Lecture 3: Dennity matrices

Recommended reading: Nielsen, chapter 2.4

Feymann, chapter 2.

Mathematical worm-up: before we stort with the physics, est us review the econcept of trace of an eperator.

1.10 The Trace

The trace of an operator is defined as the sum of its diagonal entries:

$$\operatorname{tr}(A) = \sum_{i} \langle i|A|i\rangle. \tag{1.71}$$

It turns out that the trace is the same no matter which basis you use. You can see that using completeness: for instance, if $|a\rangle$ is some other basis then

$$\sum_{i} \langle i|A|i\rangle = \sum_{i} \sum_{a} \langle i|a\rangle \langle a|A|i\rangle = \sum_{i} \sum_{a} \langle a|A|i\rangle \langle i|a\rangle = \sum_{a} \langle a|A|a\rangle.$$

Thus, we conclude that

$$\operatorname{tr}(A) = \sum_{i} \langle i|A|i\rangle = \sum_{a} \langle a|A|a\rangle.$$
(1.72)

The trace is a property of the operator, not of the basis you choose. Since it does not matter which basis you use, let us choose the basis $|\lambda_i\rangle$ which diagonalizes the operator *A*. Then $\langle \lambda_i | A | \lambda_i \rangle = \lambda_i$ will be an eigenvalue of *A*. Thus, we also see that

$$\operatorname{tr}(A) = \sum_{i} \lambda_{i} = \operatorname{sum of all eigenvalues of } A$$
 (1.73)

Perhaps the most useful property of the trace is that it is cyclic:

$$tr(AB) = tr(BA). \tag{1.74}$$

I will leave it for you to demonstrate this. Simply insert a convenient completeness relation in the middle of AB. Using the cyclic property (1.74) you can also move around an arbitrary number of operators, but only in cyclic permutations. For instance:

$$tr(ABC) = tr(CAB) = tr(BCA).$$
(1.75)

Note how I am moving them around in a specific order: $tr(ABC) \neq tr(BAC)$. An example that appears often is a trace of the form $tr(UAU^{\dagger})$, where U is unitary operator. In this case, it follows from the cyclic property that

$$tr(UAU^{\dagger}) = tr(AU^{\dagger}U) = tr(A)$$

Thus, the trace of an operator is invariant by unitary transformations. This is also in line with the fact that the trace is the sum of the eigenvalues and unitaries preserve eigenvalues.

Finally, let $|\psi\rangle$ and $|\phi\rangle$ be arbitrary kets and let us compute the trace of the outer product $|\psi\rangle\langle\phi|$:

$$\operatorname{tr}(|\psi\rangle\langle\phi|) = \sum_{i} \langle i|\psi\rangle\langle\phi|i\rangle = \sum_{i} \langle\phi|i\rangle\langle i|\psi\rangle$$

The sum over $|i\rangle$ becomes a 1 due to completeness and we conclude that

$$\operatorname{tr}(|\psi\rangle\langle\phi|) = \langle\phi|\psi\rangle. \tag{1.76}$$

Notice how this follows the same logic as Eq. (1.74), so you can pretend you just used the cyclic property. This formula turns out to be extremely useful, so it is definitely worth remembering.

Density Matrices and thound states

Let us veriew a bit the Gibbs formalism. We consider a rysken described by a Hormiltonian H with eigenstuff

$$H = \sum_{m} E_{m} [m] \langle m \rangle \langle m \rangle$$
 (1)

If this system is in equilibrium, then the probability to find

$$P_m = \frac{e^{\beta E_m}}{Z}$$
(2)

Mareaver, in quilibrium the expectation volve of any observable A is given by

$$\langle A \rangle = \sum_{n} \langle m | A | m \rangle 2n$$
 (3)

We may now ask the following question: in three a prantim state 14> which would allow us to write (3) as

The onswer is no. For instance, one could nonively try a state like $|\psi\rangle = \sum_{m} \langle \overline{P}_{m} | M \rangle$ (5)

But Hum (4) pives

which is not like (3). It will coincide with (3) if A happens to be diagonal in the basis Im>. But anly in that case.

The moved of the story is that it is not particle to attribute a bet 14> to a thermal state. The only exception, of course, is at zero temperature, where the system kinds to the pround state.

In order to attribute a guantum state to the ngeteen, we have to generalize the notion of kets. The generalization in called a density matrix, which we unvally write as p. the density matrix of the thousal stak is defined as

$$\mathcal{J} = \sum_{m} \mathcal{I}_{m} \left[m \times m \right] \tag{6}$$

the expectation volve of <A> in (3) oon then be written ming

$$\langle A \rangle = \frac{1}{2}r(Ag)$$
 (7)

which in the same as tr (PA).

Below I will try to better motivale why an object such as (6) makes sense. But before daing so, let me just share you something neat. The decomposition of H as in (1) makes it convenient to study functions of H. For instance

$$H^{2} = \sum_{m} E_{m}^{2} [m > \langle m \rangle]$$

$$H^{3} = \sum_{m} E_{m}^{3} [m > \langle m \rangle]$$

and so an. Thus, if f(se) is some arbitrary function, then

$$f(H) = \sum_{m} F(E_{m}) 1 m \times m$$
(8)

we just apply f() to the eigenvalues and multiply by the projectors $(n \times n!)$

It we now look at (6), we see that

$$\int e^{\frac{1}{2}} \sum_{n} e^{\frac{1}{2}E_{n}} [n \times n] = \frac{e^{\frac{1}{2}}}{2}$$
(9)

This is a very neat and very powerful way of writting the thermal atote. what is mice about it is that it makes no reference to any specific baris: it simply writer the state directly as a function of the Hamiltonian. The partition function can also be written in a neat way

ar

$$z = tr(e^{pH})$$
 (10)

because

$$4r(e^{pH}) = \sum_{m} \langle m \rangle e^{pH} | m \rangle = \sum_{m} e^{pE_{m}} = 2$$

Thus, the expectation value (7) may also be written as

$$\langle A \rangle = \frac{+-(A e^{pH})}{+-(e^{pH})}$$
 (11)

The results above are for thermal states, but the idea of a density modrie in absolutely general. To motivale the reasonings behind this I introduce below a countraction of the density motivix which is more general. Hopefully it will closefy the logic behind thus dojects.

Chapter 2

Density matrix theory

2.1 The density matrix

A ket $|\psi\rangle$ is actually not the most general way of defining a quantum state. To motivate this, consider the state $|n_+\rangle$ in Eq. (1.47) and the corresponding expectation values computed in Eq. (1.48). This state is always poiting *somewhere*: it points at the direction n of the Bloch sphere. It is impossible, for instance, to find a quantum ket which is isotropic. That is, where $\langle \sigma_x \rangle = \langle \sigma_y \rangle = \langle \sigma_z \rangle = 0$. That sounds strange. The solution to this conundrum lies in the fact that we need to also introduce some *classical uncertainty* to the problem. Kets are only able to encompass quantum uncertainty.

The most general representation of a quantum system is written in terms of an operator ρ called the *density operator*, or *density matrix*. It is built in such a way that it naturally encompasses both quantum and classical probabilities. But that is not all. We will also learn next chapter that density matrices are intimately related to **entanglement**. So even if we have *no* classical uncertainties, we will also eventually find the need for dealing with density matrices. For this reason, the density matrix is *the most important concept in quantum theory*. I am not exaggerating. You started this chapter as a kid. You will finish it as an adult. :)

To motivate the idea, imagine we have a machine which prepares quantum systems in certain states. For instance, this could be an oven producing spin 1/2 particles, or a quantum optics setup producing photons. But suppose that this apparatus is imperfect, so it does not always produces the same state. That is, suppose that it produces a state $|\psi_1\rangle$ with a certian probability p_1 or a state $|\psi_2\rangle$ with a certain probability p_2 and so on. Notice how we are introducing here a *classical uncertainty*. The $|\psi_i\rangle$ are quantum states, but we simply *don't know* which states we will get out of the machine. We can have as many *p*'s as we want. All we need to assume is that satisfy the properties expected from a probability:

$$p_i \in [0, 1], \quad \text{and} \quad \sum_i p_i = 1$$
 (2.1)

Now let A be an observable. If the state is $|\psi_1\rangle$, then the expectation value of A will be $\langle \psi_1 | A | \psi_1 \rangle$. But if it is $|\psi_2\rangle$ then it will be $\langle \psi_2 | A | \psi_2 \rangle$. To compute the actual

expectation value of A we must therefore perform an average of quantum averages:

$$\langle A \rangle = \sum_{i} p_{i} \langle \psi_{i} | A | \psi_{i} \rangle \tag{2.2}$$

We simply weight the possible expectation values $\langle \psi_i | A | \psi_i \rangle$ by the relative probabilities p_i that each one occurs.

What is important to realize is that this type of average *cannot* be writen as $\langle \phi | A | \phi \rangle$ for some ket $| \phi \rangle$. If we want to attribute a "state" to our system, then we must generalize the idea of ket. To do that, we use Eq. (1.76) to write

$$\langle \psi_i | A | \psi_i \rangle = \operatorname{tr} \left[A | \psi_i \rangle \langle \psi_i | \right]$$

Then Eq. (2.2) may be written as

$$\langle A \rangle = \sum_{i} p_{i} \operatorname{tr} \left[A | \psi_{i} \rangle \langle \psi_{i} | \right] = \operatorname{tr} \left\{ A \sum_{i} p_{i} | \psi_{i} \rangle \langle \psi_{i} | \right\}$$

This motivates us to define the density matrix as

$$\rho = \sum_{i} p_{i} |\psi_{i}\rangle \langle \psi_{i}|$$
(2.3)

Then we may finally write Eq. (2.2) as

$$\langle A \rangle = \operatorname{tr}(A\rho)$$
 (2.4)

which, by the way, is the same as $tr(\rho A)$ since the trace is cyclic [Eq. (1.74)].

With this idea, we may now recast *all* of quantum mechanics in terms of density matrices, instead of kets. If it happens that a density matrix can be written as $\rho = |\psi\rangle\langle\psi|$, we say we have a **pure state**. And in this case it is not necessary to use ρ at all. One may simply continue to use $|\psi\rangle$. For instance, Eq. (2.4) reduces to the usual result: $tr(A\rho) = \langle \psi | A | \psi \rangle$. A state which is not pure is usually called a **mixed state**. In this case kets won't do us no good and we *must* use ρ .

Examples

Let's play with some examples. To start, suppose a machine tries to produce qubits in the state $|0\rangle$. But it is not very good so it only produces $|0\rangle$ with probability *p*. And, with probability 1 - p it produces the state $|1\rangle$. The density matrix would then be.

$$\rho = p|0\rangle\langle 0| + (1-p)|1\rangle\langle 1| = \begin{pmatrix} p & 0\\ 0 & 1-p \end{pmatrix}.$$

Or it could be such that it produces either $|0\rangle$ or $|+\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$. Then,

$$\rho = p|0\rangle\langle 0| + (1-p)|+\rangle\langle +| = \frac{1}{2} \begin{pmatrix} 1+p & 1-p\\ 1-p & 1-p \end{pmatrix}$$

Maybe if our device is not completely terrible, it will produce most of the time $|0\rangle$ and every once in a while, a state $|\psi\rangle = \cos \frac{\theta}{2}|0\rangle + \sin \frac{\theta}{2}|1\rangle$, where θ is some small angle. The density matrix for this system will then be

$$\rho = p|0\rangle\langle 0| + (1-p)|\psi\rangle\langle\psi| = \begin{pmatrix} p + (1-p)\cos^2\frac{\theta}{2} & (1-p)\sin\frac{\theta}{2}\cos\frac{\theta}{2} \\ (1-p)\sin\frac{\theta}{2}\cos\frac{\theta}{2} & (1-p)\sin^2\frac{\theta}{2} \end{pmatrix}$$

Of course, the machine can very well produce more than 2 states. But you get the idea.

Next let's talk about something really cool (and actually quite deep), called the **ambiguity of mixtures**. The idea is quite simple: if you mix stuff, you generally loose information, so you don't always know where you started at. To see what I mean, consider a state which is a 50-50 mixture of $|0\rangle$ and $|1\rangle$. The corresponding density matrix will then be

$$\rho = \frac{1}{2} |0\rangle \langle 0| + \frac{1}{2} |1\rangle \langle 1| = \frac{1}{2} \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$$

Alternatively, consider a 50-50 mixture of the states $|\pm\rangle$ in Eq. (1.11). In this case we get

$$\rho = \frac{1}{2} |+\rangle\langle+| + \frac{1}{2} |-\rangle\langle-| = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

We see that both are identical. Hence, we have *no way to tell* if we began with a 50-50 mixture of $|0\rangle$ and $|1\rangle$ or of $|+\rangle$ and $|-\rangle$. By mixing stuff, we have lost information.

2.2 Properties of the density matrix

The density matrix satisfies a bunch of very special properties. We can figure them out using only the definition (2.3) and recalling that $p_i \in [0, 1]$ and $\sum_i p_i = 1$ [Eq. (2.1)]. First, the density matrix is a Hermitian operator:

$$\rho^{\dagger} = \rho. \tag{2.5}$$

Second,

$$\operatorname{tr}(\rho) = \sum_{i} p_{i} \operatorname{tr}(|\psi_{i}\rangle\langle\psi_{i}|) = \sum_{i} p_{i}\langle\psi_{i}|\psi_{i}\rangle = \sum_{i} p_{i} = 1.$$
(2.6)

This is the *normalization* condition of the density matrix. Another way to see this is from Eq. (2.4) by choosing A = 1. Then, since $\langle 1 \rangle = 1$ we again get tr(ρ) = 1.

We also see from Eq. (2.8) that $\langle \phi | \rho | \phi \rangle$ is a sum of quantum probabilities $|\langle \phi | \psi_i \rangle|^2$ averaged by classical probabilities p_i . This entails the following interpretation: for an arbitrary state $|\phi\rangle$,

 $\langle \phi | \rho | \phi \rangle$ = Prob. of finding the system at state $| \phi \rangle$ given that it's state is ρ (2.7)

Besides normalization, the other big property of a density matrix is that it is **positive** semi-definite, which we write symbolically as $\rho \ge 0$. What this means is that *its* sandwich in any quantum state is always non-negative. In symbols, if $|\phi\rangle$ is an arbitrary quantum state then

$$\langle \phi | \rho | \phi \rangle = \sum_{i} p_{i} |\langle \phi | \psi_{i} \rangle|^{2} \ge 0.$$
(2.8)

Of course, this makes sense in view of the probabilistic interpretation of Eq. (2.7). Please note that this does *not* mean that all entries of ρ are non-negative. Some of them may be negative. It does mean, however, that the diagonal entries are always non-negative, no matter which basis you use.

Another equivalent definition of a positive semi-definite operator is one whose **eigenvalues are always non-negative**. In Eq. (2.3) it already looks as if ρ is in diagonal form. However, we need to be a bit careful because the $|\psi_i\rangle$ are arbitrary states and do not necessarily form a basis (which can be seen explicitly in the examples given above). Thus, in general, the diagonal structure of ρ will be different. Notwithstanding, ρ is Hermitian and may therefore be diagonalized by some orthonormal basis $|\lambda_k\rangle$ as

$$\rho = \sum_{k} \lambda_{k} |\lambda_{k}\rangle \langle \lambda_{k}|, \qquad (2.9)$$

for certain eigenvalues λ_k . Since Eq. (2.8) must be true for any state $|\phi\rangle$ we may choose, in particular, $|\phi\rangle = |\lambda_k\rangle$, which gives

$$\lambda_k = \langle \lambda_k | \rho | k \rangle \ge 0.$$

Thus, we see that the statement of positive semi-definiteness is equivalent to saying that the eigenvalues are non-negative. In addition to this, we also have that $tr(\rho) = 1$, which implies that $\sum_k \lambda_k = 1$. Thus we conclude that the eigenvalues of ρ behave like probabilities:

$$\lambda_k \in [0, 1], \qquad \sum_k \lambda_k = 1. \tag{2.10}$$

But they are not the same probabilities p_i . They just behave like a set of probabilities, that is all.

For future reference, let me summarize what we learned in a big box: the basic properties of a density matrix are

Defining properties of a density matrix:
$$tr(\rho) = 1$$
 and $\rho \ge 0$. (2.11)

Any normalized positive semi-definite matrix is a valid candidate for a density matrix.

I emphasize again that the notation $\rho \ge 0$ in Eq. (2.11) means the matrix is positive semi-definite, not that the entries are positive. For future reference, let me list here some properties of positive semi-definite matrices:

- $\langle \phi | \rho | \phi \rangle \ge 0$ for any state $| \phi \rangle$;
- The eigenvalues of ρ are always non-negative.
- The diagonal entries are always non-negative.
- The off-diagonal entries in any basis satisfy $|\rho_{ij}| \leq \sqrt{\rho_{ii}\rho_{jj}}$.

2.3 Purity

Next let us look at ρ^2 . The eigenvalues of this matrix are λ_k^2 so

$$\operatorname{tr}(\rho^2) = \sum_k \lambda_k^2 \le 1 \tag{2.12}$$

The only case when $tr(\rho^2) = 1$ is when ρ is a pure state. In that case it can be written as $\rho = |\psi\rangle\langle\psi|$ so it will have one eigenvalue $p_1 = 1$ and all other eigenvalues equal to zero. Hence, the quantity $tr(\rho^2)$ represents the **purity** of the quantum state. When it is 1 the state is pure. Otherwise, it will be smaller than 1:

Purity =
$$\mathcal{P} := \operatorname{tr}(\rho^2) \le 1$$
 (2.13)

As a side note, when the dimension of the Hilbert space *d* is finite, it also follows that $tr(\rho^2)$ will have a lower bound:

$$\frac{1}{d} \le \operatorname{tr}(\rho^2) \le 1 \tag{2.14}$$

This lower bound occurs when ρ is the **maximally disordered state**

$$\rho = \frac{\mathbb{I}_d}{d} \tag{2.15}$$

where \mathbb{I}_d is the identity matrix of dimension *d*.

2.4 Bloch's sphere and coherence

The density matrix for a qubit will be 2×2 and may therefore be parametrized as

`

/

$$\rho = \begin{pmatrix} p & q \\ q^* & 1-p \end{pmatrix},$$
(2.16)

where $p \in [0, 1]$ and I used 1 - p in the last entry due to the normalization $tr(\rho^2) = 1$. If the state is pure then it can be written as $|\psi\rangle = a|0\rangle + b|1\rangle$, in which case the density matrix becomes

$$\rho = |\psi\rangle\langle\psi| = \begin{pmatrix} |a|^2 & ab^*\\ a^*b & |b|^2 \end{pmatrix}.$$
(2.17)

This is the density matrix of a system which is in a *superposition* of $|0\rangle$ and $|1\rangle$. Conversely, we could construct a state which can be in $|0\rangle$ or $|1\rangle$ with different probabilities. According to the very definition of the density matrix in Eq. (2.3), this state would be

$$\rho = p|0\rangle\langle 0| + (1-p)|1\rangle\langle 1| = \begin{pmatrix} p & 0\\ 0 & 1-p \end{pmatrix}.$$
(2.18)

Pauli matrices: $\sigma_{k} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad \sigma_{k} = \begin{pmatrix} 0 \\ i \end{pmatrix} \quad \sigma_{k} = \begin{pmatrix} 0 \\ i \end{pmatrix} \quad \sigma_{k} = \begin{pmatrix} 1 \\ 0 \\ -s \end{pmatrix}$

This is a classical state, obtained from classical probability theory. The examples in Eqs. (2.17) and (2.18) reflect well the difference between quantum superpositions and classical probability distributions.

Another convenient way to write the state (2.16) is as

$$\rho = \frac{1}{2}(1 + \mathbf{s} \cdot \boldsymbol{\sigma}) = \frac{1}{2} \begin{pmatrix} 1 + s_z & s_x - is_y \\ s_x + is_y & 1 - s_z \end{pmatrix}.$$
 (2.19)

where $s = (s_x, s_y, s_z)$ is a vector. The physical interpretation of *s* becomes evident from the following relation:

$$s_i = \langle \sigma_i \rangle = \operatorname{tr}(\sigma_i \rho).$$
 (2.20)

The relation between these parameters and the parametrization in Eq. (2.16) is

$$\langle \sigma_x \rangle = q + q^*,$$

 $\langle \sigma_y \rangle = i(q - q^*),$
 $\langle \sigma_z \rangle = 2p - 1.$

Next we look at the purity of a qubit density matrix. From Eq. (2.19) one readily finds that

$$tr(\rho^2) = \frac{1}{2}(1+s^2).$$
 (2.21)

Thus, due to Eq. (2.12), it also follows that

$$s^{2} = s_{x}^{2} + s_{y}^{2} + s_{z}^{2} \le 1.$$
(2.22)

When $s^2 = 1$ we are in a pure state. In this case the vector *s* lies on the surface of the Bloch sphere. For mixed states $s^2 < 1$ and the vector is inside the Bloch sphere. Thus, we see that the purity can be directly associated with the radius in the sphere. This is pretty cool! The smaller the radius, the more mixed is the state. In particular, the maximally disordered state occurs when s = 0 and reads

$$\rho = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$
 (2.23)

In this case the state lies in the center of the sphere. A graphical representation of pure and mixed states in the Bloch sphere is shown in Fig. 2.1.

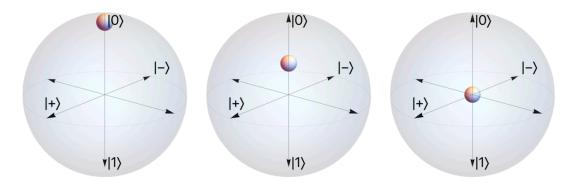


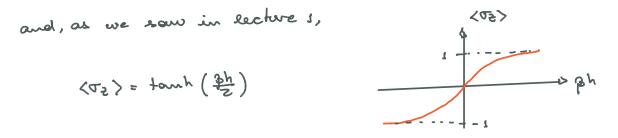
Figure 2.1: Examples of pure and mixed states in the z axis. Left: a pure state. Center: an arbitrary mixed state. Right: the maximally mixed state (2.23).

The Bloch sphere helps us understand why thermal state have to be mined states. Take for instance,

$$H = -\frac{h\sigma_2}{z} = \begin{pmatrix} -h/z & \sigma \\ \sigma & h/z \end{pmatrix}$$

The thousand stak in them

$$p = \frac{e^{\beta H}}{2} = \frac{1}{2\cosh(\beta h/2)} \begin{pmatrix} e^{\beta n/2} & 0 \\ 0 & e^{\beta h/2} \end{pmatrix}$$



If $ph \rightarrow +\infty$ then $\langle \sigma_z \rangle \rightarrow s$. this is the north pale of Block's sphere. But when $ph \rightarrow 0$, then $\langle \sigma_z \rangle \rightarrow 0$, which is the equation. Now comes the key paint: if the stak was pure, then when $\langle \sigma_z \rangle = 0$, the spin would have to be painting somewhere as the sy plane. A pure stak of a public is always painting somewhere. This is comething that would be carrily detectable experimentally. But it's not what that would be carrily detectable experimentally. But it's not what we gived. On the contract, what we pind is that when $ph \rightarrow 0$ the spin docum't paint anywhere, which is anly partials if the spin is in the center of Bloch's sphere. This nearly shows, I this why thermal states are maturally mixed.

The T-> co limit

Aemember our previous discussions about infinik kinperateres. If the system has dimension d, when T-200 all states become equally eithely with

$$P_{m} = \frac{1}{d}$$
(12)

This now becomes much more obvious in tours of density matrices: _ 3H

$$\mathcal{G} = \underbrace{e^{\beta}}_{+\nu(e^{\beta+1})}$$
(3)

If T-000, B-00 and Hws $e^{BH} \rightarrow I - identity matrix (14)$

$$|v(I): d$$
 (15)

Thus
$$\lim_{T \to \infty} g \in \underline{I}$$
 (16)

which in the monimally mixed state.

The prob. of funding the agritum in an arbitrary state 10> [Eq. (2.8) above] now becomes

$$\langle \phi | \rho | \phi \rangle = \frac{1}{2} \langle \phi | \phi \rangle = \frac{1}{2}$$
 (17)

At T-200 the system in equally eithely to be found in any state of the Hilbert space.

Example: gubits ets. gutrits.

The durity matrice for a 2-level and 3-level repter, arouning they are diagonal, would have the form

If we think about it, a diagonal stake of a 2- level upstern in always thermal : that is, given Po and Pi = 1- Po, we can always gind a value of p such that

$$\frac{e^{pE_0}}{e^{pE_0}} = P_0 \qquad \frac{e^{-pE_1}}{e^{pE_0}} = P_1 = 1 - P_0$$

If $P_1 > P_0$ we may need p < 0. But still, we on elevant view e gubit diagonal stak as thermal. For gutnits, however, this is not in general the case. We now have 2 independent probabilities (any 2 because $P_2 = 1 - P_0 - P_1$) and in general we cannot find a ringle number p which fits both.

J'm just ranjung all this to call attention to the special structure of thurmal states: thurmal states are special because the populations appear in a very specific proportion, related to the rowe of p.

Example : QHO

The QHO is chosackrized by creation and annihilation operators at and a. They are uch that

$$at_{a}|m\rangle = m|m\rangle$$
, $m = 0, s, z, 3, ...$ (18)

and

$$a^{\dagger} |m\rangle = \sqrt{m^{2}} |m+s\rangle$$

$$a^{\dagger} |m\rangle = \sqrt{m^{2}} |m-s\rangle$$
(19)

the Hannietonian then reade

$$H = \hbar \omega \left(a^{\dagger} a + \frac{1}{2} \right) \tag{23}$$

The partition function was computed in eacheres and reads

$$\frac{-\rho \hbar w l 2}{l - \tilde{e}^{\beta \hbar w}}$$
(2)

Thus the thurmal density matrix becomes

The generalization of the Shannon entropy to deuxity matricas is called the von Neumann entropy.

2.8 The von Neumann Entropy

The concept of entropy plays a central role in classical and quantum information theory. In its simplest interpretation, entropy is a measure of the disorder (or mixedness) of a density matrix, quite like the purity $tr(\rho^2)$. But with entropy this disorder acquires a more informational sense. We will therefore start to associate entropy with questions like "how much information is stored in my system". We will also introduce another extremely important concept, called **relative entropy** which plays the role of a "distance" between two density matrices.

Given a density matrix ρ , the von Neumann entropy is defined as

$$S(\rho) = -\operatorname{tr}(\rho \log \rho) = -\sum_{k} \lambda_k \log \lambda_k,$$

$$(2.53)$$

$$S(\rho) = -\operatorname{tr}(\rho \log \rho) = -\sum_{k} \lambda_k \log \lambda_k,$$

$$(2.53)$$

$$Shannon entropy$$

Ju we

where λ_k are the eigenvalues of ρ . Working with the logarithm of an operator can be awkward. That is why in the last equality I expressed $S(\rho)$ in terms of them. The logarithm in Eq. (2.53) can be either base 2 or base *e*. It depends if the application is more oriented towards information theory or physics (respectively). The last expression in (2.53), in terms of a sum of probabilities, is also called the **Shannon entropy**.

The entropy is seen to be a sum of functions of the form $-p \log(p)$, where $p \in [0, 1]$. The behavior of this function is shown in Fig. 2.3. It tends to zero both when $p \to 0$ and $p \to 1$, and has a maximum at p = 1/e. Hence, any state which has $p_k = 0$ or $p_k = 1$ will not contribute to the entropy (even though $\log(0)$ alone diverges, $0 \log(0)$ is well behaved). States that are too deterministic therefore contribute little to the entropy. Entropy likes randomness.

Since each $-p \log(p)$ is always non-negative, the same must be true for $S(\rho)$:

$$S(\rho) \ge 0. \tag{2.54}$$

Moreover, if the system is in a pure state, $\rho = |\psi\rangle\langle\psi|$, then it will have one eigenvalue $p_1 = 1$ and all others zero. Consequently, in a pure state the entropy will be zero:

In information theory the quantity $-\log(p_k)$ is sometimes called the *surprise*. When an "event" is rare $(p_k \sim 0)$ this quantity is big ("surprise!") and when an event is common $(p_k \sim 1)$ this quantity is small ("meh"). The entropy is then interpreted as the *average surprise* of the system, which I think is a little bit funny.

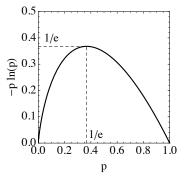


Figure 2.3: The function $-p \log(p)$, corresponding to each term in the von Neumann entropy (2.53).

As we have just seen, the entropy is bounded from below by 0. But if the Hilbert space dimension *d* is finite, then the entropy will also be bounded from above. I will leave this proof for you as an exercise. What you need to do is maximize Eq. (2.53) with respect to the p_k , but using Lagrange multipliers to impose the constraint $\sum_k p_k = 1$. Or, if you are not in the mood for Lagrange multipliers, wait until Eq. (??) where I will introduce a much easier method to demonstrate the same thing. In any case, the result is

$$\max(S) = \log(d).$$
 Occurs when $\rho = \frac{1}{d}.$ (2.56)

The entropy therefore varies between 0 for pure states and log(d) for maximally disordered states. Hence, it clearly serves as a measure of how mixed a state is.

Another very important property of the entropy (2.53) is that it is invariant under unitary transformations:

$$S(U\rho U^{\dagger}) = S(\rho). \tag{2.57}$$

This is a consequence of the infiltration property of the unitaries $Uf(A)U^{\dagger} = f(UAU^{\dagger})$ together with the cyclic property of the trace. Since the time evolution

of closed systems are implemented by unitary transformations, this means that the entropy is a constant of motion. We have seen that the same is true for the purity: unitary evolutions do not change the mixedness of a state. Or, in the Bloch sphere picture, unitary evolutions keep the state on the same spherical shell. For open quantum systems this will no longer be the case.

As a quick example, let us write down the formula for the entropy of a qubit. Recall the discussion in Sec. 2.4: the density matrix of a qubit may always be written as in Eq. (2.19). The eigenvalues of ρ are therefore $(1 \pm s)/2$ where $s = \sqrt{s_x^2 + s_y^2 + s_z^2}$ represents the radius of the state in Bloch's sphere. Hence, applying Eq. (2.53) we get

$$S = -\left(\frac{1+s}{2}\right)\log\left(\frac{1+s}{2}\right) - \left(\frac{1-s}{2}\right)\log\left(\frac{1-s}{2}\right).$$
 (2.58)

For a pure state we have s = 1 which then gives S = 0. On the other hand, for a maximally disordered state we have s = 0 which gives the maximum value $S = \log 2$, the log of the dimension of the Hilbert space. The shape of S is shown in Fig. 2.4.

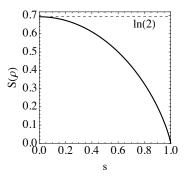


Figure 2.4: The von Neumann entropy for a qubit, Eq. (2.58), as a function of the Bloch-sphere radius *s*.

The quantum relative entropy

Another very important quantity in quantum information theory is the *quantum* relative entropy or Kullback-Leibler divergence. Given two density matrices ρ and σ , it is defined as

$$S(\rho ||\sigma) = \operatorname{tr}(\rho \log \rho - \rho \log \sigma).$$
(2.59)

This quantity is important for a series of reasons. But one in particular is that it satisfies the *Klein inequality*:

$$S(\rho \| \sigma) \ge 0, \qquad S(\rho \| \sigma) = 0 \text{ iff } \rho = \sigma.$$
 (2.60)

The proof of this inequality is really boring and I'm not gonna do it here. You can find it in Nielsen and Chuang or even in Wikipedia. Eq. (2.60) gives us the idea that we could use the relative entropy as a measure of the *distance* between two density matrices. But that is not entirely precise since the relative entropy does not satisfy the triangle inequality

$$d(x, z) \le d(x, y) + +d(y, z).$$
(2.61)

This is something a true measure of distance must always satisfy. If you are wondering what quantities are actual distances, the *trace distance* is one of them²

$$\mathcal{T}(\rho,\sigma) = \|\rho - \sigma\|_1 := \operatorname{tr}\left[\sqrt{(\rho - \sigma)^{\dagger}(\rho - \sigma)}\right].$$
(2.62)

But there are others as well.

Entropy and information

Define the maximally mixed state $\pi = I_d/d$. This is the state we know absolutely nothing about. We have zero information about it. Motivated by this, we can define the amount of information in a state ρ as the "distance" between ρ and π ; viz,

$$\mathcal{I}(\rho) = S(\rho \| \pi).$$

But we can also open this up as

$$S(\rho || 1/d) = \operatorname{tr}(\rho \log \rho) - \operatorname{tr}(\rho \log(I_d/d)) = -S(\rho) + \log(d).$$

I know it is a bit weird to manipulate I_d/d here. But remember that the identity matrix satisfies *exactly* the same properties as the number one, so we can just use the usual algebra of logarithms in this case.

We see from this result that the information contained in a state is nothing but

$$I(\rho) = S(\rho || \pi) = \log(d) - S(\rho).$$
 (2.63)

This shows how information is connected with entropy. The larger the entropy, the less information we have about the system. For the maximally mixed state $S(\rho) = \log(d)$ and we get zero information. For a pure state $S(\rho) = 0$ and we have the maximal information $\log(d)$.

As I mentioned above, the relative entropy is very useful in proving some mathematical relations. For instance consider the result in Eq. (2.56). If we look at Eq. (2.63) and remember that $S(\rho || \sigma) \ge 0$, this result becomes kind of obvious: $S(\rho) \le \log(d)$ and $S(\rho) = \log(d)$ iff $\rho = 1/d$, which is precisely Eq. (2.56).

²The fact that $\rho - \sigma$ is Hermitian can be used to simplify this a bit. I just wanted to write it in a more general way, which also holds for non-Hermitian operators.

Respanse functions

A very common problem in statistical mechanics is that of measuring the response of a system to a certain external stimulus. This is usually formulated as followers. We have a system with Hamiltonian Ho. We thus apply a stimulus & which couples to some operator A, such that the Hamiltonian changes to

$$H = H_0 - \lambda A \tag{23}$$

of course, the coupling down there to be eithe thin. But this kind of coupling turns at to be purite common. The most important example is that of a spin system eccupled to a magnetic field, so that $H = H_0 - h S_2$ (24)

I will work with (23) for now though, because I want to emphasize that the recult are also valid beyond spin systems.

the quantity we now wount to evoluate in the response of the system to the stimulus X,

$$(A) = \frac{\mathrm{tr}(A e^{-\beta H})}{\mathrm{tr}(e^{\beta H})}$$
(25)

what I want to show in that this can be written as

$$\langle A \rangle = -\frac{\Im F}{\Im \lambda}$$
 (26)

where F = - Tenz.

You already showed (26) in the problem set for the oak of spin. But here I would like to go through a more easeful proof, because three is actually a subtledy involved, related to whether or not A and the commute.

The reason is that in order to write something eithe (26) we meed to compute

If [Ho, A] = 0 then we can write

In this case $\frac{2}{2\lambda} \in \mathbb{P}^{H} = \mathbb{P}^{H} \otimes \mathbb{Q}_{\lambda} \otimes \mathbb{Q}_{\lambda}$

and
$$\frac{2}{2\lambda}e^{\beta\lambda A} = pAe^{\beta\lambda A} = e^{\beta\lambda A}pA$$

since A commutes with itself. Then $\frac{\partial}{\partial x} e^{-\beta H} = \beta A e^{-\beta H} \quad (when [H_0, A] = 0)$

(27)

so that going from (25) to (26) is early

$$\langle A \rangle = \frac{1}{2} \frac{1}{2\lambda} \frac{2}{2\lambda} - \frac{2}{2\lambda} \left(\frac{1}{2} \ln z \right) = -\frac{2r}{2\lambda}$$

But if [H,A] =0, computing 20^{PH}/22 in not trivial. Quite surprisingly though, Eq (26) continues to hold. Let's see why. It is meful to have the following BCH expansion in mind: let K(X) denote an arbitrary operator. ohen

$$\frac{d}{dk}e^{K(\lambda)} = \left\{ \frac{dK}{d\lambda} + \frac{1}{2} \left[K, \frac{dK}{d\lambda} \right] + \frac{1}{3!} \left[K, \frac{dK}{d\lambda} \right] \right\} + \dots \right\} e^{K(\lambda)}$$

$$(28)$$

You can neverify this formula by series expanding the expanentials in both sides in a Taylor series.

what (28) shows in that to compute de^{h} , it matters whether or not $\frac{dk}{d\lambda}$ commutes with K. If they do, then it's easy. If they don't, then we get a (in principle) infinite series.

For our problem K(X) = -pHo + pXA to $\frac{2K}{2X}$ = pA. We thun get

$$\frac{2}{2\lambda}e^{-pH} = \left\{pA + \frac{1}{2}\left[\kappa, pA\right] + \frac{1}{3!}\left[\kappa, \left[\kappa, pA\right]\right] + \cdots\right\}e^{pH} \quad (28)$$

But now comes the fun part: let's compute

$$tr\left\{\frac{a}{a\lambda}\vec{e}^{pH}\right\} = tr\left\{pA\vec{e}^{pH}\right\} + \frac{1}{2}tr\left\{\left[x,pA\right]\vec{e}^{pH}\right\}$$
(30)
what we $-\frac{1}{3!}tr\left\{\left[x,\left[x,pA\right]\right]\vec{e}^{pH}\right\} + \dots$

Using the cyclic property of the trace, we can write the state

$$tr \{ [k, pA] e^{k} \} = tr \{ k pA e^{k} \} - tr \{ pA k e^{k} \}$$
$$= tr \{ pA e^{k} k \} - tr \{ pA k e^{k} \}$$

= 0

since K and e^K commute. the same is also true for all other success in (28). Thus we reach the quick mice conduction that

$$\frac{\partial}{\partial \lambda} + \left\{ e^{-\frac{3}{2}H} \right\} = \frac{1}{2} + \left\{ A e^{-\frac{3}{2}H} \right\}$$
(31)

the deviration of (26) threafore remains analtered, even if A and to do not commute.

Susaphibility

The surceptibility is defined as the remaitivity of <A> to changes in A:

$$\chi = \frac{2\langle A \rangle}{2\lambda} = -\frac{\partial^2 F}{2\lambda^2}$$
(32)

Rugging in the definition of <A>, togethor with (31), we get

$$X = \frac{2}{2\lambda} \frac{1}{4r(A\bar{e}^{BH})} + r(\bar{e}^{BH}) + \frac{1}{4r(\bar{e}^{BH})} + \frac{1}{4r(A\bar{e}^{BH})} - \frac{1}{2\lambda} \frac{2}{2\lambda} + \frac{2}{2\lambda} + \frac{2}{4\lambda} + \frac{2$$

The first tour is a bit trucky. If [Ho, A] = 0 we can we (27) to

$$\chi = \frac{\beta}{2} + (A^2 e^{\beta H}) - \beta \langle A \rangle^2$$

or
$$\chi = \rho \left[\langle A^2 \rangle - \langle A \rangle^2 \right]$$
(33)

This secult is guilt mia. It shows that the susceptibility (the substituity of (A) to changes in X) is actually related to the variance of A; i.e. to the fluctuations of A in equilibrium. when [Ho, A] = 0 Eq (33) no larger holds. In this care it is may be me the following Feynmann integral tricky:

This identity is actually a consequence of (28). It is demanstrated in the appendix below. We thus get

$$x = \frac{p}{2} \int ds + r \left\{ A \in p^{HS} A \in p^{HS} \in -p^{H} \right\} - p < A > 2$$

٥v

$$X = P \left[\int_{0}^{1} ds \langle A \bar{e}^{BHS} A e^{BHS} \rangle - \langle A \rangle^{2} \right]$$
(35)

If [H., A]. O this clearly reduces to (33). But whitten like this, it clearly shows how [H., A] to affects X.

The unceptibility is defined for any λ . However, give often, one is interested in the volue of χ for $\lambda \rightarrow 0$. This is linear response theory: we apply an inginitational perforbation and analyze have the use apply an inginitational perforbation and analyze have the system responds to it. To loading ander we may in this case campute χ from the unputerbed state the:

$$x = p \left[\int_{0}^{1} ds \langle A \in P^{HoS} A e^{PHoS} \rangle - \langle A \rangle^{2} \right]$$
(36)

where <> = +r(... e^{\$+0}/20) is a three everage over the emperium bed tomiltonian the. Appendix: a Feynman trick for dealing with de K/dr

we discovered in Eq (26) the following BCH expansion:

$$\frac{d}{dx} = \begin{cases} \frac{d}{dx} + \frac{1}{2} \left[\kappa, \frac{d}{dx} \right] + \frac{1}{3!} \left[\kappa, \frac{d}{dx} \right] + \dots \end{cases} e^{\kappa(\lambda)} \quad (A.1)$$

We can rewrite this in terms of an integral identity due to Feynman which can be quite energed. To do that, recall the "traditional" BCH expansion

$$e^{X} y \bar{e}^{X} = y + [X, y] + \frac{1}{2} [X, [X, Y]] + \cdots$$
 (A-2)

comparing with (A.1) we we that the coefficients are a bit off. For interva in (A.1) the goster of Vz multiplier [K, K], whereas in (A.2) it multiplies [X, [X, Y]].

We can give this by introducing some autiliary integrals: first, $\frac{1}{z} [K_n K'] = \int ds s [K_n K']$

surce $\int_{0}^{1} ds s = \frac{1}{2}$. Combinuing in the same way, $\frac{1}{3!} \left[\kappa, \left[\kappa, \kappa' \right] \right] = \int_{0}^{1} ds \frac{s^{2}}{2} \left[\kappa, \left[\kappa, \kappa' \right] \right]$

I'm not doing anything with the gerators, just playing with the coefficients.

Eq (A.1) may then be rewritten as

$$\frac{d e^{K}}{d\lambda} = \int_{0}^{1} ds \left\{ K + S \left[K_{1} K' \right] + \frac{s^{2}}{2} \left[K_{1} \left[K_{1} K' \right] \right] + \dots \right\} e^{K}$$

and if we more easypore this with (A.2), we see that the integrand is precisely in the useal BCH form:

$$\frac{de^{K}}{d\lambda} = \int ds \ e^{KS} \ \frac{dK}{d\lambda} \ e^{KS} \ e^{K}$$

changing $s-s \rightarrow s$ we can alternatively write this as $\frac{de^{k}}{d\lambda} = e^{k} \int ds \ e^{ks} \frac{dk}{d\lambda} e^{ks}$

Twos, to termaxize:

$$\frac{de^{K}}{d\lambda} = \int ds \ e^{KS} \ \frac{dk}{d\lambda} \ e^{KS} \ e^{K} = e^{K} \int ds \ e^{KS} \ \frac{dk}{d\lambda} \ e^{KS}$$
(A.3)

If
$$[K, K'] = 0$$
 then we can cancel out e^{KS} with \tilde{e}^{KS} , leadings
to $\frac{de^{K}}{d\lambda} = \frac{dK}{d\lambda}e^{K}$

Otherwise, we have to stich with (A.3).