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Chapter 3

Composite Systems

3.1 The age of Ulkron

So far we have considered only a single quantum system described by a basis |i).
Now we turn to the question of how to describe mathematically a system composed of
two or more sub-systems. Suppose we have two sub-systems, which we call A and B.
They can be, for instance, two qubits: one on earth and the other on mars. How to write
states and operators for this joint system? This is another postulate of quantum theory.
But instead of postulating it from the start, I propose we first try to formulate what we
intuitively expect to happen. Then we introduce the mathematical framework that does
the job.

For me, at least, I would expect the following to be true. First, if {|i)4}] is a set of
basis vectors for A and {|j)p} is a basis vector for B, then a joint basis for AB should
have the form |/, j). For instance, for two qubits one should have four possibilities:

0,0), 0, 1), I1,0), 11, 1).

Secondly, again at least in my intuition, one should be able to write down operators
that act locally as if the other system was not there. For instance, we know that for a
single qubit o, is the bit flip operator:

o0y =11), 1) =0).

If we have two qubits, I would expect we should be able to define two operators
and o that act as follows:

710,0) = |1,0), o?10,0) =10, 1).

Makes sense, no? Similarly, we expect that if we apply both o and o the order
shouldn’t matter:
a20810,0) = 7B510,0) = |1, 1).

This means that operators belonging to different systems should commute:

[0}, 081 =0. @3.1)
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The tensor/Kronecker product

The mathematical structure that implements these ideas is called the tensor prod-
uct or Kronecker product. It is, in essence, a way to glue together two vector spaces
to form a larger space. The tensor product between two states |i)4 and |j)p is written as

I, jy = 10y @ |))- (3.2)

The symbol ® separates the two universes. We read this as “i tens j” or “i kron j”. I
like the “kron” since it reminds me of a crappy villain from a Transformers or Marvel
movie. Similarly, the operators o and o? are defined as

=001, ooE=Ixo, (3.3)

where [ is the identify matrix.

In order for us to make sense of these definitions, we must of course specify the
basic rules for how objects behave around the ®. Lucky for you, there is only one rule
that we really need to remeber: stuff to the left of ® only interact with stuff to the left
and stuff to the right only interact with stuff to the right. In symbols:

(A®B)(C®D)=(AC)® (BD), 3.4

In this rule A, B, C and D can be any mathematical object, as long as the multiplications
AC and BD make sense.
Let’s see how this works. For instance,

0710,0) = (07, ® D)(|0) ® [0)) = (07,10)) ® (1]0)).

The only thing I did was apply the rule (3.4) to combine stuff to the left of ® with stuff
to the left and stuff to the right with stuff to the right. Now that we have 0,|0) we are
back to the single qubit business, so we can just write 0,|0) = |1). Then we recombine
the result:

(0:10)) ® (1]0)) = [1) ®|0) = |1, 0),

which is what we would expect intuitively. As another example, the property (3.1), that
operators pertaining to different systems should commute, now follows directly from
our definitions:

O’?O'f =(0:®NU®0T,) =(0,®0y),
U'EO'Q = (1 ® O-X)(O-x ® I) = (O-x ® U-x)a

which are definitely the same thing.

Everything we just said also holds for systems composed of 3, 4 or any number
of parts, of course. In this case we simply add more and more ®. For instance, for 3
qubits, 08 = I ® o, ® I and so on.
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Let us also talk about how to combine other kinds of objects. Remember that all
we need is for the multiplications in the composition rule (3.4) to make sense. For
instance, an operation that makes no sense is

(0| ®10))(ox ® o) = crazy nonsense,

because even though (0o, makes sense, the operation |0)c, does not.
An operation which does make sense is

(k. Lli, jy = Kkl @ (L)1) @ 1)) = (ki) © ((L1))).

The objects that remain here are two numbers and the tensor product of two numbers
is also a number. Thus, we arrive at a rule for the inner product:

Ck, €, jy = <kl (3.5
Outer products are similarly defined:
Ik, €)i, j1 = k)il ® 1) 1. (3.6)

One can also come up with somewhat weird operations which nonetheless make sense.
For instance,

(kI @ 1EN(i) ® (D) = (ki) @ 10| = CKEDIEYI-
In the last equality I used the fact that (k|i) is just a number.

Be cool about notation

Here is a really really really good tip: be cool duuuuuude. There are many ways of
expressing quantum states and operators for composite systems. Don’t be rigid about
notation. Just be clear so that people know what you mean. For instance, if we talk
about states, the following notations are equivalent:

i, Dag = [Da®1j)s = D)alj)s. 3.7

In the third notation adding the suffixes A and B is essential. Otherwise one would not
know if |i) belongs to A or B. For completeness I also added the suffixes to the first two
notations. Sometimes that is redundant. But if there is ever room for confusion, add it:
it doesn’t cost much.

A notation like |i)4]j)p also allows you to move things around and write, for in-
stance, |j)gli)a. There is no room for confusion because you know one symbol belongs
to A and the other to B. The same is true for operator multiplication. For instance,

a2li, jap = liyac®|j)s.

Notice that there is zero room for misinterpretation: the notation is not rigid, but no
one will interpret it wrong.

1 strongly recommend you be cool about the notation. Each notation is useful for a
different thing, so feel free to change them at will. Just make sure there is no room for
misinterpretation.
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Matrix representation of the Kronecker product

When using the Kronecker product in a computer, it is standard to order the basis
elements |i, j) in lexicographic order: for each entry of the first, you loop over all
elements of the last. For instance, if A and B have each dimension 3, we get

0,0), [0,1), 10,2), [1,0p, (1,1}, [1,2), [2,0), [2,1), [2,2).
Conversely, if we have 3 qubits, we would order the basis elements as
0,0,0), 0,0, 1), [0,1,0), 0,1, 1) 11,0, 0)

This ordering is not mandatory. But is extremely convenient for the following reason.
We then associate to each element a unit vector. For instance, for 2 qubits we would
have,

0,1) = [1,0) = , [1,1) = (3.8)

(=N el ]
—_ O O O

0
1
ol
0

The matrix elements of an operator of the form A X B then becomes, using the prop-
erty (3.4)
(k, LA ® Bli, j) = (kIAIX€|B|j) = AyiBe;.

If we now present these guys in a matrix, since we loop over all elements of the second
index, for each element of the first, the matrix form of this will look like

AO’OB e aO’dA_lB
A®B= ., . 3.9)
ag-10B ... aq-14,-1B

This is just an easy of visualizing the matrix: for each A;; we introduce a full block B.
To be clear what is meant by this, consider for instance

(0 1) (0 1) 00 0 1
0 1
1 0 1 0 001 0
o, R0, = = . (3.10)
0 1 0 1 01 0 O
1 1 0 0 1 0 1 0 0 O

This provides an automated way to construct tensor product matrices. The final result is
not very intuitive. But computationally, it is quite trivial. Specially since the Kronecker
product is implemented in any library. In MATLAB they call it kron() whereas in
Mathematica they call it KroneckerProduct[]. These functions are really useful.
You should really try to play with them a bit.

As a consistency check, we can verify that the same logic also holds for vectors.
For instance,

10,0) =10)®10) = (3.11)

1

_{o

1 0
ofo)
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Proceeding similarly leads to all elements in Eq. (3.8).

3.2 Entanglement and mixed states

So far we have talked about how to represent kets and operators of composite sys-
tems using the tensor product. Now let’s see what kind of physics this produces. Sup-
pose we have two qubits, A and B. If qubit A is on Earth and qubit B is on Mars, it is
reasonable to assume that they are each in local states, such as

Ima = al0)a + Bl1)a, ¢ = ¥10)5 + 6|1)5.

Then, the global state of AB will be

4 ®18)s = [0100s + BI1)a| @ 1005 + 1135

= ay|0,0)4p + 6|0, 1)4p + By|1,0)ap + Bol1, 1) 4p.

If we look at the second line, this state seems like simply a linear combination of
the four basis elements [i, j)45. However, this is not an arbitrary linear combination.
It contains a very special choice of parameters which are such that you can perfectly
factor the state into something related to A times something related to B. Cases like this
are what we call a product state. If A and B are in a product state, they are completely
independent of each other.

However, quantum theory also allows us to have more general linear combinations
which are not necessarily factorable into a product. Such a general linear combination
has the form

Wan = D Wiflis as (3.12)
ij

where i; ; are any set of complex numbers satisfying 3;; /i j|2 = 1. When a state like
this cannot be written as a product,’ we say A and B are entangled. An important set
of entangled states are the so called Bell states:

%) = %:|o,o>+|1,1>7, (3.13)
@) = %7|o,o>—|1,1>, (3.14)
") = % 0, 1) +|1,0), (3.15)
Wy = %:|0,1>-|1,0>7. (3.16)

These states cannot be factored into a product of local states (please take a second
to convince yourself of that!). In fact, we will learn soon that they are maximally

IThat is, when we cannot decompose ¢;; = fjg;-
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entangled states. If you are familiar with the theory of angular momentum, you will
also notice that these states (specially |[¥*)) are exactly to the singlet and triplet states
of two spin 1/2 particles. Moreover, it is useful to note that they form an orthonormal
basis for the Hilbert space of the two qubits.

The Controlled NOT (CNOT)

We usually entangle systems by applying gates. That is, unitary transformations
stemming from the interaction between the systems. A popular entangling gate for two
qubits is the CNOT. It is defined by the unitary

Uexor = 10)0la ® I + 1)1}, ® 0% (3.17)

Qubit A is the control bit. If it is in |0), we do nothing on B. But if it is in |1), we apply
the bit flip operation o on B:

UCNOTIO>A|¢>B = |O>A|w>8’
Uonl0alt3s = 10)a( o |¢>B).

Suppose we now start with two qubits reset to [0)4]0)g. We can prepare the two
qubits in a Bell state by applying two gates. First, we apply a Hadamard gate to A:

1
H = @(} 4 (3.18)

1004 +11)a
V2
This is a gate acting only on A. It is a local operation and thus cannot entangle A and

B. To entangle them we now apply the CNOT (3.17). It gives

0,0%a5 + |1, 1)
UenorHal0)4l0)5 = ——2———2,
V2
which is nothing but the Bell state (3.13). The other Bell states may be generated in a
similar way, by starting with the four possible states |7, j):

This produces

HA0)4l0)5 = [+)410)5 = ( )|0>B.

|®7) = UcnorHal0)410) 5,
|(I)_> = UCNOTHA|1>A|O>B9

. (3.19)
[¥") = UcenorHal0)4l1) 5,

[¥7) = UcnorHal1)al1) 5.

44



Density matrices from entanglement

Now I want you to recall our original discussion in Sec. 2.1. We saw that the
concept of density matrix naturally appeared when we considered a crappy machine
that produced quantum states with some classical uncertainty. What we found was that
it was possible to combine quantum and classical effects by introducing an object of
the form

p =" pilviui (3.20)

where the |i;) are arbitrary states and the p; are arbitrary probabilities. This construc-
tion may have left you with the impression that the density matrix is only necessary
when we want to mix quantum and classical stuff. That density matrices are not really
a quantum thing. Now I want to show you that this is not the case. It is definitely not
the case. I will show you that there is an intimate relation between mixed states and
entanglement. And this relation is one the key steps relating quantum mechanics and
information theory.

Essentially, the connection is made by the notion of reduced state or reduced
density matrix. When a composite system is in a product state )4 ® |¢)p, it makes
sense to say the state of A is simply |y)4. But if A and B are entangled, then what is
exactly the “state” of A? To warm up, consider first a bipartite state of AB of the form

Wap = ), cili) @ 1i) (3.21)

1

for certain coefficients ¢; satisfying 3 |c;/> = 1. If ¢; = 1 for some i and all other
c¢j = O then |y) = |i) ® |i) and we get a product state. In any other case, the state will be
entangled.

Now let O, be an operator which acts only on system A. That is, an operator which

has the form O4 = O, ® I5. The expectation value of Oy in the state (3.21) will be

(Oa) = WYOs @ Ip)lY) (3.22)

Carrying out the calculation we get:

©Oa) = D cie; (i@ (IO & Ip)(1j) @ 1))

ij

= Z cic; (il0al )il j)
ij
= Z lei(iOli).

The sandwich that remains is now performed only over the reduced state of A. How-
ever, each sandwich (i|O,|i) is now weighted by a factor |c;|.

We now ask the following question: can we attribute a state |4 ) for system A such
that the above result can be expressed as (4|04l 4). This is actually the same question
we asked in Sec. 2.1. And we saw that the answer is no. In general, there is no pure
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state we can associate with A. Instead, if we wish to associate a quantum state to A, it
will have to be a mixed state, described by a density matrix of the form

pa = leillixil (3.23)

then the expectation value of A becomes
(A) = tr(Apy) (3.24)

This result has extremely important consequences. Eq. (3.23) has exactly the same form
as Eq. (3.20), with the classical probabilities p; replaced by quantum coefficients |c;[?.
But there is absolutely nothing classical here. Nothing. We started with a pure state.
We are talking about a purely quantum effect. Notwithstanding, we see that in general
the state of A will be mixed. If ¢; = 1 for some i and all other ¢; = 0 then Eq. (3.23)
reduces to ps = |i){i], which is a pure state. In all other cases, the state of A will be
mixed. Thus,

When AB are entangled, the reduced state of A and B will be mixed.

To give an example, suppose AB is in the Bell state (3.13). This state has the form
of Eq. (3.21) with ¢; = 1/ V2. Thus, it is easy to apply Eq. (3.23), which gives

1(1 0
m—EQ J (3.25)
We therefore see that the reduced state of A is actually the maximally mixed state.
This is a feature of all Bell states and it is the reason we call them maximally entangled
states. This is super interesting, if you think about it: A Bell state is a pure state, so we
know exactly what the state of AB is. However, we know absolutely nothing about A
alone.

3.3 Reduced density matrices and the partial trace

The state p4 in Eq. (3.23) is called a reduced density matrix. And the procedure
that led us from |¥)4p to p4 is called the partial trace. This is the quantum analog of
computing the marginal P(x) of a joint probability distribution P(x,y). In this section I
will teach you how to make this procedure in a more algorithmic way.

The partial trace

Consider a bipartite system AB. Let |a) and |b) be basis sets for A and B. Then a
possible basis for AB is the tensor basis |a, b). What I want to do is investigate the trace
operation within the full AB space. Any operator in AB can always be decomposed as

0= ZA(Y@BE,, (3.26)
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for some index @ and some set of operators A, and B,. So, to start, let us consider
simply an operator of the form O = A ® B. Then, by linearity it will be easy to extend
to more general operators.

We begin by computing the trace of O = A ® B in the |a, b) basis:

tr(0) = Z(a,bl()la,b)
a,b
= Z((al ® (b)(A ® B)(|a) ® |b))
a,b

= ) (alAla) & (b|Bb)
a,b

= > alAla) ) (bIBIb).
a b

I got rid of the ® in the last line because the kron of two numbers is a number. The two
terms in this formula are simply the trace of the operators A and B in their respective
Hilbert spaces. Whence, we conclude that

tr(A ® B) = tr(A) tr(B). (3.27)

We started with an operator having support on two Hilbert spaces and ended up tracing
everything, so that we are left with only a single number.

We can now imagine an operation where we only trace over one of the Hilbert
spaces and obtain an operator still having support on the other part. This is what we
call the partial trace. It is defined as

tra(A ® B) = tr(A)B, trp(A ® B) = Atr(B) (3.28)

When you “trace over A”, you eliminate the variables pertaining to A and what you are
left with is an operator acting only on B. This is something we often forget, so please
pay attention: the result of a partial trace is still an operator. More generally, for an
arbitrary operator O as defined in Eq. (3.26), we have

try O = Z tf(A,)B,,  tr30 = Z Aq tr(B,). (3.29)

An important example is the partial trace of an operator of the form |a, b){a’, b’|. To
take the partial trace, remember that this can be written as

la, b)a', b'| = la)d’| ® [b)'].

The partial trace over B, for instance, will simply go right through the first part and act
only on the second part; i.e.,

trg la, b, | = la)(d'|tr {|b><b'|}
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Thus, we conclude that

try la, b){a@’, b'| = Sau [DXB'], trgla, b)(@’, b'| = la)a'| 6p - (3.30)

Reduced density matrices

We are now ready to introduce the idea of a reduced density matrix in a more formal
way. Given a bipartite system psp we define the reduced density matrix of A and B as

pA =g Pag, pB =4 pag (3.31)

Let us now practice with some examples.

Example: Bell states

To practice, consider the Bell state example that led us from the bipartite state (3.13)
to the reduced state (3.25). The global density matrix is

1
pag =@ XPy| = E{IO,OXO,OI +10, 0)(1, 1]+ 1, 1)¢0, O + 1, 1)(1, ll} (3.32)

To take the partial trace we use Eq. (3.30) to find:

1 11 0
pa = 5 {0001+ It} = 3 (0 1) (3.33)
with an identical result for pp.

Example: Partially entangled states

Consider now a state of the form

Wdag = VPlO, Dag + V1 = plO, )45, (3.34)

for some number p € [0, 1]. If p = 1/2 we recover the Bell state (3.13). To take the
partial trace we proceed as before:

pas = W)l = pl0, 10, 1] + (1 = p)I1,0X1,0] + /p(1 —P)(IO, 11,0 +[1,0)0, 1|)-

Due to Eq. (3.30), the last two terms will always give 0 when we take the partial trace.
We are then left with

pa = pl0)0l + (1 — p)1)1],

pp = (1= p)l0)O0I + pl1)1].
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Example: X states

X states of two qubits are density matrices of the form

pp 0 0 B

10 pp a O
pP= 0 (Y* D3 0 (335)

B0 0 ps

Normalization requires ); p; = 1 and positivity imposes constraints on the allowed
values of @ and 8. The ordering of states here is the lexicographic order we discussed
in Sec. 3.1. Namely, |0,0),10, 1),[1,0),|1,1). Thus, we can write this X state more
explicitly as

p = p1l0,0)0,0] + p2|0, 140, 1] + p3|1, 0)(1, 0] + p4l1, 1)(1, 1|
+a]0, 1)(1,0] + *[1,0)0, 1| (3.36)
+B10, 0)(1, 1] + |1, 10, 0.

The meaning of @ and 8 now become a bit more clear: they represent, respectively,
the non-local coherences between {|0, 1), |1,0)} and {|0, 0), |1, 1)}. From Eq. (3.36) it is
easy to take the partial trace:

P+ D2 0
=t = , 3.37
pa=Hep ( 0 p3+ P4) ( )
p1+Dp3 0
PB vyYy ( 0 P+ p4) ( )

We see that for X states, the reduced density matrices are diagonal. The entries which
are set to zero in Eq. (3.35) are precisely the ones that would lead to non-zero diagonals
in the reduced state. If we now look for observables, for instance, we will then find that

(o) = (%Y= (oY= ()Y =0.

Non-local observables, on the other hand, can be non-zero. For instance, one may
check that
(a’?crf) =a+a" +B+p5".

Partial trace looses information

If we have a state which is of the form psp = pa ® pp, then Eq. (3.28) directly gives
us trg pap = pa and try pap = pp, as of course expected. So any density matrix which
is a product of the form psp = pa ® pp represents uncorrelated systems, irrespective of
whether the state is pure or not. However, it is very important to note that in general
we cannot recover the full density matrix psp from the reduced density matrices py4
and pp. The operation of taking the partial trace is irreversible and in general looses
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information. To put that more precisely, given a general psp and its reduced density
matrices (3.31), we have

PA® P # PaB (3.39)

This is only true when psp was already originally uncorrelated. Thus, in general, we
see that information is lost whenever AB are correlated.

Example: separable states

A state is called separable when it can be written in the form
p= piph®pp (3.40)

for a set of probabilities p; € [0, 1], }; p; = 1 and an arbitrary set of density matrices
pﬁ“ p)- Of course, in light of Eq. (3.26), any density matrix of AB can be decomposed as
a sum of products. But usually each term in the sum is not a valid density matrix with
a valid probability. The reason why a state of the form (3.40) is physically interesting
is because it represents a classical statistical mixture of states of A and B.

This is just like the crappy machine of Sec. 2.1. With some probability p; the
machine prepares a state pf4 for A and p% for B. The two systems will in general be
correlated: if we learn something about A, we can usually infer something about B. But
this is only because they share a common ignorance about the machine that produced
them. The states of A and B may very well be quantum. But their correlations are
purely classical. We say separable states of the form (3.40) are not entangled.

Classical states and Quantum Discord

The partial trace is the quantum analog of marginalizing a probability distribution.
To see that, consider a bipartite state of the form

pas = ), pij i)l (3.41)
ij
which will be a valid quantum state provided p; ; € [0, 1] and }; jpij = 1. This state is

nothing but a classical probability distribution encoded in a density matrix. To compute
the partial trace over B we use Eq. (3.30), which gives

pa=trgpas = ) pijliXila = ) pitli)ila
ij i
In the last equality I carried out the sum over j and defined

=" pij. (3.42)
J

This is precisely the marginalization procedure in classical probability theory. We
simply sum over all probabilities of B to obtain a reduced probability distribution only
for A. A state which is not of the form (3.41) is said to have some quantum discord.
We will talk more about what this means soon, when we talk about measurements.
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