



































































































































statisticalmechanicsilecturez

Entropyandrelativeutropy

Recommended reading Salinas chapters 3 and 5

Nielsen and Chuang JS S and SS Z

Tomei and de Oliveira chapter 7






































































































































ShammanEntropy

Consider a generic random variable X which can take on

a discrete set of values x on each with probability Im The

reason why in roundarm is related to the amount of

informationwe have about it For instance let denote the number of

students that attend class today This number is only random if

I the professor don't have earmplete information about the

whereabouts of all students If I knew exactly where they were

where they were going and so on the number X would not be

random

In classical probability theory randomness is always

informationalthe prob distribution In is always conditioned

on the information we have about X

The amount of information we have about as capturedby

the distribution In is quantified by the Shannon entropy

S fIm Cs

To see why Him in the ease it in useful to have in mind the

following plot menu

in
0 I






































































































































this function is always man negative and zero if and anly if
N o or N s The entropy in their simply a sum of such

functions thus first and foremost we conclude that the entropy

is man negative
2S 3 0

Secondly if X in a deterministic process then Im s for

some M and Im D for all Mf rn Since Klum is zero in

both cases we conclude that

5 0 when the process in deterministic
3

Since the entropy in a sum of positive quantities for any other

distribution fear which Ints the entropy will therefore be strictly

larger than Zero

Tiu already gives a good justification
as to why S quantifies

the information we have about it in zero when we have

complete in formation and positive when we have some uncertainty

about it

A useful example in the Binary entropy corresponding to a

process where can take an only two values with probabilities

p and
s P the entropy in this case reads

n

s p en p Ci P en t P µ p






































































































































the entropy in 2 ero when p o ar p s and in unanimal when p yz

The case p Yz corresponds to the uniform distribution in this case

we know absolutely nothing about X

This is a funny fact which most people don't realize

For instance if the forecast says there
is a 50 chance of rain

that is pure crop It just aneans they have no idea

whatsoeverwhether if will maim or not






































































































































A more rigorous justification as to why EgCs is indeed a

good quantifier of information was provided by Shannan

in a paper entitled A mathematical theory of communication

The idea in as follows Let us define a surprise function

I p their quantity in meant to be such that I CIn captures the

amount of information we gain about when the event x on

occurs The idea in that the entropy should then be defined as the

average surprise
5 a Im I CIm 5

m

so of course our final result will be I p burp But what Shannon

did was to derive this as a consequence of a set of properties any

surprise functions
should satisfy

In particular Shannon postulated that Icp should satisfy
s I p 3 O

2 I s O

3 I p should be monotonically decreasing in p

n ICP P2 Icp 1 I Pz

Property z means that if an event always occurs then this gives

us no information at all we are never surprised Inoperety 3 on

the other hand means that if an event is likely it eanveys little

information If it is rare then when it happens we learn a lot

surprise






































































































































I reperty Ca in a bit less intuitive but absolutely crucial

when a prob dist in a product it means that the two processes are

statistically independent
4 then means that if two events are

statistically independent the amount of information
we learn

about them is simply the sum of the individual informations

which kinds of functions satisfy 4 we know the answer

of course the logarithm Thus

I p a Cup

where a in a constant The base of the log is irrelevant as it

would simply rescale ee To comply with c and 3 we must

have a co the actual valve of toy is unimportant
since it will

simply rescale S in the end thus we simply set it to a s

which finally leads to

Icp burp G

In summary the entropy quantifies the amount of information

encoded in In because it quantifies the average surprise L brain

related to how much information we gain from each realize

tian X m






































































































































TherelativeentropyKullback Leidivergence

Another quantity intimately related to the entropy in the relative

entropy also called Kullback Leibler divergence defined as

scpllfjf.PT 9 m CD

where pm and gum are two probability distributions the relative

entropy functions as a type of distance
between two probability

distributions In fact it satisfies

SCpi mdPfL 8

which in leuceum as Gibbs inequality the proof in based on the

inequality
luse f k s T n o

which yields I write enPmlfm err9m1pm

S pilot Pm en 9 n 1pm 3 Pm 9
n

9 m e f Pm
O






































































































































The entropy and the relative entropy can be related by

introducingthe uniform distribution

In I cuneiformdist g

d

where d in the dimension of the state space in question
Thin in

the most uninformative distribution It essentially says we Unaw

absolutely nothing In this case

Scpn it Pm lupulin Pmlupin pm bud

L

Scp

scp end SCp
Go

This result is very nice It shows first of all that due to Eg87

the largest value of
S P occurs for the uniform

distribution and reads

manggpyeend.occursfarpT uniformdts

Cornbining with z we now have two boards for S

manimally

jeTTlhtwic.osssendadisarde.TL
wm

an

CJohn Snow
know everything






































































































































This analysis holds when the number of estates d in finite when

this is not so it will still be true that 0 f s But now s will be

unbounded from above

The bound t2 shows that 5 0 means a lot of information
whereas s end means no information at all this motivates

us to define the information contained in pm as

ImfoCp brd SCp SCp ez

I love this formula information is defined as how fare Pm in

from a state where we don't know anything Makes sense we

will not use this definition a lot in our course because Info

and S only differ by a earnest ant And also Sir defined

when D 00 whereas d is not But I nonetheless like to talk

about because I think it really clarifies the relations between

entropy and information which is always a bit confusing at

first






































































































































GibbsentropyShannomentropyofathermalstate
The Shannon entropy l is defined for any probabilitydistributionIn Let's check naw what happens when we assume that

these probabilities are given by the thermal Gibbs formula

In e
PEM K

F

the trick in to substitute Him only in the log part of Dmen In we

then get

S In poem en Z

p Em Im en Z f Im

U

Thus
s pUtl 15

this formula provides a very easy way of computing the entropy

of a thermal state We don't need to ecempek In linen If

we already have 2 and U then 5 comes for free

The entropy also turns out to be directly related to the specific

heat write i 5 as u T S en Z then

c II s en 2 T ft f en Z

S err 2 T 227 t T
z2Zp err Z

pv pv






































































































































Thus we see that

c z Tf IG

this shows a special property of equilibrium when the system in

inn equilibrium changes in energy also imply changes in entropy

this emphasizes the fact that thermal skates
In a ePEM form a very

special setof States If you are dealing with generic non equilibrium

status you can change the state's energy without changing
the

entropy and vice reevisa But if you are striated to the manifold

of thermal States then changing u will automatically also

change s






































































































































Enamplis
Let's look at some examples using the table in page 31

of lecture I For the qubit we get

Qubit s p emCl EPT ay

ept t s

whereas for the alto we get

epawsptsw en 12 th Tepaw

note how the zero paint fluctuations cancel out leaving us with

alto S epffhww
g

hrci e Phwc.gg

The similarity between 17 and 18 is noteworthy Here is how

they look like
luz

i

for T o both tend to Zero because the probabilities become deterministic
for T ooo the fub.it ease tends to en 2 because I z The QH O in unbounde

and grows like S luptiw fear large T small pace






































































































































Let us also look at the n atom studied in lecture 1 the partition

function was

pe T
Z 2 t e de

where the factor of 2 comes from the fact that the ground state

in two gold degenerate the entropy in this case in

S P en 2 t e PE

Zept 11

Here in how this looks like

cuz s 098

her2 0.693 O

when T ooo S o en 3 This makes sense since the dimension

of the Hiebertspace in 3 But when T so the entropy now tends to

luz and mot Zero that can actually be seen directly from 18

by setting pe ooo

now here is something even wore intriguing Cause der the

driver or atom studied in page 33 of lectures

z s 2 e PEK cosh P Cis

Here in how the entropy looks like for different








































































































































Focus an T 00

when a o we get S en2

But when to we always

get 5 0 It only goes
actually to o when T in

very small But it always

eventually gets there for any
L 1 0

the reason behind this strange behavior in the degeneracy of

the ground state when 2 0 the ground state is doubly degenerate

But any x to breaks this degeneracy Let's now understand how

the entropy is sensitive to this feature






































































































































The3ideawafthermondynamics

consider the ratio of two Gibbs probabilities

Im B Eon Eon
e

Ion

Assume Em Em then when T 00 p ooo 1 the quantity pCem Eng

becomes very large and thus e P Em
Em becomes very small Hence

If Ern Em then Inn LL Im when T o

In the limit T so then the only state which remains populated

in the ground state

Now suppose the ground
state in 8 fold degenerate Equal energies

have equal probabilities
so all groundestates must have the same

populations Because of normalization these probabilities will

have to be Llg thus

einn Im
8 if Em Egs
o otherwise

T 00






































































































































Now recall that perp in zero when p O thus the only

towns which will contribute to s ane ke ground estates

S E In en Im E I en 1g
Ground gm states

8 en Slg
g

since there are 8 ground states simplifying

s eeugn.ludegeneracyofthegroumdstat goErin
T 00

This is called the 3rd law of thermodynamics It is a quantum

feature related to the discreteness of the energy
levels If you

construct stat mech classically you find an entropy which diverges

when T so

So far we are talking only about systemscomposed of
a single

particle Soon we will generalize all this to systems eceurposed

of N particles where N is very large In this case it is customary

to talk about the entropy per particle is SIN Eg co then becomes

21
ein s In en f N
T 00

where I wrote g n to emphasize that now the degeneracymay itself
depend on N






































































































































Many systems in Nature are such that 8 in either independent ay

N ar grow polymornially with
N In this ease in the limit N soo

fling 0 For this reason in the past it was common to formulate

the 3rd law as saying that S o O when T O However we nowadays

Unraw that there are systems for which s actually grows exponentially

with N so that In lug remains finite when N ooo A famous

example are the so called spin glasses EqCW
in therefore the

correct way of stating the problem

Let's now see what the 3rd law says about the heat capacity

Recall Eq Io C T 2512T This means that

1

IT CCT ZZ
S T S To J T

To

According to the 3rd law s should tend to a finite eceristant

so SCT s to should tend to Zero when T and Te are small

If CCT e BIT as happens for gappedsystems then this will

be definitely true since e b'T goes to zero superreeper fast

Let's then assume something a bit softer For instance

suppose CCT T r where ye in some exponent then 22 reduces

to
S T S To TN Tok

T

Thi has to vanish when T to get small thus we must have

ye O This therefore implies that c Ct o as T so

S occenstocct
The heat capacity should thus vanish as c o


































Heeunhoetzfreeene.gg

Looking back at 151 let us define a new quantity

F Tl
22

called the Helmholtz free energy then we can write 115 as

s pu euZ p U zz

the free energy turns out to be a very important quantity
in

thermodynamics since it in pretty much the partition function

For instance U ffg luz
can be written as

u 22pm
2 T E

23
F T IF

2T

I lugging this in 22 then yields

s ff
za

combining this with IG then yields

C t2 T2a 257

Since C o we see that F must be concave in T



Freeenergyandrelativeeutropyf
The free energy actually turns out to be connected to the relative

entropy 7 Consider a system prepared in some generic non

equilibriumstate with probabilities pm not thermal Based on

Eq.az let us now define the non equilibrium free energy

f p associated with the distribution p as

f p U p T S P 26

where u p EmPm in the average energy in the distribution

pm and SCP Pm bnPm in the corresponding Shannan entropy

we will now compare f p with another quantity namely

Scp11pm the relative entropy between Pm and the thermal state

path e
BEM 2 We have

SCP11pm Pm eupm pmth

Pm enPm pmenpnth

Scp Em Pm peu en 2

Scp p EmPm em2

Thus

s pmpm pulp SCP em Z czz



But en Z in related to the equilibrium free energy ca

Fth Ten Z

If we multiply 27 by T an both sides we also see the appearance

of the mom eq free energy 26

T 5 pmpm Ucp TSCp t T en Z

F p Fth

thus we reach the really really important conclusion that

F p Fth TSCP P 282

this relates eg and mom ef free energies with the distance between

the mom equilibrium state and the thermal state

From the Gibbs inequality 87 S pmpm 30 from which we

conclude that

FCP73fth.Vdrstp.cz
this gives a really interesting way of defining

what equilibrium

in equilibrium is the state which minimizes the free energy



when there is no temperature involved equilibrium in the

state which minimizes the energy u i e the ground state

But when 5 10 this is no longer true Instead now equilibrium
will be the state minimizing the free energy F U T S Energy

u competes with thermal disorder Ts to give the equilibrium

state

We can also look at 287 in a different way by writhing

U p T S P 4h T Sth T T S P Pth

ar

rearranfin 30
S P Sth p UCP wth S P11pm

Instead of saying that equilibrium in the state which

minimizesthe free energy this expression allows us to view

equilibriumas the state which unanimizes the entropy But it

can it just be some naive unanimrizations as we already Uncew that

the state with the largest entropy
in the uniform distribution

compare with Egs Io and Css

But looking at 1307 we see that if we restrict the distributions

pm to those for which U p Utes then the 2nd term vanishes and

Gibbs inequality immediately gives
Puth as the largest possible

entropy



To summarize

i
which unanimize the entropy

These two statements are of earrise entirely equivalent



Relaxation to equilibrium

when we talk about thermal equilibrium it does not matter how

the system equilibrated All that matters are the populations Puth ePETZ

characterizing the equilibrium state Relaxation towards equilibrium

and equilibrium are two different problems And this is good because

the former in much more difficult to describe

There are two main ways through which a system may reach

thermal equilibrium One way in when it is in ecentact with

a heat bath

Environment Bath
temperature T

E

A bath in any very large very complex very chaotic system

A bucket of water in a good example the idea in that the bath is

so complex that its fine details don't really matter All that

matters are some of its more coarse grained properties like

temperaturevolume and so on

when a system in put in eantaet with a bath it will usually

thermalize at the name temperature as the bath This is the reason

why we can talk about temperature when we deal with small systems

like a single atom for example we don't try to define the

temperature of a single atom Instead we can simply imagine

that the p in e PE is actually a property of the bath with which



the system is coupled

On the other hand when our system in itself very large it

doesn't really need a bath Instead the system will epuri

librateeven if left by itself The
idea is that in this ease one part

of the system will act as a bath to the other parts

In this argument chaces and ecernplenity become very important

If the small system shakes a little bit this will cause ripples

in the both Chaos ensures that these ripples never ever come back

to the system They are just lost in all the chaotic mess of the

bath



Mastereguation

The biggestdifficulty in describing the relaxation towards

equilibriumin that it is model specific it depends on the details of

the system and how it is coupled to the bath this is to be

contrasted with equilibrium which in universal Notwithstanding
I would like to describe to you one simple but widely used model

of relaxation
known as a master equation or MEq

The idea is to model the dynamics of the populations pmCt

by a simple first order equations of the form

t GD
dt m

where wm.mn represent transition rates from our tour Theseelements

cannot be arbitrary because the variables in question are

probabilitiesand thus shaved satisfy PmCt C o I and PmCt I

fear all times

Summing 31 over m yields

ddPf d.dz Pm E WmmrPm Ct
m m

Thus the Wmmr must be such that

WmmrPm O

m m



But this must be true for any pm thus we conclude that

Wmm 32

In words the columns of W add up to s

If we discretize time in css we may write

Pm Et St PmCt Dt wm.msPmCt 133

the left hand side has to be moon negative since it in a probability

And this must be true for all pm thus we conclude that Wmmr 30

The only exception in Wmm which can be negative because of the

pm t in Eg 33 In fact because of 32 we may write

Wmm C when 134
k4in

which clearly shows that Wmm so and in feet that Wmm in fully

determined by the off diagonal entries

using this we can also write 31 as

daff nWmmPm
1 WmmPm

WmmrPm E Wmm pmin4M
Mfm



which can be written more nicely as

ftp.y m
nLWmmPm WmmPm 135

This clearly shows how the MEg in nothing but a balance equation

Irepability enters pm from Pm at a rate Wmmr And it leaves pm

towardspm at a rate woman The rate at which pm changes Cdpm
dt

in Shen determine by the net flow of probability camming from

all other skates minus the net flow of probability leaving pm

owite nice eh

the values of the rates Wmmr however are highly model specific

so to push further we have to start making some assumptions

First and foremost we are interested in using 135 to model the

relaxation towards equilibrium So we will assume that the

Wmmr are such that the Gibbs state

path ePETZ 136

in a fixed point of 135 That in

fu WmmrPmth Wmmpmth 0 137

we will also assume that this fixed point in unique



You can view 137 as a kind of global balance it essentially

says that in equilibrium the net flow of probability in and

out of each state m balances out

It turns out however that the vast majority of systems in nature

satisfy an even stronger property known as detailed balance

Namely each term in 37 actually vanishes in equilibrium

wmmpmth WmmPn 1,387

Detailed balance means that it is not only the meh fleeces which

vanish but the individual flaws between each pair of stakes

mm Detailed balance in a very physical property It depends on

the details of how the system interacts with the bath

notwithstandingit turns out to actually be quite frequent in Nature And

what is more important it dramatically simplifies the analysis

Another way of writhing 38 in as

Ymm_z
e P Be

This emphasizes an important fact about the Wmm in general the

details of Wmm depend on the specificsof the problem
Bet the ration

between our on and on 0 rn only depends on the energy difference

between these two states



The Id law of thermodynamics
The Id law in the most important law in thermodynamics since

it establishes what you can and cannot do It can be formulated

in many ways
Now we will see the first one of them

Consider the quantity

if d S petHPth MO
It

between the state of the syswhere 51pct 11PM is the relative entropy
term at time t and the equilibrium state to which the system will

eventually relan to

Using 1287 we can also write

S pmPm p F p Fth

pulp Scp p f th

Thes Mo can be written as

iT dSCpCtsHPtu pdF dI Pddca

we will come back to the interpretation of this formula in a second



But before doing so let's open it up and write

IT adz PmCtl enPmCt PnCt emputh

f dated eupm
a Pit t

ddPf dated in Puth

The town in the middle vanishes

EddPI IF ER o

Thus

IT f daff empulputh

Using 35 we incur get

IT Wmmr Pm Wmu Pm enpm1pm
th

m um tm

Naw ecernes a naughty trick Since we are semming over both on

and in let us exchange rn s rn

I E Wmu Pm Unm pm en Pm1pm't

m m 4in

Instead of using one form or the other we use an average of the two

it Efm
warmPm Wmu Pm en PPI f



Finally we use the detailed balance property 138 to write

thPom Woman

path Wmmr

we then get

IT E WmmPm Wmu pm enwmi

pmwmmpmm.mem

er getting rid of the mines sign

it tzm.fmSwmmPmWmmPmflnWwmmmn
Ppm

cuz

The relevance of this expression
lies in the feet that it in a seam

of functions of the form

se y en My 7 0 43

which is always non negative for any N y o thus we conclude

that
2nd law can

This simple expression in the 2nd law Let me tell you why



We now go back to Chs and write it as

dd T Pf cars

the fact that IT
then implies that

d spd Gas

which in huicewm as Clausius inequality It relates the change in

entropy of a system with the corresponding heat exchanged
with

the bath According to Clausius when a process in dome reversibly

DS PDQ

and when it is irreversible

As p Dor

Ef 44 meeee explains why the process is irreversible when I o

The quantity it Eg can is called the entropyproduction rate


