
5

So from now on we simply say T 0 0258 eV






































































































































Example qubit 2 level system spin Yz

consider a system with two levels which we label as

187 Clear ground state and I e far excited state the two

states are separated by an energy gap c

G

Ee E le it e level EE

E o is renren.iecT 9 iI
then the

If such a system in in thermal equilibrium

probability of finding the system in the ground and

excited states are

Ig f
Ie IPE

Z

pen PE 71where z C e I t e
m o i

It is convenient to rearrange Ie as

Ie
epe

81

This represents the probability that we find the system in

the excited state In other contexts we will find this formula

again under the name of Fermi Dirac distribution






































































































































The distribution Ie as a function of TIE looks like

Ies

yz µ

TIE

Understanding their simple plot ie very very important think

about me as a competition between the thermal fluctuations
T and the energy gap E separating the two levels When

TIE 41 it means the thermal fluctuations are very small

so that the system in with certainty sitting quietly in the

ground state

Conversely when TIE s the inal fluctuations become

significant and the probability of finding the system in

the excited state starts to
became significant

But most importantly we see that de C 112 In fact

even at infinite temperature it is always aware likely to find

the system in the ground state than in the excited state

This is thermodynamic stability
Notice the essential role

playedby the ground state
whenever you are studying a problem

in statistical mechanics always identify the ground state






































































































































Consider now the electronic levels of an atom e g Hydrogen

r If we forget about all other levels for a

E2 second our previous result shows that
E

the prob of feuding the system in state Ee
Eo will be

thin in an approximate
I I ex e

i qE se
epCE Eo

If T 300 K and Ei Fo s ev we get

I 1017

The probabilities for Ez Ez would be even insanely smaller

we thus see that the probability of finding the system away

from the ground state is overwhelmingly small That's why

we don't need to worry about temperature
when we oaustructed

the periodic table in high school we simply put the elections at

their pre assigned seats SS
252 2ps






































































































































Energy is defined up to
a eceristent I chose to define the two

levels as Eg o and Ee E We can also shift them to be more

symmetric e and h in the same

ee e

E7meg7zIn or 1h
fte o p h k

g

this is what we usually get when the system
in a spin Yzcoupled

to a magnetic field h the Hamiltonian needs

h12
H o

L Tz
h12 2

where Tz EI is a farci matrix the ground state is spin

up i e pointing in the direction of h

the connection between the ge notation and the up down

notation in

18 IP le It






































































































































the partition function thin ease becomes

z ephk e9h12 2 cosh 13h12 97

But notice how the probabilities remain the same

3h12I 1
Ip e

Epn
Ig

eph12 e
13h12

ph12 Pe eIf ephte.phz ep

Energy is only defined up to a constant so this energy shift

cannot have physical consequences






































































































































Example quantum harmonic oscillator alto

the energy levels of a quantum harmonic oscillator are

given by
Em k w m 1 12 M O S Z Io

The partition function in
thus

2 ePEm e
PAWN ePhan

m o
m o

If we define re eBtw thin sun becomes the famous geometric

series 00 Il
un e I

l se
m 0

Thus we find that
ptsw k
e iz

Z
pace

s e

The Gibbs probabilities we'll then be givenby

Im EzPEm c e Btw eBtw mask

12e

notice how the factors e Ptak will cancel out energy is always

defined up to a constant so it is reasonable that the probabilities
should not depend on what we choose for our Zero of energy






































































































































As a result we then get

p CEPkwEPt B

In mathematics this is known as the geometric distribution

this distribution looks like thin

Im

I 9

i r i g
i n ee

Xie n

O c 2 3 9 5 G t

Again thermodynamicstability
means it is always more

likely to find the system in a lower energy stole them in

a high energy state

the prob of finding the alto in the ground state looks like

Io
S Io s e Btw

T 0II L iI
t w






































































































































Enpectation values of observables

Once we have the Gibbs probabilities In what do we do

with them the most common thing in to compute averages

expectation values of observables Let A
be an arbitrary

quantummechanical
observable If the system in in In then

the average of A will be 2mLAIM But since the system can be

found in each Im with probability Ion the average of A
will

be given by the weighted
sewer

n ki
A Cml Alm Im

w
Thi in an average of averages we take the quantum mechanical average

mlAlm and are ege it over the thermal distribution
In

The most important observable in the Hamiltonian itself

But since in are eigenvectors of It it follows
in this case that

15
ml Hlm Em

the average energy thus simplifies to

u LH Emt Cia

For historical reasons the average energy receives thesymbol U

and is usually called the internal energy






































































































































Example qubit
Im the case of a qubit

u cie ezec cfubc.ge

The plot of Urs TIE will therefore look exactly like the one of

Ie

In the case of spin 42 we have H hz 02 Instead of

competingu let us first campute Liz using Eg 14 we get

Tz Ctl Rz IP Ip Llo l Tz It If

3h12
Cts et C il EP

2coshphiz 2 cosh 13h12

which simplifies
tonhlP

Thin in a famous result the paramagnetic response of a spin 42

system to an external field It looks eke this

Tz
l

ph
I






































































































































when ph as we may expand
19tanh se em

which leads to

Gz e I cu
2T

This result is known as Aries's law the response of a paramagnet

system to a weak magnetic field in linear in the field with a

coefficient proportional to SIT this law can indeed be verified

experimentallyfor a large number of systems

Oh and of course I forgot to say but once we have cozy it is

trivial to compute u since It hzTz i

w LH hztanh Phy ai






































































































































Enample OHO

The internal energy for the 0 HO reeds

oooo
u E ti w mask Im ti w E mIon t Yz

m 0
rn 0

one

where I used the fact that I Im s in the east term the first gownin 0

can be identified as the mean number of excitations

pawn
my m Im I ePtw To me zz

m om o

Thin in a kind of modified geometric serum so we can use the

following result see appendix

mum I
m 0 l a 2

thus

i e
Phiw eBtw

m
I eBtw 2

e
ptsw

phiWl e

ar

ephw
23

we will also encounter the same formula later am under the

name of Bose Einstein distribution






































































































































Eq 19 looks like

s m o when T o

whmtnhi

Frown 19 the average energy becomes
1

u tsw km Yz Kw I

which can also be written as

u hwzcothf
zo

for high temperatures Phi
w Ks we can expand

th se
2e 21

yielding
U T 1221

Thin in what one gets for a classical harmonic oscillator

It is common that in systems with infinite dimensional
Hilbert

space one recovers classical results as
a particular ease






































































































































Heat capacity
the internal energy u can actually be computeddirectly from the

partition function Z without having to do another sum Start with

Z C epen
on

and differentiate with respect to p

22

Jp f En e
PEN

Dividing by 2 we see that

If EmE Em Em In u

thus

u 3 Zpl 1231

Thin formula in very useful when working with hard problems

competing 2 can be a very difficult task this formula shows

that once we have 2 u comes for free It also shares that 2 in more

than just a normalization constant In fact there is an enormo

amount of information contained in 2






































































































































An important quantity related to u in the heatcapacity defined
as

C 3 24

It measures how sensitive is the energy u to changes in temperature

The name heat capacity in this suite fitting it is the capacity of the

system to store thermal energy

I like to read Eg 24 as

DU CDT 24

In words if you change the temperature by
DT how much thermal

energy can the system absorb

Since we work with KB s T has units of energy so C in

dimensionlessIn general the units of
C are the units of KB

In systems with many particles it
is natural to talk about the

heat capacity perparticle or per frown or per ours on per mole when

Hair in the case we use the town specific heart thus the molar

specific heat in the
heat capacity per mole and so on Heartcapacity

and specific heat are Kws quite similar except that the latter

is normalized in some specific way






































































































































Examples qubit and alto

for a qubit we get from 177

3 E qubit Zf
C peet

EPE s 2

whereas for the HO from w

c p hw EP alto 26

eptw e 12

these two quantities look like this

C b
C

s

I IE

E

altoqubit

the physics behind these results in very nice Remember that the

heat capacity measures how much energy do the system can absorb

if we change the temperature by Dt






































































































































As can be seen as the temperature increases c also goes up in

both cases for the qubit however C eventually reaches a man

mum and then start to fall For the RHO on the other hand C

keeps on growing and eventually saturate

the inanimurn in the qubit case in called Schottky effect and

is related to the fact that if the iiperatore starts to increase

too much there are no more skates left to put more energy

since the dimension of the Hiebert space in finite In fact

any system with finite Hiebert space will eventually present a

unanimrom for some t

In the case of the alto on the other hand the number of stakes

in infinite so there is always more room to put more energy But

if the temperature
in too high the sensitivity stopsdepending on

T so c tends to a constant






































































































































Eu superconductivity

At low temperatures Btw
I we get from 25 and ZG

c PE ePE and c phw e P w
czy

In both cases the heart capacity vanishes exponentially with

the energy gap between the ground state
and the first excited

state

kd
dc EP 28

Ig

this is actually a very general feature Areally cool example of

shin in superconductivity the specific heat of
a superconducting

materiel like Nb looks somewhat like this

is c
Superconductor

C a T t b T
3

ps
i

i www.aemefae
i

T

Tc

specific heat of a type I superconductor






































































































































Above the critical temperature to a superconductor behaves like

a mammal metal For metals the specific heat usually behaves as

a power law
in T usually like G at t b t 3 where a and b are

constants We will see where kin comes from later on

what is peculiar about superconductors in that below to the

behavior of CCT is experiential which you can see by doing
a linear log plots

From this simple experimental observation peoplealready knew

that in the superconducting phase the system had to open a

gap In metals the low energy steaks form a quasi continuum

vanishing gap But in the SC phase a gap must open up

when the BCS theory was formulated many years later it was

in feet seem that this was correct thekey feature of a superconductor

in the opening of a gap

I find it absolutely incredible that such a seemingly bulky

measurement Cthat reminds us of chemistry class can yield such an

important piece of information




































Heat capacity and fluctuations of energy

Let us combine 23 and Zn

c z If II t.IE
Then

3,51 13 HIFI2

The last team in just U2 or CH As for the first team we

have

f 3 Ip
e
PEM iz c Eure pen

with a little thought we recognize this as the 2nd moment

of the Hamiltonian
c f Eg in

I 2 30

H2 ET Im Z 2132

plugging Him in 29 we arrive at

c fz LH7 3D



this result is very important as it gives an entirely new

interpretationto the heat capacity as being related to the

variance of H which measures the fluctuations of the system's

energy

the variance in always mom negative as it may be written

as

H2 CH 2 H L H 2 30 32

thus Eq 317 also implies that the specific heat is always
non

negative
c zg 331

In words the energy in a monotonically increasing function

of T



whye.PE

nowo that we are getting more familiar with the Gibbs formula

z we can start to ask where it comes from or why it works Here

I want to discuss in a non rigorous way why I m EPEM i e

why an exponential

To see why this in so we only need to postulate one very reasone

I
Iostulate of equal probabilities

a priori the prob of occupation

of a given state In only depend
on the energy Em of that

state
Thin postulate putsenergy

on a pedestal It says that in equilibrium

all that matters in the energy
In the end of the day Hui in a

postulate and there in no way of deriving it from some more

fundamental principle But
at least in my head it makes sense

The fact that Im a EPE follows from the postulate All we need

forealizeinthIn equilibrium if emery in a sum the probabilities should be

aproduct
Let me explain what this means



The above postulate implies that In f En for some functions

f what we want to know in precisely how the function f looks like

Todo that suppose our system
is actually composed of two parts A and

B which do not interact with
each other

system jade Effects

since energy in an additive quantity the total energy will beThen

givenby
Efim EMA EMB 134

where m m are quantum numbers for A and B respectively

If our AB system in in equilibrium then the corresponding
robabilities will be given by

Ina m f Enif f Ema EMB 351

However A and B do not interact energy in a serum so that their

probabilities should
be statistically independent probabilities

should be a product
AB B 3G
1mm 1mA Iom

But since A and B are in equilibrium IMA f Ema and

IMB f EMB thus we reach the conclusion that the function f

must satisfy

f Ema EMB f EE f Emb 37



which kind of function satisfies f sexy f x f y Answer the

exponential
f se s c e

th
38

where C and x are constants Any other function can be re

parametrizedin this way by redefining c and L Ctry it

Thus we conclude from this that equilibrium probabilities
must

have the form
In c ex Em 39

what can meeee be said about cand Well c in easy since

the probabilities are normalized

1

s Im C e
E

mo C

get
Go

Thin Hum leads us to the partition function Z Slc

But what about First of all we can prove it has to be negative

The reason in simple Suppose we order the energy levels of a system

in ascending order
H1

Fo S E 3 Ez 3 F33

The ratio of two probabilities in

Em Em
II e 42
Im



Suppose that Em Em then if a o et Em Em I I and this

Im Im If L were positive higher energy estates would always be

more likely An ionized election would always be more probable

than a bound electron Matter would be unstable and we would

all be dead Since we are not dead C I think samjunipero we

conclude that to We therefore redefine it as

a p p o G 3

the Probabilities now acquire the forum

In ePEM can
Z

now besides being positive what else can we say about p Can

we relate it to temperature somehow well we have two pieces of

evidence we can use

p in the only parameter which characterizes

equilibrium Ci e which enters into Im

e U in monotonically decreasing in p because of

337

It thus makes some sense to say that p should be proportional

to the inverse of the temperature



But in it 132 k ar p L YT2 or some other weird function

this is where human input becomes necessary the reason why
p is IT in because we chose to define temperature using a

certain scale We could have chosen some other scale in which

case the relation pCT would be completely different for instance

changing T o TZ would still give a valid scale of temperature

I find it very interesting that the postulateof equal a priori

probabilitiescan say so much about the physical structure of the

equilibriumstate



Summary of useful formulas

Gibb F eefo

Im e
PEM a LmIAlm Ion

Z

2 ePEM
U CH Em In 22g luz

m

sum overstates c 2 f H2 SH 2 30

U always grows with
T

Im Im if Em L Em

Examples
OH 0

Spin IzOribe
H hztz

H ZIL tmrw see

it C level
Ep h12 E f h1 z

Em kw m 412

Eg o Ee E ptsw

Z e Zoosh phiz Z e

eplow2 it ePE
i

oz tanh Pgh n
3kWIe et 1

CPEis
Bose Einstein

Fermi Dirac

u tf wth EfU E Ie

C phwep.twc PE EI
ept s 2 eptw 1 2



Enample an atom

consider a system with 3 levels 1g IGz and le

displaced according to
le it Ele Let I 45

1g Iga

In this case the ground state is doubly degenerate this

is important because it means there are more configurations

available for the systems Their invisible
in the partition

function It is useful to remember that the letter Z in

used due to the German ward Zustandssernome which means

a seam overstates It is not a sum over energies but over

the available estates thus in this example

2 ePEM s t s t e BE z ePE Ca

this is different from the previous example due to the factor of2

We then have that

Ig Iga 47

If you want to ask about
the prob of finding the system

with energy 0 then it's a different question and we have to

add Ig and If z

ground state Ig 182 48



Example a driver n atom

N systems like the one in the previous example appear of ten

quantumoptics and atomic physics when such a system is also

subject to an external laser drive the Hamiltonian in

modified to

H E l e Let le Lf It IS sel t x i e gal 1 182 cel

p
where a CIR represents the strength of

the drive A term eine

le KS I represents a transition amplitude from
18 to le thus

this Hamiltonian diagrammatically
looks like

le

I am
IG

Note that since Hamiltonians are Hermitian if we can jump

from 18 Ie then we must also be able
to jump from le

Is with the same probability



The Hamiltonian 49 in no lounge.ir diagonal To apply the

Gibbs formula we thus first need to find Its eigenvalues

they read you can use Mathematica to check
4 breaks the

degeneracy
Eo O C50

Et Ez I felt 8
2

the partition function is thus

51pen cosh PIL2 I t 2 e

s f 2 1 822

From this we get all thermodynamic operant
ties

C cash prize r sinh pork
U 2 en 2 set z cosh pork2p et

C 21 eptkpcr2c.czcoshpr1z zp2rfr
Ee hCprI

2T zfe.PE2 zcoshCps42

The formulas are ugly I know But that doesn't matter They are

trivial to carmpute once we have Z and they are also easy to make

plots with













Appendix geometric and related series

the geometric series reads

one
mm I CAs

l n
m o

To derive Him the easiest way is to simply do a Taylor expansion you

may convince yourself
that

m
d
In it

on

n o

Thus from Taylor's theorem
oo
E n un E um

m o
1 R m o n

which in CA 17

Other swans can also be computed from
CA t For instance to

ee

compete mum differentiate both sides of CA
with respect to

mo

n to get
mum I 1

i se 2
m o

Multiplying by se on both sides yields the serum we wanted

oo

mum I A Z

m o i se 2



Another potentially useful series in the finite version of CA l

nm
m o

for some integer L this sewn in super easy to earmpute because

we can write it as

L
mm It k t set

m o

u 1 n t N 1 free seriesGeome

m i in 1 K2 t

Eon n Eisen

Using CA d we then get

L Ltd
E nm 1 2 CA37
m o r se


