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1.10 The Trace
The trace of an operator is defined as the sum of its diagonal entries:

tr(A) =
X

i

hi|A|ii. (1.71)

It turns out that the trace is the same no matter which basis you use. You can see that
using completeness: for instance, if |ai is some other basis then

X

i

hi|A|ii =
X

i

X

a

hi|aiha|A|ii =
X

i

X

a

ha|A|iihi|ai =
X

a

ha|A|ai.

Thus, we conclude that

tr(A) =
X

i

hi|A|ii =
X

a

ha|A|ai. (1.72)

The trace is a property of the operator, not of the basis you choose. Since it does not
matter which basis you use, let us choose the basis |�ii which diagonalizes the operator
A. Then h�i|A|�ii = �i will be an eigenvalue of A. Thus, we also see that

tr(A) =
X

i

�i = sum of all eigenvalues of A . (1.73)

Perhaps the most useful property of the trace is that it is cyclic:

tr(AB) = tr(BA). (1.74)

I will leave it for you to demonstrate this. Simply insert a convenient completeness
relation in the middle of AB. Using the cyclic property (1.74) you can also move
around an arbitrary number of operators, but only in cyclic permutations. For instance:

tr(ABC) = tr(CAB) = tr(BCA). (1.75)

Note how I am moving them around in a specific order: tr(ABC) , tr(BAC). An
example that appears often is a trace of the form tr(UAU†), where U is unitary operator.
In this case, it follows from the cyclic property that

tr(UAU†) = tr(AU†U) = tr(A)

Thus, the trace of an operator is invariant by unitary transformations. This is also in
line with the fact that the trace is the sum of the eigenvalues and unitaries preserve
eigenvalues.

Finally, let | i and |�i be arbitrary kets and let us compute the trace of the outer
product | ih�|:

tr(| ih�|) =
X

i

hi| ih�|ii =
X

i

h�|iihi| i
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Mathematicians before we start with the physics

let us review the concept of trace of an operator



The sum over |ii becomes a 1 due to completeness and we conclude that

tr(| ih�|) = h�| i. (1.76)

Notice how this follows the same logic as Eq. (1.74), so you can pretend you just used
the cyclic property. This formula turns out to be extremely useful, so it is definitely
worth remembering.
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Density Matrices and thermal status

Let us review a bit the Gibbs formalisms we causielen a

system described by a Hamiltonian H with eigenstuff

H Em Im Lm i

If this system is in equilibrium then the probability to find

it in state In will be given by
2

In ePEm
2

Moreover in equilibrium the expectation value of any observable

A is given by
A CmlAtm In 3

We may even ask the following question is there a quantum

state 143 which would allow us to write 3 as

A 441A14 Notpossible ca

the answer in mo For instance one could naively try a skate

like in E FI In CST

But then 4 gives

XIA143 E Smt Alm Im
m m






































































































































which is not like 3 It will coincide with 3 if A happens to be

diagonal in the basin Im But only in that case

The moral of the story in that it is not possible to attribute

a net in so a thermal state The only exception of course is

at zero temperature where the system tends to the ground state

In order to attribute a quantum state to the system we

have to generalize the motion of beets The generalization is

called a density matrix
which we usually write as f the

density matrix of the thermal
state is defined as

f fImlm o

the expectation value of 4A in 3 can then be written using

the trace as

az tr C

which in the same as tr ga






































































































































Below I will try to better motivate why an object such as

6 makes sense But before doing so let me just show you

something neat the decomposition of H as in i makes it

convenient to study functions of H For instance

HE f Ent in soul

H3 Em EI in Kmt

and so on Thus if f se is some arbitrary function then

8
f H f f En 1m3cm

we just apply fC to the eigenvalues and multiply by the projectors

In Kmt

If we now look at G we see that

g.szqe
PFmtmkmlE.PT a

Z

This is a very neat and very powerful way of writhing
the thermal

state what is nice about it is that it makes no reference to any

specific basin it simply writes the state directly
as a function

of the Hamiltonian






































































































































The partition function can also be written in a neat way

z trCEP Go

because

EPH my ePH Im ePEM z

Thus the expectation value 77 may also be written as

a7 tIf p C



Chapter 2

Density matrix theory

2.1 The density matrix
A ket | i is actually not the most general way of defining a quantum state. To

motivate this, consider the state |n+i in Eq. (1.47) and the corresponding expectation
values computed in Eq. (1.48). This state is always poiting somewhere: it points at the
direction n of the Bloch sphere. It is impossible, for instance, to find a quantum ket
which is isotropic. That is, where h�xi = h�yi = h�zi = 0. That sounds strange. The
solution to this conundrum lies in the fact that we need to also introduce some classical
uncertainty to the problem. Kets are only able to encompass quantum uncertainty.

The most general representation of a quantum system is written in terms of an
operator ⇢ called the density operator, or density matrix. It is built in such a way
that it naturally encompasses both quantum and classical probabilities. But that is
not all. We will also learn next chapter that density matrices are intimately related to
entanglement. So even if we have no classical uncertainties, we will also eventually
find the need for dealing with density matrices. For this reason, the density matrix is
the most important concept in quantum theory. I am not exaggerating. You started this
chapter as a kid. You will finish it as an adult. :)

To motivate the idea, imagine we have a machine which prepares quantum systems
in certain states. For instance, this could be an oven producing spin 1/2 particles, or a
quantum optics setup producing photons. But suppose that this apparatus is imperfect,
so it does not always produces the same state. That is, suppose that it produces a state
| 1i with a certian probability p1 or a state | 2i with a certain probability p2 and so
on. Notice how we are introducing here a classical uncertainty. The | ii are quantum
states, but we simply don’t know which states we will get out of the machine. We
can have as many p’s as we want. All we need to assume is that satisfy the properties
expected from a probability:

pi 2 [0, 1], and
X

i

pi = 1 (2.1)

Now let A be an observable. If the state is | 1i, then the expectation value of A
will be h 1|A| 1i. But if it is | 2i then it will be h 2|A| 2i. To compute the actual
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The results above are for thermal skates but the idea of a

density matrix is absolutely general To motivate the reasoning

behind this I introduce below a construction of the density

matrix which is mere general Hopefully it will clarify the logic

behind these objects



expectation value of A we must therefore perform an average of quantum averages:

hAi =
X

i

pih i|A| ii (2.2)

We simply weight the possible expectation values h i|A| ii by the relative probabilities
pi that each one occurs.

What is important to realize is that this type of average cannot be writen as h�|A|�i
for some ket |�i. If we want to attribute a “state” to our system, then we must generalize
the idea of ket. To do that, we use Eq. (1.76) to write

h i|A| ii = tr

A| iih i|

�

Then Eq. (2.2) may be written as

hAi =
X

i

pi tr

A| iih i|

�
= tr

⇢
A

X

i

pi| iih i|

�

This motivates us to define the density matrix as

⇢ =
X

i

pi| iih i| (2.3)

Then we may finally write Eq. (2.2) as

hAi = tr(A⇢) (2.4)

which, by the way, is the same as tr(⇢A) since the trace is cyclic [Eq. (1.74)].
With this idea, we may now recast all of quantum mechanics in terms of density

matrices, instead of kets. If it happens that a density matrix can be written as ⇢ = | ih |,
we say we have a pure state. And in this case it is not necessary to use ⇢ at all. One
may simply continue to use | i. For instance, Eq. (2.4) reduces to the usual result:
tr(A⇢) = h |A| i. A state which is not pure is usually called a mixed state. In this case
kets won’t do us no good and we must use ⇢.

Examples
Let’ s play with some examples. To start, suppose a machine tries to produce qubits

in the state |0i. But it is not very good so it only produces |0i with probability p. And,
with probability 1 � p it produces the state |1i. The density matrix would then be.

⇢ = p|0ih0| + (1 � p)|1ih1| =
 
p 0
0 1 � p

!
.

22












































































































































Or it could be such that it produces either |0i or |+i = (|0i + |1i)/
p

2. Then,

⇢ = p|0ih0| + (1 � p)|+ih+| =
1
2

 
1 + p 1 � p
1 � p 1 � p

!
.

Maybe if our device is not completely terrible, it will produce most of the time |0i and
every once in a while, a state | i = cos ✓

2 |0i + sin ✓
2 |1i, where ✓ is some small angle.

The density matrix for this system will then be

⇢ = p|0ih0| + (1 � p)| ih | =
 
p + (1 � p) cos2 ✓

2 (1 � p) sin ✓
2 cos ✓

2
(1 � p) sin ✓

2 cos ✓
2 (1 � p) sin2 ✓

2

!

Of course, the machine can very well produce more than 2 states. But you get the idea.
Next let’s talk about something really cool (and actually quite deep), called the

ambiguity of mixtures. The idea is quite simple: if you mix stu↵, you generally loose
information, so you don’t always know where you started at. To see what I mean,
consider a state which is a 50-50 mixture of |0i and |1i. The corresponding density
matrix will then be

⇢ =
1
2
|0ih0| +

1
2
|1ih1| =

1
2

 
1 0
0 1

!
.

Alternatively, consider a 50-50 mixture of the states |±i in Eq. (1.11). In this case we
get

⇢ =
1
2
|+ih+| +

1
2
|�ih�| =

1
2

 
1 0
0 1

!
.

We see that both are identical. Hence, we have no way to tell if we began with a 50-50
mixture of |0i and |1i or of |+i and |�i. By mixing stu↵, we have lost information.

2.2 Properties of the density matrix
The density matrix satisfies a bunch of very special properties. We can figure them

out using only the definition (2.3) and recalling that pi 2 [0, 1] and
P

i pi = 1 [Eq. (2.1)].
First, the density matrix is a Hermitian operator:

⇢† = ⇢. (2.5)

Second,
tr(⇢) =

X

i

pi tr(| iih i|) =
X

i

pih i| ii =
X

i

pi = 1. (2.6)

This is the normalization condition of the density matrix. Another way to see this is
from Eq. (2.4) by choosing A = 1. Then, since h1i = 1 we again get tr(⇢) = 1.

We also see from Eq. (2.8) that h�|⇢|�i is a sum of quantum probabilities |h�| ii|
2

averaged by classical probabilities pi. This entails the following interpretation: for an
arbitrary state |�i,

h�|⇢|�i = Prob. of finding the system at state |�i given that it’s state is ⇢ (2.7)
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Besides normalization, the other big property of a density matrix is that it is positive
semi-definite, which we write symbolically as ⇢ � 0. What this means is that its
sandwich in any quantum state is always non-negative. In symbols, if |�i is an arbitrary
quantum state then

h�|⇢|�i =
X

i

pi|h�| ii|
2
� 0. (2.8)

Of course, this makes sense in view of the probabilistic interpretation of Eq. (2.7).
Please note that this does not mean that all entries of ⇢ are non-negative. Some of
them may be negative. It does mean, however, that the diagonal entries are always
non-negative, no matter which basis you use.

Another equivalent definition of a positive semi-definite operator is one whose
eigenvalues are always non-negative. In Eq. (2.3) it already looks as if ⇢ is in di-
agonal form. However, we need to be a bit careful because the | ii are arbitrary states
and do not necessarily form a basis (which can be seen explicitly in the examples given
above). Thus, in general, the diagonal structure of ⇢ will be di↵erent. Notwithstanding,
⇢ is Hermitian and may therefore be diagonalized by some orthonormal basis |�ki as

⇢ =
X

k

�k |�kih�k |, (2.9)

for certain eigenvalues �k. Since Eq. (2.8) must be true for any state |�iwe may choose,
in particular, |�i = |�ki, which gives

�k = h�k |⇢|ki � 0.

Thus, we see that the statement of positive semi-definiteness is equivalent to saying
that the eigenvalues are non-negative. In addition to this, we also have that tr(⇢) = 1,
which implies that

P
k �k = 1. Thus we conclude that the eigenvalues of ⇢ behave like

probabilities:
�k 2 [0, 1],

X

k

�k = 1. (2.10)

But they are not the same probabilities pi. They just behave like a set of probabilities,
that is all.

For future reference, let me summarize what we learned in a big box: the basic
properties of a density matrix are

Defining properties of a density matrix: tr(⇢) = 1 and ⇢ � 0. (2.11)

Any normalized positive semi-definite matrix is a valid candidate for a density matrix.
I emphasize again that the notation ⇢ � 0 in Eq. (2.11) means the matrix is positive

semi-definite, not that the entries are positive. For future reference, let me list here
some properties of positive semi-definite matrices:

• h�|⇢|�i � 0 for any state |�i;

• The eigenvalues of ⇢ are always non-negative.

• The diagonal entries are always non-negative.

• The o↵-diagonal entries in any basis satisfy |⇢i j| 
p
⇢ii⇢ j j.
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2.3 Purity
Next let us look at ⇢2. The eigenvalues of this matrix are �2

k so

tr(⇢2) =
X

k

�2
k  1 (2.12)

The only case when tr(⇢2) = 1 is when ⇢ is a pure state. In that case it can be written
as ⇢ = | ih | so it will have one eigenvalue p1 = 1 and all other eigenvalues equal to
zero. Hence, the quantity tr(⇢2) represents the purity of the quantum state. When it is
1 the state is pure. Otherwise, it will be smaller than 1:

Purity = P := tr(⇢2)  1 (2.13)

As a side note, when the dimension of the Hilbert space d is finite, it also follows
that tr(⇢2) will have a lower bound:

1
d
 tr(⇢2)  1 (2.14)

This lower bound occurs when ⇢ is the maximally disordered state

⇢ =
Id

d
(2.15)

where Id is the identity matrix of dimension d.

2.4 Bloch’s sphere and coherence
The density matrix for a qubit will be 2 ⇥ 2 and may therefore be parametrized as

⇢ =

0
BBBBB@

p q

q⇤ 1 � p

1
CCCCCA , (2.16)

where p 2 [0, 1] and I used 1 � p in the last entry due to the normalization tr(⇢2) = 1.
If the state is pure then it can be written as | i = a|0i + b|1i, in which case the density
matrix becomes

⇢ = | ih | =

 
|a|2 ab⇤
a⇤b |b|2

!
. (2.17)

This is the density matrix of a system which is in a superposition of |0i and |1i. Con-
versely, we could construct a state which can be in |0i or |1iwith di↵erent probabilities.
According to the very definition of the density matrix in Eq. (2.3), this state would be

⇢ = p|0ih0| + (1 � p)|1ih1| =
 
p 0
0 1 � p

!
. (2.18)
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This is a classical state, obtained from classical probability theory. The examples in
Eqs. (2.17) and (2.18) reflect well the di↵erence between quantum superpositions and
classical probability distributions.

Another convenient way to write the state (2.16) is as

⇢ =
1
2

(1 + s · �) =
1
2

0
BBBBB@

1 + sz sx � isy

sx + isy 1 � sz

1
CCCCCA . (2.19)

where s = (sx, sy, sz) is a vector. The physical interpretation of s becomes evident from
the following relation:

si = h�ii = tr(�i⇢). (2.20)

The relation between these parameters and the parametrization in Eq. (2.16) is

h�xi = q + q⇤,
h�yi = i(q � q⇤),
h�zi = 2p � 1.

Next we look at the purity of a qubit density matrix. From Eq. (2.19) one readily
finds that

tr(⇢2) =
1
2

(1 + s2). (2.21)

Thus, due to Eq. (2.12), it also follows that

s2 = s2
x + s2

y + s2
z  1. (2.22)

When s2 = 1 we are in a pure state. In this case the vector s lies on the surface of
the Bloch sphere. For mixed states s2 < 1 and the vector is inside the Bloch sphere.
Thus, we see that the purity can be directly associated with the radius in the sphere.
This is pretty cool! The smaller the radius, the more mixed is the state. In particular,
the maximally disordered state occurs when s = 0 and reads

⇢ =
1
2

 
1 0
0 1

!
. (2.23)

In this case the state lies in the center of the sphere. A graphical representation of pure
and mixed states in the Bloch sphere is shown in Fig. 2.1.

2.5 Schrödinger and von Neumann
We will now talk about how states evolve in time. Kets evolve according to Schrödinger’s

equation. When Schrödinger’s equation is written for density matrices, it then goes by
the name of von Neumann’s equation. However, as we will learn, von Neumann’s
equation is not the most general kind of quantum evolution, which is what we will call
a Quantum Channel or Quantum Operation. The theory of quantum operations is
awesome. Here I just want to give you a quick look at it, but we will get back to this
many times again.

26










































































































































Pauli matrices on Yj ry f i re IE






































































































































The Bloch sphere helps us understand why thermal estates have

to be mined stakes Take for instance
hIz O

H Koz o wz
z

The thermal state in then

s EPH 1 EP fpnn
Z 2cosh13h12

Tz
and as we saw in lecture s

S
s

coz tanh PI 03hI

1

If ph a too then hot o S thin in the north poleof Beech'ssphere

But when ph a 0 then coz so which in the equator Now comes

the key point if the
state was pure then when Liz o the spin

would have to be pointing somewhere on the Ny plane A pure

stateof a gerbil is always painting
same where this is something

that would be easily detectable experimentally
Bet it's not what

we find On the contrary what we find in that when ph 00

the spin doesn't paint anywhere
which is only possible if the

spin is in the center of Bloch's sphere this neatly shows I

think why thermal estates are naturally mixed






































































































































Thetooolimity
Remember our previous discussions about infinite temperatures

If the system has dimension d when T ooo all storks became

equally einely with
In 1 iz

d

This man becomes much more obvious in terms of density

matrices pH
f e i3

1 r eBH

If T ooo p o 0 and thus

ePH I identity matrix Cia

Moreover for a system with dimension d

I d 15

Thes ein f I 76
T ooo de

which in the unanimally ruined state

The prob of finding
the system in an arbitrary state

to Eq 2 8 above wow becomes

771
01814 I 4410 I

dede

At T ooo the system is equally likely to be found in every state

of the Hiebert space






































































































































Enample qubits us futrits

Thedensity matrices for a Z level and 3 level system arreuning

they are diagonal would have the form

Po

a I a f Pr

If we think about it a diagonal state of a Z level system is

always thermal i that in given Po and P l Po we can always

find a value of P such that

pEo PE
e e P l PoPo

ePEO ePEI ePEE EPI

If p Po we may need p co But still we can always view e

qubit diagonal state
as thermal For qutrits however this is not

in general the case we now have 2 independent probabilities

early 2 because Pz l Po P and in general we cannot find a

single number p which fits both

I'm just saying all this to call attention to the special

structure of thermal
estates thermal estates are special because

the

populations appear in a very specific proportion
related to the

value of p






































































































































F narnple.ro
The QH 0 in characterized by creation and annihilation

operators at and a They are such that

ftammmm3 CI8

and at pm fmI Int
19

a In FT lm s

the Hamiltonian then reads

2e
H tw ata Yz

The partition function was computed in lectures and reeds

2 a eptswk 2

l eBtw

thus the thermal density matrix becomes

geq eBbwjept.hu Zz



of 6 Pauli states, Ek =
1
p

6
| kih k |, with

| 1i = |z+i =
 
1
0

!
, | 2i = |z�i =

 
0
1

!
,

| 3i = |x+i =
1
p

2

 
1
1

!
, | 4i = |x�i =

1
p

2

 
1
�1

!
, (2.52)

| 5i = |y+i =
1
p

2

 
1
i

!
, | 6i = |y�i =

1
p

2

 
1
�i

!
.

This POVM is not minimal: we have more elements than we need in principle. But
from an experimental point of view that is actually a good thing, as it means more data
is available.

2.8 The von Neumann Entropy
The concept of entropy plays a central role in classical and quantum information

theory. In its simplest interpretation, entropy is a measure of the disorder (or mixed-
ness) of a density matrix, quite like the purity tr(⇢2). But with entropy this disorder
acquires a more informational sense. We will therefore start to associate entropy with
questions like “how much information is stored in my system”. We will also introduce
another extremely important concept, called relative entropy which plays the role of
a “distance” between two density matrices.

Given a density matrix ⇢, the von Neumann entropy is defined as

S (⇢) = � tr(⇢ log ⇢) = �
X

k

�k log �k, (2.53)

where �k are the eigenvalues of ⇢. Working with the logarithm of an operator can be
awkward. That is why in the last equality I expressed S (⇢) in terms of them. The
logarithm in Eq. (2.53) can be either base 2 or base e. It depends if the application is
more oriented towards information theory or physics (respectively). The last expression
in (2.53), in terms of a sum of probabilities, is also called the Shannon entropy.

The entropy is seen to be a sum of functions of the form �p log(p), where p 2 [0, 1].
The behavior of this function is shown in Fig. 2.3. It tends to zero both when p ! 0
and p ! 1, and has a maximum at p = 1/e. Hence, any state which has pk = 0 or
pk = 1 will not contribute to the entropy (even though log(0) alone diverges, 0 log(0) is
well behaved). States that are too deterministic therefore contribute little to the entropy.
Entropy likes randomness.

Since each �p log(p) is always non-negative, the same must be true for S (⇢):

S (⇢) � 0. (2.54)
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The generalizationof the Shannan entropy to density matrices

is called the von Neumann entropy

In terms of Xu we

simply get the
Shannon entropy



Moreover, if the system is in a pure state, ⇢ = | ih |, then it will have one eigenvalue
p1 = 1 and all others zero. Consequently, in a pure state the entropy will be zero:

The entropy of a pure state is zero. (2.55)

In information theory the quantity � log(pk) is sometimes called the surprise. When an
“event” is rare (pk ⇠ 0) this quantity is big (“surprise!”) and when an event is common
(pk ⇠ 1) this quantity is small (“meh”). The entropy is then interpreted as the average
surprise of the system, which I think is a little bit funny.
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Figure 2.3: The function �p log(p), corresponding to each term in the von Neumann en-
tropy (2.53).

As we have just seen, the entropy is bounded from below by 0. But if the Hilbert
space dimension d is finite, then the entropy will also be bounded from above. I will
leave this proof for you as an exercise. What you need to do is maximize Eq. (2.53) with
respect to the pk, but using Lagrange multipliers to impose the constraint

P
k pk = 1.

Or, if you are not in the mood for Lagrange multipliers, wait until Eq. (??) where I will
introduce a much easier method to demonstrate the same thing. In any case, the result
is

max(S ) = log(d). Occurs when ⇢ =
I

d
. (2.56)

The entropy therefore varies between 0 for pure states and log(d) for maximally disor-
dered states. Hence, it clearly serves as a measure of how mixed a state is.

Another very important property of the entropy (2.53) is that it is invariant under
unitary transformations:

S (U⇢U†) = S (⇢). (2.57)

This is a consequence of the infiltration property of the unitaries U f (A)U† = f (UAU†)
[Eq. (1.58)], together with the cyclic property of the trace. Since the time evolution
of closed systems are implemented by unitary transformations, this means that the
entropy is a constant of motion. We have seen that the same is true for the purity:
unitary evolutions do not change the mixedness of a state. Or, in the Bloch sphere
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picture, unitary evolutions keep the state on the same spherical shell. For open quantum
systems this will no longer be the case.

As a quick example, let us write down the formula for the entropy of a qubit. Recall
the discussion in Sec. 2.4: the density matrix of a qubit may always be written as in
Eq. (2.19). The eigenvalues of ⇢ are therefore (1 ± s)/2 where s =

q
s2

x + s2
y + s2

z

represents the radius of the state in Bloch’s sphere. Hence, applying Eq. (2.53) we get

S = �
✓1 + s

2

◆
log

✓1 + s
2

◆
�

✓1 � s
2

◆
log

✓1 � s
2

◆
. (2.58)

For a pure state we have s = 1 which then gives S = 0. On the other hand, for a
maximally disordered state we have s = 0 which gives the maximum value S = log 2,
the log of the dimension of the Hilbert space. The shape of S is shown in Fig. 2.4.
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���
���
���
���
���
���
���
���

�

�(
ρ)

��(�)

Figure 2.4: The von Neumann entropy for a qubit, Eq. (2.58), as a function of the Bloch-sphere
radius s.

The quantum relative entropy
Another very important quantity in quantum information theory is the quantum

relative entropy or Kullback-Leibler divergence. Given two density matrices ⇢ and �,
it is defined as

S (⇢||�) = tr(⇢ log ⇢ � ⇢ log�). (2.59)

This quantity is important for a series of reasons. But one in particular is that it satisfies
the Klein inequality:

S (⇢||�) � 0, S (⇢||�) = 0 i↵ ⇢ = �. (2.60)

The proof of this inequality is really boring and I’m not gonna do it here. You can find
it in Nielsen and Chuang or even in Wikipedia.
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Eq. (2.60) gives us the idea that we could use the relative entropy as a measure of
the distance between two density matrices. But that is not entirely precise since the
relative entropy does not satisfy the triangle inequality

d(x, z)  d(x, y) + +d(y, z). (2.61)

This is something a true measure of distance must always satisfy. If you are wondering
what quantities are actual distances, the trace distance is one of them2

T (⇢,�) = ||⇢ � �||1 := tr
q

(⇢ � �)†(⇢ � �)
�
. (2.62)

But there are others as well.

Entropy and information
Define the maximally mixed state ⇡ = Id/d. This is the state we know absolutely

nothing about. We have zero information about it. Motivated by this, we can define the
amount of information in a state ⇢ as the “distance” between ⇢ and ⇡; viz,

I(⇢) = S (⇢||⇡).

But we can also open this up as

S (⇢||1/d) = tr(⇢ log ⇢) � tr(⇢ log(Id/d)) = �S (⇢) + log(d).

I know it is a bit weird to manipulate Id/d here. But remember that the identity matrix
satisfies exactly the same properties as the number one, so we can just use the usual
algebra of logarithms in this case.

We see from this result that the information contained in a state is nothing but

I(⇢) = S (⇢||⇡) = log(d) � S (⇢). (2.63)

This shows how information is connected with entropy. The larger the entropy, the less
information we have about the system. For the maximally mixed state S (⇢) = log(d)
and we get zero information. For a pure state S (⇢) = 0 and we have the maximal
information log(d).

As I mentioned above, the relative entropy is very useful in proving some mathe-
matical relations. For instance consider the result in Eq. (2.56). If we look at Eq. (2.63)
and remember that S (⇢||�) � 0, this result becomes kind of obvious: S (⇢)  log(d) and
S (⇢) = log(d) i↵ ⇢ = 1/d, which is precisely Eq. (2.56).

2The fact that ⇢ � � is Hermitian can be used to simplify this a bit. I just wanted to write it in a more
general way, which also holds for non-Hermitian operators.
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Respansefenctions

A very common problem in statistical mechanics is that of

measuring the response of a system to a certain external

stimulus This is usually formulated as follows
We have a system

with Hamiltonian Ho we then apply a stimulus x which couples

to some operator A such that the
Hamiltonian changes to

H t 231

of course the coupling doesn't have to be like this But this kind

of coupling terms out
to be quite common the most important

example is that of a spinsystem
ecerpled to a magnetic field so

Gthat H Ho h Sz

I will work with 237 for now though because I want to

emphasize that the results
are also valid beyond spin systems

the quantity we naw want to evaluate in the response of the

system to the stimulus x

ay e tr A eP't 25

tr ePH

what I want to show in that this can be written as

sA 26

where F T en Z






































































































































You already showed 26 in the problem set for the ease of spin

But here I would like to go through a mere careful proof because

there is actually a subtlety involved related to whether or not A

and Ho commute

The reason is that in order to write something like 26 we

need to earn pete pH2 e
2h

If Ho A 0 then we can write

e
pH e

PHO epXA

In thin ease
eP't eP'to epia

and 2 ERA p A EP
A EP PA

22

since A commutes with itself Then

pA ePH when Ho A o zz
2,2 e

BH

so that going from 251 to 26 in easy

a f
Z Fent If

But if H A to competing 2 ePHI2x in not trivial Quite

surprisinglythough Eq 267 continues to
hold Let's see why






































































































































It is useful to have the following BCH expansion in mind

let Kcx denote our arbitrary operator then

eN dd f K dd tz 4 K d 3 e us

you can verify this formula by
series expanding the exponentials in

both sides in a Taylor series

287 shows in that to compete de it matters whether
what DX

or not dI commutes with K If they do then it's easy If they

DX

don't then we set a tin principle infinite series

For our problem KCx pHo t pXA so 21 pa we then get
2x

a
eP't PA I k PA CK CK PA 1 ePH Ca

But now comes the fun part let's earmpute

tr If e
P't tr pa ePH Iz tr Ex pa e B't

30

what we tr Ex pa e P J t
want






































































































































Using the cyclic property of the trace we can write the End

team as

tr Capa e tr f k pA e tr PA ke

tr pa e k tr panek
0

since k and e earmmute the same is also true for all other

serums in 128 Thus we reach the quite nice conclusion that

tr eBH ptr AEBH csi

the derivation of 126 therefore renren.ms
unaltered even if A and

Ho do not commute






































































































































Susceptibility

the susceptibility is defined as the sensitivity of a to

changes in

132X 2CA 2
2 2

Ilugging in the definition of
CA together with

X I trfA
P

2X fr epH
22

ad tr ca e
BH trae

z 2 2X

Iz trCAePH p CA
2

The first term in a bit tricky If Ho A 0 we can use 277 to

get
X f tr AZe

PH p a 2

Z

pfcA7
133

thin result is quite nice It shows that the susceptibility the

sensitivity of CA to changes in X is actually related to the

variance of a ie to the fluctuations of A ins equilibrium






































































































































when Ho A to Eq 33 no longer holds In this ease it

in useful to use the following Feymmannintegral tricky

a
eB pojds ePHS Aep

Hs
ePH gu

Thin identity is actually a consequence of 1287 It is

demonstratedin the appendix below we then get

X Tf as tr A ePASA EPH ePH p ca
2

or

x.ioEPAeP A 1352

If Ho A a o thin clearly reduces to 133 But written like this it

clearly shows how He A f o affects X

The susceptibility in defined for any
X However suite often one is

interested in the value of X gov X
ro this is linear response theory

we apply an infinitesimal perturbation
and analyze how

the

system responds
to it To leading order we may in thin ease compete

X from the unperturbed state
Ho i

X e p f jds A ePHOSA EPH's AI go






































































































































where So trC EP Izo in a thermal average over the

unperturbedHamiltonian Ho






































































App fymmmtigwihded.twe discussed in Eq 267 the following BCH expansion

dote dd ECK IF j.cn a If 33 i i e ca

we can rewrite this in terms of an integral identity due to

Feynman which
can be quite useful To do that recall the

traditionalBC it expansions

e y e Yt x y X Ex Y CA2

comparing with CA 1 we see that the coefficients are a bit off

For instance in CA 7 the factor of Yz multiplies K K whereas

in ca 2 it multiplies x EXYJ

We can fix this by introducing some armillary integrals
first s

f K K Jds s K K

0

since ds s 42 Continuing in the same way

K Ek K Jds K Cri k

I'm not doing anything with the operators just playing
with

the coefficients



Eg CA I may then be rewritten as

u

daff
ds K SEK k i k En K e

and if we were earmpane thin with CA 27 we see that the

integrand is precisely in the usual BCH forum

d Jds e
s de e

Ks
e
k

di

changing s s s we earn alternatively write this as

K KS KS

dd e fois e DI e
di0

Thus to summarize

ddzekejodseksdye ksek ekfdseksdd.IE ca

If K K 0 then we can cancel out e s with e KS leading

K
to dde DI e

DX

otherwise we have to stick with A 3


