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1.10 The Trace

The trace of an operator is defined as the sum of its diagonal entries:

tr(A) = Z(ilAli). (1.71)

It turns out that the trace is the same no matter which basis you use. You can see that
using completeness: for instance, if |a) is some other basis then

DAl = 37 > dilaXalAli) = 37 > KalAliila) = 3 aldla).

Thus, we conclude that

tr(A) = Z(ilAIi) = Z(alAla). (1.72)

The trace is a property of the operator, not of the basis you choose. Since it does not
matter which basis you use, let us choose the basis |4;) which diagonalizes the operator
A. Then (4;|A|4;) = A; will be an eigenvalue of A. Thus, we also see that

tr(A) = Z A; = sum of all eigenvalues of A | (1.73)

Perhaps the most useful property of the trace is that it is cyclic:
tr(AB) = tr(BA). (1.74)

I will leave it for you to demonstrate this. Simply insert a convenient completeness
relation in the middle of AB. Using the cyclic property (1.74) you can also move
around an arbitrary number of operators, but only in cyclic permutations. For instance:

tr(ABC) = tr(CAB) = tr(BCA). (1.75)

Note how I am moving them around in a specific order: tr(ABC) # tr(BAC). An
example that appears often is a trace of the form tr(UAU), where U is unitary operator.
In this case, it follows from the cyclic property that

tr(UAUT = w(AUTU) = tr(A)

Thus, the trace of an operator is invariant by unitary transformations. This is also in
line with the fact that the trace is the sum of the eigenvalues and unitaries preserve
eigenvalues.
Finally, let |) and |¢) be arbitrary kets and let us compute the trace of the outer
product [¢)(@:
(XD = D (wX@liy = > (liXily)
l 1
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The sum over |i) becomes a 1 due to completeness and we conclude that

tr(ly)(@l) = (pl).

(1.76)

Notice how this follows the same logic as Eq. (1.74), so you can pretend you just used
the cyclic property. This formula turns out to be extremely useful, so it is definitely

worth remembering.
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Chapter 2

Density matrix theory

2.1 The density matrix

A ket |y) is actually not the most general way of defining a quantum state. To
motivate this, consider the state |n,) in Eq. (1.47) and the corresponding expectation
values computed in Eq. (1.48). This state is always poiting somewhere: it points at the
direction v of the Bloch sphere. It is impossible, for instance, to find a quantum ket
which is isotropic. That is, where (o,) = {(0,) = {(0;) = 0. That sounds strange. The
solution to this conundrum lies in the fact that we need to also introduce some classical
uncertainty to the problem. Kets are only able to encompass quantum uncertainty.

The most general representation of a quantum system is written in terms of an
operator p called the density operator, or density matrix. It is built in such a way
that it naturally encompasses both quantum and classical probabilities. But that is
not all. We will also learn next chapter that density matrices are intimately related to
entanglement. So even if we have no classical uncertainties, we will also eventually
find the need for dealing with density matrices. For this reason, the density matrix is
the most important concept in quantum theory. I am not exaggerating. You started this
chapter as a kid. You will finish it as an adult. :)

To motivate the idea, imagine we have a machine which prepares quantum systems
in certain states. For instance, this could be an oven producing spin 1/2 particles, or a
quantum optics setup producing photons. But suppose that this apparatus is imperfect,
so it does not always produces the same state. That is, suppose that it produces a state
[¥1) with a certian probability p; or a state |if,) with a certain probability p, and so
on. Notice how we are introducing here a classical uncertainty. The |if;) are quantum
states, but we simply don’t know which states we will get out of the machine. We
can have as many p’s as we want. All we need to assume is that satisfy the properties
expected from a probability:

pi€l01],  and Y pi=1 @.1)

Now let A be an observable. If the state is |/), then the expectation value of A
will be (¥1|Aly1). But if it is |y;) then it will be (¥,|Alf,). To compute the actual
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expectation value of A we must therefore perform an average of quantum averages:

(A) =" pyilAlys) 22)

We simply weight the possible expectation values (¢;]A|y;) by the relative probabilities
p; that each one occurs.

What is important to realize is that this type of average cannot be writen as (¢|Al¢)
for some ket |¢). If we want to attribute a “state” to our system, then we must generalize
the idea of ket. To do that, we use Eq. (1.76) to write

Wil = tr [ Al

Then Eq. (2.2) may be written as
W= pite || = w{a Y plicu]

This motivates us to define the density matrix as

p = Pl 23)

Then we may finally write Eq. (2.2) as

(A) = tr(Ap) 2.4

which, by the way, is the same as tr(pA) since the trace is cyclic [Eq. (1.74)].

With this idea, we may now recast all of quantum mechanics in terms of density
matrices, instead of kets. If it happens that a density matrix can be written as p = [y/){(¢/,
we say we have a pure state. And in this case it is not necessary to use p at all. One
may simply continue to use |y). For instance, Eq. (2.4) reduces to the usual result:
tr(Ap) = (YlAlp). A state which is not pure is usually called a mixed state. In this case
kets won’t do us no good and we must use p.

Examples

Let’ s play with some examples. To start, suppose a machine tries to produce qubits
in the state |0). But it is not very good so it only produces |0) with probability p. And,
with probability 1 — p it produces the state |1). The density matrix would then be.

p=mww+a—pmxn=@ ng-
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Or it could be such that it produces either |0) or [+) = (|0) + [1))/ V2. Then,

1 —
P = plo)O0] + (1 = p)l+)X+| = 3 (i J_ri } _ i)

Maybe if our device is not completely terrible, it will produce most of the time |0) and
every once in a while, a state /) = cos glO) + sin gll), where 6 is some small angle.
The density matrix for this system will then be

2 [

¢ a —p)singgos 5)
g (1 - p)sin %

p+(1—p)cos
1-p singcos

p = plOXO0l + (1 = p)l)yl = (

Of course, the machine can very well produce more than 2 states. But you get the idea.

Next let’s talk about something really cool (and actually quite deep), called the
ambiguity of mixtures. The idea is quite simple: if you mix stuff, you generally loose
information, so you don’t always know where you started at. To see what I mean,
consider a state which is a 50-50 mixture of |0) and |1). The corresponding density
matrix will then be

1 1 11 0
p = 5I0X01+ S1X] = 5(0 1)~

Alternatively, consider a 50-50 mixture of the states |+) in Eq. (1.11). In this case we
get

1 1 11 0
p= 5+ 310 = 5 (0 1).

We see that both are identical. Hence, we have no way to tell if we began with a 50-50
mixture of |0) and |1) or of [+) and |-). By mixing stuff, we have lost information.

2.2 Properties of the density matrix

The density matrix satisfies a bunch of very special properties. We can figure them
out using only the definition (2.3) and recalling that p; € [0, 1]and }}; p; = 1 [Eq. (2.1)].
First, the density matrix is a Hermitian operator:

p=p. (2.5)

Second,

() = )" pitedwi) = Y pilwilu) = ) pi = 1. 2.6)

This is the normalization condition of the density matrix. Another way to see this is
from Eq. (2.4) by choosing A = 1. Then, since (1) = 1 we again get tr(p) = 1.

We also see from Eq. (2.8) that (¢|p|¢) is a sum of quantum probabilities [(¢|y;)|>
averaged by classical probabilities p;. This entails the following interpretation: for an
arbitrary state |¢),

(#lplp) = Prob. of finding the system at state |¢) given that it’s state is p 2.7
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Besides normalization, the other big property of a density matrix is that it is positive
semi-definite, which we write symbolically as p > 0. What this means is that its
sandwich in any quantum state is always non-negative. In symbols, if |¢) is an arbitrary
quantum state then

@lolo) = D, pilglunP = 0. 238)

Of course, this makes sense in view of the probabilistic interpretation of Eq. (2.7).
Please note that this does not mean that all entries of p are non-negative. Some of
them may be negative. It does mean, however, that the diagonal entries are always
non-negative, no matter which basis you use.

Another equivalent definition of a positive semi-definite operator is one whose
eigenvalues are always non-negative. In Eq. (2.3) it already looks as if p is in di-
agonal form. However, we need to be a bit careful because the |if;) are arbitrary states
and do not necessarily form a basis (which can be seen explicitly in the examples given
above). Thus, in general, the diagonal structure of p will be different. Notwithstanding,
p is Hermitian and may therefore be diagonalized by some orthonormal basis |1;) as

p= D Al 29)
k

for certain eigenvalues ;. Since Eq. (2.8) must be true for any state |¢) we may choose,
in particular, |¢) = |4x), which gives

A = {Alplky = 0.

Thus, we see that the statement of positive semi-definiteness is equivalent to saying
that the eigenvalues are non-negative. In addition to this, we also have that tr(p) = 1,
which implies that };, 4, = 1. Thus we conclude that the eigenvalues of p behave like
probabilities:

A €0, 1], szz 1. (2.10)
k

But they are not the same probabilities p;. They just behave like a set of probabilities,
that is all.

For future reference, let me summarize what we learned in a big box: the basic
properties of a density matrix are

Defining properties of a density matrix: tro)=1 and p=>0. (2.11)

Any normalized positive semi-definite matrix is a valid candidate for a density matrix.

I emphasize again that the notation p > 0 in Eq. (2.11) means the matrix is positive
semi-definite, not that the entries are positive. For future reference, let me list here
some properties of positive semi-definite matrices:

(dlol¢) = O for any state |¢);

e The eigenvalues of p are always non-negative.

e The diagonal entries are always non-negative.

e The off-diagonal entries in any basis satisfy |p;;| < +/[pip;j;-
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2.3 Purity

Next let us look at p*. The eigenvalues of this matrix are A7 so
tr(p?) = Z <l 2.12)
x

The only case when tr(p?) = 1 is when p is a pure state. In that case it can be written
as p = [Y){¢| so it will have one eigenvalue p; = 1 and all other eigenvalues equal to
zero. Hence, the quantity tr(p?) represents the purity of the quantum state. When it is
1 the state is pure. Otherwise, it will be smaller than 1:

Purity = P := tr(p?) < 1 (2.13)

As a side note, when the dimension of the Hilbert space d is finite, it also follows
that tr(p?) will have a lower bound:

1
e tr(p?) < 1 (2.14)
This lower bound occurs when p is the maximally disordered state

p=- (2.15)

where [ is the identity matrix of dimension d.

2.4 Bloch’s sphere and coherence

The density matrix for a qubit will be 2 X 2 and may therefore be parametrized as

-
p= , (2.16)
g 1-p

where p € [0, 1] and T used 1 — p in the last entry due to the normalization tr(o®) = 1.
If the state is pure then it can be written as |y) = a|0) + b|1), in which case the density
matrix becomes

la® "b*) . 2.17)

p =YXyl = ([l*b |b|2

This is the density matrix of a system which is in a superposition of |0) and |1). Con-
versely, we could construct a state which can be in |0) or |1) with different probabilities.
According to the very definition of the density matrix in Eq. (2.3), this state would be

p=p|0><0|+(1—p>|1><1|=(’0’ lf’p). (2.18)
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This is a classical state, obtained from classical probability theory. The examples in
Egs. (2.17) and (2.18) reflect well the difference between quantum superpositions and
classical probability distributions.

Another convenient way to write the state (2.16) is as

(2.19)

T+s, s,—isy,
3 .

1 1
p==(1+s-0)==
2 sy+is, l-s;

where s = (s, s,, 5;) is a vector. The physical interpretation of s becomes evident from
the following relation:

s = (o) = tr(op). (2.20)
The relation between these parameters and the parametrization in Eq. (2.16) is
(o) =q+q",
(oy) = ilg = q"),
(o) =2p—1.
Next we look at the purity of a qubit density matrix. From Eq. (2.19) one readily
finds that
tr(p?) = %(1 +s%. (2.21)

Thus, due to Eq. (2.12), it also follows that

S=si+s+s <1 (2.22)
When s> = 1 we are in a pure state. In this case the vector s lies on the surface of
the Bloch sphere. For mixed states s> < 1 and the vector is inside the Bloch sphere.
Thus, we see that the purity can be directly associated with the radius in the sphere.
This is pretty cool! The smaller the radius, the more mixed is the state. In particular,
the maximally disordered state occurs when s = 0 and reads

1{1 0
p=§(0 1). (2.23)

In this case the state lies in the center of the sphere. A graphical representation of pure
and mixed states in the Bloch sphere is shown in Fig. 2.1.

o 0) 40)

i C
I:) 4 I:) 4 I:) A
Y Y[ YIn

Figure 2.1: Examples of pure and mixed states in the z axis. Left: a pure state. Center: an
arbitrary mixed state. Right: the maximally mixed state (2.23).
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2.8 The von Neumann Entropy

The concept of entropy plays a central role in classical and quantum information
theory. In its simplest interpretation, entropy is a measure of the disorder (or mixed-
ness) of a density matrix, quite like the purity tr(o®). But with entropy this disorder
acquires a more informational sense. We will therefore start to associate entropy with
questions like “how much information is stored in my system”. We will also introduce
another extremely important concept, called relative entropy which plays the role of
a “distance” between two density matrices.

Given a density matrix p, the von Neumann entropy is defined as

/ Ion touwne ocg Mo we
: He
S(p) = ~trplogp) = — Y Alog Ay, 5 (2.53) 9 et
k

Shommonn D-AJV%_

where A; are the eigenvalues of p. Working with the logarithm of an operator can be
awkward. That is why in the last equality I expressed S (p) in terms of them. The
logarithm in Eq. (2.53) can be either base 2 or base e. It depends if the application is
more oriented towards information theory or physics (respectively). The last expression
in (2.53), in terms of a sum of probabilities, is also called the Shannon entropy.

The entropy is seen to be a sum of functions of the form —p log(p), where p € [0, 1].
The behavior of this function is shown in Fig. 2.3. It tends to zero both when p — 0
and p — 1, and has a maximum at p = 1/e. Hence, any state which has p; = 0 or
pr = 1 will not contribute to the entropy (even though log(0) alone diverges, 0log(0) is
well behaved). States that are too deterministic therefore contribute little to the entropy.
Entropy likes randomness.

Since each —plog(p) is always non-negative, the same must be true for S (p):

S(p) > 0. (2.54)
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Moreover, if the system is in a pure state, p = [){¢, then it will have one eigenvalue
p1 =1 and all others zero. Consequently, in a pure state the entropy will be zero:

The entropy of a pure state is zero. (2.55)

In information theory the quantity — log(py) is sometimes called the surprise. When an
“event” is rare (py ~ 0) this quantity is big (“surprise!”) and when an event is common
(pr ~ 1) this quantity is small (“meh”). The entropy is then interpreted as the average
surprise of the system, which I think is a little bit funny.

0.5

04} 1/e

e
)

—p In(p)

o
o

i1/e
0'8.0 02 04 06 08 10
p

Figure 2.3: The function —plog(p), corresponding to each term in the von Neumann en-
tropy (2.53).

As we have just seen, the entropy is bounded from below by 0. But if the Hilbert
space dimension d is finite, then the entropy will also be bounded from above. I will
leave this proof for you as an exercise. What you need to do is maximize Eq. (2.53) with
respect to the py, but using Lagrange multipliers to impose the constraint ), pr = 1.
Or, if you are not in the mood for Lagrange multipliers, wait until Eq. (??) where I will
introduce a much easier method to demonstrate the same thing. In any case, the result
is I

max(S) = log(d). Occurs when p = 7 (2.56)

The entropy therefore varies between 0 for pure states and log(d) for maximally disor-
dered states. Hence, it clearly serves as a measure of how mixed a state is.
Another very important property of the entropy (2.53) is that it is invariant under
unitary transformations:
S(UpUY = S(p). (2.57)

This is a consequence of the infiltration property of the unitaries U f(A)U' = f(UAUT)

together with the cyclic property of the trace. Since the time evolution
of closed systems are implemented by unitary transformations, this means that the
entropy is a constant of motion. We have seen that the same is true for the purity:
unitary evolutions do not change the mixedness of a state. Or, in the Bloch sphere
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picture, unitary evolutions keep the state on the same spherical shell. For open quantum
systems this will no longer be the case.

As a quick example, let us write down the formula for the entropy of a qubit. Recall
the discussion in Sec. 2.4: the density matrix of a qubit may always be written as in
Eq. (2.19). The eigenvalues of p are therefore (1 + 5)/2 where s = /52 + 52 + s2
represents the radius of the state in Bloch’s sphere. Hence, applying Eq. (2.53) we get

1+s 1+s 1-=s 1-s
= (5o (5) - (e (5) >
S ( 2 ) %872 2 )8\ (2.58)
For a pure state we have s = 1 which then gives S = 0. On the other hand, for a

maximally disordered state we have s = 0 which gives the maximum value S = log2,
the log of the dimension of the Hilbert space. The shape of S is shown in Fig. 2.4.

(1) =i e ey gy gy
0.6}
0.5¢
3 0.4f
“ 03¢
0.2¢
0.1}

0.
8.0 02 04 06 08 10
S

Figure 2.4: The von Neumann entropy for a qubit, Eq. (2.58), as a function of the Bloch-sphere
radius s.

The quantum relative entropy

Another very important quantity in quantum information theory is the quantum
relative entropy or Kullback-Leibler divergence. Given two density matrices p and o,
it is defined as

S (pllo) = tr(plogp — plog o). (2.59)

This quantity is important for a series of reasons. But one in particular is that it satisfies
the Klein inequality:

S(llo) >0,  S(pllo) = 0iffp = o- (2.60)

The proof of this inequality is really boring and I’'m not gonna do it here. You can find
it in Nielsen and Chuang or even in Wikipedia.
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Eq. (2.60) gives us the idea that we could use the relative entropy as a measure of
the distance between two density matrices. But that is not entirely precise since the
relative entropy does not satisfy the triangle inequality

d(x,z) < d(x,y) + +d(y,2). (2.61)

This is something a true measure of distance must always satisfy. If you are wondering
what quantities are actual distances, the trace distance is one of them?

T(p.o) = lp - ol 1=t (o 1o - )] (2.62)

But there are others as well.

Entropy and information

Define the maximally mixed state 7 = I;/d. This is the state we know absolutely
nothing about. We have zero information about it. Motivated by this, we can define the
amount of information in a state p as the “distance” between p and 7; viz,

1(p) = S(pllm).

But we can also open this up as

S (pll1/d) = tr(plog p) — tr(plog(la/d)) = =S (p) + log(d).

I know it is a bit weird to manipulate /;/d here. But remember that the identity matrix
satisfies exactly the same properties as the number one, so we can just use the usual
algebra of logarithms in this case.

We see from this result that the information contained in a state is nothing but

1(p) = S(plim) = log(d) = S (p). (2.63)

This shows how information is connected with entropy. The larger the entropy, the less
information we have about the system. For the maximally mixed state S (o) = log(d)
and we get zero information. For a pure state S(p) = 0 and we have the maximal
information log(d).

As I mentioned above, the relative entropy is very useful in proving some mathe-
matical relations. For instance consider the result in Eq. (2.56). If we look at Eq. (2.63)
and remember that S (p||o”) > 0, this result becomes kind of obvious: S (p) < log(d) and
S(p) = log(d) iff p = 1/d, which is precisely Eq. (2.56).

2The fact that p — o is Hermitian can be used to simplify this a bit. I just wanted to write it in a more
general way, which also holds for non-Hermitian operators.
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