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Chapter 1

Review of quantum
mechanics

1.1 Basic concepts of quantum mechanics

Quantum mechanics is all about operators and kets. When an operator acts
on a ket it produces a new ket. For instance, Schrödinger’s equation reads:1

∂t|ψ(t)〉 = −iH|ψ(t)〉 (1.1)

If we discretize the time derivative as a finite difference with time step ∆t, then
we may write this equation approximately as

|ψ(t+ ∆t)〉 = (1− i∆tH)|ψ(t)〉 (1.2)

When the operator (1 − i∆tH) acts on the state of the system at time t, it
evolves the system to time t + ∆t. This defines the role of the Hamiltonian in
quantum mechanics as being that operator which propagates a system through
time. We say H is the generator of time evolutions.

The state |ψ〉 is usually expressed in terms of a set of basis vectors |i〉. These
vectors are always chosen so as to be orthonormal:

〈i|j〉 = δi,j (1.3)

Orthonormality of any set of basis vectors always implies the completeness re-
lation:

1 =
∑
i

|i〉〈i| (1.4)

In this formula 1 is actually the identity operator. But since the identity oper-
ator satisfies all properties of the number one, we use the same symbol for both
(that’s how cool people do it).

1In this course we set ~ = 1.
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We may use completeness to decompose any state |ψ〉 into a linear combi-
nation of basis vectors. To do that we insert 1 in a convenient place:

|ψ〉 = 1|ψ〉 =
∑
i

|i〉〈i|ψ〉 =
∑
i

ψi|i〉 (1.5)

where
ψi = 〈i|ψ〉 (1.6)

is a complex number. The normalization condition 〈ψ|ψ〉 = 1 implies, using the
orthogonality (1.3) that

〈ψ|ψ〉 =
∑
i

|ψi|2 = 1 (1.7)

A particularly important set of basis vectors is the position basis |x〉. In this
case we write Eq. (1.6) a little differently, as

ψ(x) = 〈x|ψ〉 (1.8)

We usually call ψ(x) the wave-function, but it is simply the component of the
state |ψ〉 in the basis element |x〉.2

Back to Eq. (1.1), we now multiply it by 〈i| on the left of both sides and
again insert a convenient 1:

d

dt
〈i|ψ〉 = −i〈i|H(1)|ψ〉 = −i

∑
j

〈i|H|j〉〈j|ψ〉

We then define the matrix elements of H as

Hi,j = 〈i|H|j〉 (1.9)

This allows us to write Schödinger’s equation as a linear vector equation

d

dt

ψ1

ψ2

...

 = −i

H1,1 H1,2 . . .
H2,1 H2,2 . . .

...
...

. . .


ψ1

ψ2

...

 (1.10)

This is the same as (1.1), but written in terms of components in a specific basis.
Since the basis is not unique, we prefer to use Eq. (1.1) which is more general.

A particularly important basis set is that of the eigenvectors of H. They are
defined by the equation

H|n〉 = En|n〉 (1.11)

2This basis is a bit different in that the x are allowed to vary continuously. Thus, orthonor-
mality and completeness now become

〈x|x′〉 = δ(x− x′), 1 =

∫
dx |x〉〈x|
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where En are the eigen-energies of the system. In this basis the Hamiltonian is
diagonal:

〈n|H|m〉 = δn,mEn (1.12)

We may also use completeness twice to write

H = (1)H(1) =
∑
n,m

|n〉〈n|H|m〉〈m| =
∑
n,m

|n〉δn,mEn〈m|

Thus, we see that in this basis the Hamiltonian becomes

H =
∑
n

En |n〉〈n| (1.13)

Returning now to Eq. (1.10) we may choose as a basis set the energy eigen-
kets |n〉. Since H is diagonal in this basis, the equations become completely
decoupled:

dψn
dt

= −iEnψn → ψn(t) = cne
−iEnt (1.14)

where cn = 〈n|ψ(0)〉 is a constant determined from the initial condition. The
complete ket is then reconstructed from Eq. (1.5) as

|ψ(t)〉 =
∑
n

cne
−iEnt|n〉 (1.15)

We can also write the solution of Schrödinger’s Eq. (1.1) in a basis-independent
way as

|ψ(t)〉 = U(t)|ψ(0)〉, U(t) = e−iHt (1.16)

The operator U is called the time-evolution operator, or the propagator (because
it propagates the state of the system, from time t = 0 to time t). For small
times we may expand the exponential and write U(t) ' 1 − iH∆t, which is
the operator in Eq. (1.2). Computing the exponential of an operator, as in
e−iHt, can be quite difficult. But if you happen to know all eigenenergies and
eigenvectors, then you can always find it, at least in theory. Start with Eq. (1.13)
and compute H2. You will find that

H2 =
∑
n

E2
n |n〉〈n|

This also holds true for higher powers, such as H3 and etc. It therefore follows
that, for any function f(H) that is expressible in a Taylor series, we will have

f(H) =
∑
n

f(En)|n〉〈n| (1.17)

Consequently the propagator may always be written as

e−iHt =
∑
n

e−iEnt|n〉〈n| (1.18)
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This gives you the propagator as a sum of outer products. Incidentally, we
have also shown that the eigenvectors of e−iHt are also |n〉, with eigenvalues
e−iEnt. Whenever an operator is a function of another, the eigenvectors are
the same and the eigenvalues are modified just like the function. For instance,
consider the operator G = (E0 −H)−1. This is called a Green’s function. The
eigenvectors of G are still |n〉 and the eigenvalues are (E0 − En)−1.

Once we have a ket, what do we do with it? We compute expectation values
of operators: for an arbitrary operator A, its expectation value in a state |ψ〉
will be

〈A〉 = 〈ψ|A|ψ〉 (1.19)

If |ψ〉 = |n〉 then 〈H〉 = En. Otherwise, we decompose |ψ〉 =
∑
n ψn|n〉 to get

〈H〉 =
∑
n

En|ψn|2 (1.20)

The quantity |ψn|2 is the probability of finding the system at |n〉 given that it
is at |ψ〉. Thus, Eq. (1.20) has the form of a weighted average of the energies
with probabilities |ψn|2.

For a time-dependent state, |ψ(t)〉 = e−iHt|ψ(0)〉. Thus, the expectation
value (1.19) becomes

〈A〉 = 〈ψ(t)|A|ψ(t)〉 = 〈ψ(0)|eiHtAe−iHt|ψ(0)〉

This motivates the definition of the Heisenberg picture operator

AH(t) = eiHtAe−iHt (1.21)

In the Heisenberg picture the state is fixed at its initial value and it is the
operator which evolves with time. The equation governing the time-evolution
of the operator is found directly by differentiating (1.21) and reads

dAH
dt

= i[H,AH ] (1.22)

This is called the Heisenberg equation. It is an equation for the operator, which
admittedly can be a bit abstract. If you want you can convert it to an equation
for numbers by taking the average:

d〈A〉
dt

= i〈[H,A]〉 (1.23)

Here I wrote A instead of AH since, when we take the average, both coincide.

1.2 Spin 1/2

Spin is angular momentum and must therefore be described by three oper-
ators: Sx, Sy and Sz. The orientation of the axes are arbitrary, but you need
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three of them. The fundamental postulate of angular momentum is that these
operators should satisfy the algebra:

[Sx, Sy] = iSz [Sz, Sx] = iSy [Sy, Sz] = iSx (1.24)

If you are ever wondering in the forest and you see 3 operators satisfying these
commutation relations then I guarantee you: they are angular momentum oper-
ators. You can literally take this as the definition of angular momentum. And
every property follows from these simple commutation relations.

In any book on quantum mechanics you learn how to derive all eigenvectors
and eigenvalues of the angular momentum operators. What you learn is that
the operator S2 = S2

x + S2
y + S2

z will have eigenvalues

eigs(S2) = S(S + 1), S =
1

2
, 1,

3

2
, 2, . . . (1.25)

We use S to define the spin. So when we say spin 1/2 (like an electron), we
mean a system where the eigenvalue of S2 is 1

2 ( 1
2 + 1) = 3

4 . The other thing we
learn is that each operator Si will have 2S + 1 eigenvalues which go from S to
−S in unit steps:

eigs(Si) = S, S − 1, . . . ,−S + 1,−S (1.26)

For spin 1/2 we will therefore have a total of 2S+ 1 = 2 states with eigenvalues
+1/2 and −1/2. As for the eigenvectors, we usually choose those vectors which
diagonalize Sz and then express everything in terms of them. For pedagogical
purposes, we will focus in this section on the case of spin 1/2. The case of more
general spins will be discussed later.

For spin 1/2 we label the eigenvectors as |+〉 and |−〉. They satisfy

Sz|+〉 =
1

2
|+〉, Sz|−〉 = −1

2
|−〉

The 1/2’s that appear everywhere are annoying, so we like to get rid of them by
defining a new set of operators σx, σy and σz, called the Pauli matrices, as

Si =
1

2
σi (1.27)

The algebra of the Pauli matrices is similar to Eq. (1.24), but now there is a
factor of 2:

[σx, σy] = 2iσz [σz, σx] = 2iσy [σy, σz] = 2iσx (1.28)

The eigen-equation for σz also changes to

σz|+〉 = |+〉, σz|−〉 = −|−〉 (1.29)

We can write things even more compactly by defining a variable σ which takes
on the values ±1:

σ := eigs(σz) = ±1 (1.30)
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Then
σz|σ〉 = σ|σ〉 (1.31)

We will use this notation throughout the entire text: σz is an operator and
σ = ±1 is a number representing the eigenvalues of σz.

We may write the eigenvectors |σ〉 as two-component vectors

|+〉 =

(
1
0

)
, |−〉 =

(
0
1

)
(1.32)

The operators σx, σy and σz, when written in the basis |σ〉, then become

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(1.33)

Note that the operator σz is diagonal in this basis, as of course is expected.
When the operator σx acts on |σ〉 it flips the spin:

σx|+〉 = |−〉, σx|−〉 = |+〉 (1.34)

Something similar happens to σy, but it leaves out a phase factor:

σy|+〉 = i|−〉, σy|−〉 = −i|+〉 (1.35)

Another set of operators that are commonly used are the spin lowering
and raising operators:

σ+ =

(
0 1
0 0

)
and σ− =

(
0 0
0 1

)
(1.36)

They are related to σx,y according to

σx = σ+ + σ− and σy = −i(σ+ − σ−) (1.37)

or

σ± =
σx ± iσy

2
(1.38)

As their name implies, σ+ raises the spin value, whereas σ− lowers it:

σ+|−〉 = |+〉, and σ−|+〉 = |−〉 (1.39)

If you try to raise a |+〉 state or lower a |−〉 state, you get zero:

σ+|+〉 = σ−|−〉 = 0 (1.40)
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Figure 1.1: The most general ket for a spin 1/2 particle can be viewed as a point in
a 3-dimensional sphere (know as Bloch’s sphere).

General spin 1/2 states

The most general spin state may be written as a superposition of the up and
down states:

|g〉 = a|+〉+ b|−〉 =

(
a
b

)
(1.41)

where a and b are complex numbers. Normalization implies that |a|2 + |b|2 = 1.
For this reason, it is convenient to parametrize this state as

|gn〉 = e−iφ/2 cos
θ

2
|+〉+ eiφ/2 sin

θ

2
|−〉 =

(
e−iφ/2 cos θ2

eiφ/2 sin θ
2

)
(1.42)

I know this sounds weird, but there is actually a cool reason behind it: this state
represents a point in a 3-dimensional unit sphere called the Bloch sphere (see
Fig. 1.1):

n = (sin θ cosφ, sin θ sinφ, cos θ) (1.43)

We can get a glimpse of why this is so if we compute expectation values of the
σ operators in the state |gn〉. We find:

〈σx〉 = sin θ cosφ, 〈σy〉 = sin θ sinφ, 〈σz〉 = cos θ (1.44)

Thus, the average of σµ is simply the µ-th component of n. People in quantum
information love these ideas. For them |+〉 = |0〉 and |−〉 = |1〉 are the bits of
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a quantum computer. But unlike classical bits, which take on only two values,
qubits can take on a continuous set of values given precisely by the vector |gn〉.
The vector (1.42) is also sometimes called a spin coherent state.

In order to have a fuller understanding of the connection between a sphere
in 3D and our two-dimensional Hilbert space, we need to think about rotations.
If you start at the north pole (0, 0, 1) on a sphere and you want to get to an
arbitrary point n as in Eq. (1.43), you need to do two rotations. First you rotate
by an angle θ around the y axis and then you rotate by an angle φ around the
z axis (take a second to imagine this in your head).

In the spin Hilbert space, these rotations are performed by the rotation
operators e−iφσz/2 and e−iθσy/2. Let us try to learn how to deal with them.
Consider for now the operator eiασz . We can find a neat formula for it by
noting that σ2

z = 1 (the identity operator). If we then expand the exponential
in a Taylor series we get

eiασz = 1 + iασz +
i2

2!
α2σ2

z + . . .

Since σ2
z = 1 the terms in the expansion will be either proportional to σz or

proportional to 1. We can therefore group terms proportional to the identity
and terms proportional to σz, which then yields

eiασz = cosα+ iσz sinα (1.45)

We showed this formula for σz, but it is actually true for any operator that
satisfies A2 = 1, since that is all we really used. Now that we have this formula,
it is an easy task (which I leave for you to have fun with) to verify that we can
obtain the state (1.42) by starting from |+〉 and then applying the two rotations
sequentially:

|gn〉 = e−iφσz/2e−iθσy/2|+〉 (1.46)

Note that the order of the operators is essential since they do not commute.
Another way of understanding the state |gn〉 in Eq. (1.42) is to note that

it is the eigenstate of the operator n · σ with eigenvalue +1. This operator
represents the spin component in the direction n. The other eigenstate is

|g′n〉 =

(
−e−iφ/2 sin θ

2

eiφ/2 cos θ2

)
(1.47)

and it has eigenvalue −1. That the eigenvalues are ±1 is, of course, as it must
be. After all, the direction of the spin operator is arbitrary. You may also
check that |gn〉 and |g′n〉 are orthogonal. More importantly, these two states are
actually the components of the rotation matrix appearing in Eq. (1.46). If you
compute the two matrix exponentials you find

G := e−iφσz/2e−iθσy/2 =

(
e−iφ/2 cos θ2 −e−iφ/2 sin θ

2

eiφ/2 sin θ
2 eiφ/2 cos θ2

)
(1.48)
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Figure 1.2: Illustration of the electronic levels of an atom.

The columns of G are precisely the eigenvectors |gn〉 and |g′n〉. It then follows
that

n · σ = GσzG
† (1.49)

So G is the rotation matrix that takes the spin operator from z to n.

Two-state systems

The framework for spin 1/2 may be conveniently used when studying any
system with only two states. In practice, such two-state systems appear often
as an approximation to atomic systems. The electronic energy levels of an atom
may look something like Fig. 1.2. But in certain applications, the probability of
occupying highly excited states is negligible, so we may focus only on the first
two states. Then, effectively, the electronic levels may be considered as having
only two states, the ground-state |g〉 and the excited state |e〉. If we identify

|g〉 = |−〉, and |e〉 = |+〉 (1.50)

then we may use the entire framework of spin 1/2 systems to describe any two-
level system (Please note that sometimes people make the correspondence the
other way around; it is simply a matter of convenience). The spin lowering and
raising operators σ± then acquire a simple physical meaning. Since σ+ raises
the spin, we have σ+|g〉 = |e〉, so σ+ is the operator that excites the electron.

Eq. (1.49) can also be used as a very convenient trick to diagonalize arbi-
trary 2 × 2 matrices, which do not need to have anything to do with spin or
with physics, actually. The convenience is related to the way you write down
the eigenvectors. Finding the eigenvalues of a 2 × 2 matrix is trivial, but the
eigenvectors are sometimes clumsy to write down. With this trick, you can re-
late the eigenvectors with points in the Bloch sphere. Here is how it goes. Let
A be a 2× 2 matrix. Since it has only four entries, it may be written as

A = a0 + a · σ (1.51)

for a certain set of four numbers a0, ax, ay and az. Next define a = |a| and
n = a/a. That is, write your matrix A as

A = a0 + a(n · σ) (1.52)
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The eigenvalues and eigenvectors of A can now be related to those of n · σ.
First, since the eigenvalues of n · σ are ±1, the eigenvalues of A will be

λ± = a0 ± a (1.53)

Moreover, since A is simply the identity plus n · σ, both will share the same
eigenvectors. These are precisely the vectors |gn〉 and |g′n〉 in Eqs. (1.42) and
(1.47) respectively, but with n determined as n = a/a. That is

A|gn〉 = λ+|gn〉, and A|g′n〉 = λ−|gn〉 (1.54)

You can also write down the diagonal decomposition of A in matrix form.
Namely,

A = G

(
a0 + a 0

0 a0 − a

)
G† (1.55)

Interaction with a magnetic field

When a spin 1/2 particle is subject to a magnetic field B in the z direction,
the interaction Hamiltonian is

H = −µBσz = −hσz (1.56)

where µ is the magnetic moment of the particle (it is a constant that depends
on the type of particle you have; for electrons it is called the Bohr magneton).
It is easier to just work with h = µB. You may think of h as a field in energy
units.

The Hamiltonian (1.56) is already diagonal in the |σ〉 basis since σz is di-
agonal (of course, we are very smart physicists, so we conveniently choose the
field in the z direction precisely for this reason). Thus, the energy eigenvalues
will be

Eσ = −hσ (1.57)

Or, more explicitly,
E+ = −h, E− = +h

We will learn as we go along that we should always keep an eye at the ground-
state; i.e., the state of lowest energy. If h > 0 the ground state is E+, cor-
responding to the quantum number σ = +1. Physically this means that the
energy is smaller when the spin points parallel to the field.

We may compute the propagator U(t) = e−iHt quite easily in this case, using
Eq. (1.18):

e−iHt = e−iE+t|+〉〈+| + e−iE−t|−〉〈−| =

(
e−iE+t 0

0 e−iE−t

)
(1.58)

Suppose now that the system started at |ψ(0)〉 = (cos θ2 , sin
θ
2 ), which is like our

|gn〉 in Eq. (1.42), but with φ = 0. Applying the time-evolution operator then
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Figure 1.3: Illustration of a spin precessing around a magnetic field. Left: the predic-
tion from unitary dynamics, Eq. (1.59). The spin just keeps on precessing
indefinitely. Right: what happens in real systems. There is a damping
which causes the spin to slowly align itself with the magnetic field.

gives us the state at time t:

|ψ(t)〉 = U(t)|ψ(0)〉 =

(
eiht cos θ2

e−iht sin θ
2

)
This is just like the state |gn〉, but with a time-dependent angle φ = −ht. Thus,
our operators will evolve in time according to

〈σx〉 = sin θ cos(ht), 〈σy〉 = − sin θ sin(ht), 〈σz〉 = cos θ (1.59)

This is the phenomenon of spin precession. The spin just keeps circling around
the magnetic field, as illustrated on the left image of Fig. 1.3. In practice, how-
ever, we know there are losses in the system, which cause the spin to eventually
align itself in the same direction as the field. This damping is due to the contact
of the spin with an external environment and is illustrated by the image on the
right. It cannot be described by Hamiltonian dynamics. We need something
else.

We can also analyze our problem in terms of Heisenberg’s equation (1.23).
Using the commutation relation of the Pauli matrices, Eq. (1.28), we get

d〈σx〉
dt

= 2h〈σy〉 (1.60)

d〈σy〉
dt

= −2h〈σx〉 (1.61)

d〈σz〉
dt

= 0 (1.62)

You may verify that Eq. (1.59) is indeed a solution of these equations. These
formulas become more transparent if we consider a more general magnetic field
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h pointing in an arbitrary dimension. Then they may be written simply as

d〈σ〉
dt

= 2〈σ〉 × h (1.63)

where σ = (σx, σy, σz). This is just like Euler’s equation for a symmetric top,
which makes sense since spin is angular momentum.

1.3 Heisenberg, Ising and the almighty Kron

Now I want to show you how to work with systems composed of many
particles. And to do that, I will use as an example the two most important
spin interactions, named after Heisenberg and Ising. These interactions form
the basis for our understanding of ferromagnetism and we will come back to
them several times again.

For simplicity we start assuming that we have two spin 1/2 particles. We
attribute a set of spin operators to each particle. Thus, particle number one
will be described by the operators σx1 , σy1 and σz1 , whereas particle 2 will be
described by the operators σx2 , σy2 and σz2 . The algebra of operators concerning
the same particle is the same as before. For instance, just like in Eq. (1.28),
we continue to have [σx1 , σ

y
1 ] = 2iσz1 . But, in addition, we now also make the

assumption that operators pertaining to different particles commute.
Thus,

[σi1, σ
j
2] = 0, i, j = x, y, z (1.64)

Stuff related to particle 1 always commute with stuff related to particle 2.
Now let’s talk about states. In total, there must be four possible configura-

tions: (↑, ↑), (↑, ↓), (↓, ↑), (↓, ↓). We may therefore label these states as |σ1, σ2〉
where σi = ±1. These states are constructed to be eigenstates of σz1 and σz2 :

σz1 |σ1, σ2〉 = σ1|σ1, σ2〉, σz2 |σ1, σ2〉 = σ2|σ1, σ2〉 (1.65)

When determining the action of other operators on these states, all you need
to remember is that “1” operators only act on the first component of |σ1, σ2〉
and “2” operators only act on the second component. For instance, we learned
above that σx flips the sign of a spin. Thus,

σx1 |+ +〉 = | −+〉

σx2 | −+〉 = | − −〉

and so on.

The Heisenberg interaction

The Heisenberg exchange interaction between two spins is given by

H = −Jσ1 · σ2 = −J(σx1σ
x
2 + σy1σ

y
2 + σz1σ

z
2) (1.66)
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where J is called the exchange constant. What is interesting about it is that it is
isotropic: since it is the scalar product of two “vectors”, it does not depend on
any particular reference frame. We can determine the matrix elements of this
interaction using the above rules for operating with two-particle states. This is
one of those things that have to be done slowly. We start with:

σx1σ
x
2 |+ +〉 = | − −〉

σx1σ
x
2 |+−〉 = | −+〉

σx1σ
x
2 | −+〉 = |+−〉

σx1σ
x
2 | − −〉 = |+ +〉

Now we take the product with all possible bras 〈σ1, σ2|. This will give us all 16
matrix elements. Hopefully most of them are zero. What we get in the end is

σx1σ
x
2 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 (1.67)

When we write matrix elements like this, we always order the states as |+ +〉,
| + −〉, | − +〉 and | − −〉. Then we associate with each of these elements the
vectors

|+ +〉 =


1
0
0
0

 |+−〉 =


0
1
0
0

 |−+〉 =


0
0
1
0

 |−−〉 =


0
0
0
1

 (1.68)

This is called lexicographic order : for each value of the first, you run through
all values of the second. If we had 3 particles, we would fix each value of the
first two and then run over all values of the third. The order would then be

|+ ++〉, |+ +−〉, |+−+〉, |+−−〉, | −++〉, | −+−〉, | − −+〉, | − −−〉

I will leave for you as an exercise to find the matrix elements of σy1σ
y
2 and

σz1σ
z
2 (you can also just keep on reading. In a few paragraphs I will teach you

a much easier way to do this). The final result is that the Hamiltonian (1.66)
becomes

H = −Jσ1 · σ2 = −J


1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

 (1.69)

Now let us see if we can figure out the eigenvalues and eigenvectors of this
Hamiltonian. Lucky for us, two eigenvectors are already starring at our face:
they are represented by the two lonely 1’s in the first and last entries, which
mean that

H|+ +〉 = −J |+ +〉, H| − −〉 = −J | − −〉
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Thus the first two eigenvectors are |1〉 = |++〉 and |2〉 = |−−〉, with eigenvalues
E1 = E2 = −J .

Now we need to look for the remaining two. If we look at the matrix (1.69)
we see that these remaining two eigenvectors will be related to the block in the
middle. So all we need to do is diagonalize a 2× 2 matrix. Whenever I need to
do that, I always like to write it in terms of Pauli matrices:(

−1 2
2 −1

)
= −1 + 2σx

For some reason I memorized that the eigenvectors of σx are 1√
2
(1, 1) and

1√
2
(1,−1), with eigenvalues 1 and −1. The eigenvectors of −1 + 2σx will be

the same as those of σx:

|3〉 =
|+−〉+ | −+〉√

2
, |4〉 =

|+−〉 − | −+〉√
2

,

Moreover, the eigenvalues will be −1 + 2(±1). Multiplying by −J then gives
us the corresponding energies: E3 = −J [−1 + 2(1)] = −J and E4 = −J [−1 +
2(−1)] = 3J . We see that, out of the four states, three are degenerate with
energy −J and the other has energy 3J .

It is customary to relabel these eigenvectors and eigenvalues a little differ-
ently:

|1, 1〉 = |+ +〉

|1, 0〉 =
|+−〉+ | −+〉√

2
, E1 = −J

|1,−1〉 = | − −〉 (1.70)

|0, 0〉 =
|+−〉 − | −+〉√

2
, E0 = 3J

You may have seen these states before in quantum mechanics. The first 3 are
called the triplet states and the last one is the singlet. The reason behind this
change in notation is the following. Define two operators:

Sz =
1

2
(σz1 + σz2) (1.71)

S2 =
1

4
(σ1 + σ2)2 =

1

2
(1 + σ1 · σ2) (1.72)

where, in the last line, I used the fact that σ2
i = 1. These are the total spin

component in the z direction and the total spin operator of the composite sys-
tem.

The eigenvectors of H are the same as those of σ1 · σ2. We therefore see
that these will also diagonalize S2. The first numbers 1 and 0 in Eq. (1.70)
are related to the allowed eigenvalues of S2 which, from Eq. (1.25), are of the
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form S(S + 1), with S being 1 or 0. Thus, in the states |1,m〉 the total spin
of the system is 1 and in the state |0, 0〉 it is zero. The second set of numbers
in Eq. (1.70) are the eigenvalues of Sz, the total z component of the spin. For
S = 1 the Sz component may have eigenvalues m = 1, 0,−1 corresponding to
the three states |1, 1〉, |1, 0〉 and |1,−1〉. For S = 0, the only eigenvalue of Sz
will be 0, which gives |0, 0〉. The state |1, 0〉 is perhaps the weirdest of them all:
it has spins pointing in opposite directions, one up and one down. Yet, it still
has a total spin S = 1. This illustrates the difference between S2 and Sz.

Let us analyze the physics of Eq. (1.70). Suppose first that J > 0. In this
case the state of smallest energy will be E1 = −J . This corresponds to a state
of spin 1, which we associate with the spins being aligned in the same direction,
either both up or both down (plus the weirdo |1, 0〉). We will learn later in
life that J > 0 corresponds to the ferromagnetic case, where the spins tend to
align with each other. On the other hand, when J < 0 the ground-state will be
E0 = 3J . It is a state of spin 0 corresponding to the spins anti-parallel to each
other. It will later give rise to antiferromagnetism.

Behold, the kron

With what we have discussed above, you have essentially all ingredients to
write down matrix elements of many-particle systems. But before we move on,
I want to show you another way of working with these states. I will introduce
the idea of a Kronecker product, or tensor product, or kron for the intimate.
The Kronecker product between two objects A and B is written as A⊗B. It is
defined such that it satisfies the fundamental property

(A⊗B)(C ⊗D) = (AC)⊗ (BD) (1.73)

The kron separates two universes. Everything that is to the left of ⊗ only
interacts with stuff that is on the left and everything to the right only interacts
with stuff on the right. With the kron in hand, we may now rewrite our spin
operators as

σµ1 = σµ ⊗ 1, σµ2 = 1⊗ σµ (1.74)

Particle 1 stays on the left and particle 2 stays on the right. An operator like
σx1σ

x
2 is now written as

σx1σ
x
2 = (σx ⊗ 1)(1⊗ σx) = σx ⊗ σx (1.75)

We do the exact same thing for states:

|σ1, σ2〉 = |σ1〉 ⊗ |σ2〉 (1.76)

Then the action of σx1σ
x
2 onto |σ1, σ2〉 becomes

σx1σ
x
2 |σ1, σ2〉 = (σx ⊗ σx)(|σ1〉 ⊗ |σ2〉) = (σx|σ1〉)⊗ (σx|σ2〉) (1.77)

The final result is the operator σx (just a 2×2 matrix) acting on a single-particle
state.
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In a sense, there is nothing fundamentally new about the kron. It does
make things a bit more formal, specially if you like linear algebra [Then what
we are doing is essentially constructing the many-particle Hilbert space as a
direct product of single-particle states.] But, to be honest, from a conceptional
point of view what the kron does most is that it introduces a new notation
where you can separate more clearly stuff from one side and the other. The
biggest advantage of the kron is actually computational: it gives an automated
way to construct many-particle matrices.

If A and B are two matrices, then in order to satisfy Eq. (1.73), the compo-
nents of the Kronecker product must be given by

A⊗B =


a1,1B . . . a1,NB

...
. . .

...

aM,1B . . . aM,NB

 (1.78)

This is one of those things that you sort of just have to convince yourself that
is true. At each entry ai,j you introduce the full matrix B (and then get rid of
the parenthesis lying around). For instance

σx ⊗ σx =


0

(
0 1
1 0

)
1

(
0 1
1 0

)
1

(
0 1
1 0

)
0

(
0 1
1 0

)
 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 (1.79)

This is exactly Eq. (1.67) and, you must admit, the calculation was much easier.
We can also do the same for vectors:

|+−〉 = |+〉 ⊗ |−〉 =


1

(
0
1

)
0

(
0
1

)
 =


0
1
0
0

 (1.80)

This is the second vector in Eq. (1.68). You can proceed similarly to find the
others. Note also how the kron naturally uses lexicographic order.

Also have in mind that the Kronecker product is implemented in all numer-
ical libraries. So there are really no excuse for finding these matrix elements:
just let the electrons in your computer do the work for you!

Ising vs. Heisenberg

Now that we are pros at dealing with two particles, we can easily generalize
to a system of N particles. The operators will be labeled σµi where µ = x, y, z
and i = 1, . . . , N . The states will have the form |σ1, . . . , σN 〉, which gives a total
of 2N different states. The size of the Hilbert space grows exponentially with
the number of particles, which is why working with many-body systems is so
difficult.
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The general Heisenberg Hamiltonian can be written as

H = −
∑
i,j

Ji,jσi · σj (1.81)

where Ji,j is the interaction between spin i and spin j. Usually we choose the
Ji,j so that only nearest neighbors interact, but at this stage it is best to leave
things general. Surprising as it may sound, in general we do not know what
are the eigenvalues and eigenvectors of (1.81). The only exception is a one-
dimensional chain with nearest-neighbor interactions (where this problem can
be diagonalized using something called the Bethe ansatz). Otherwise, in general
we do not know (or maybe it is not possible) to diagonalize it exactly. There
are, though, several approximation schemes to get some rough properties out of
this model. We will go through some of them later on. My favorite one is the
Holstein-Primakkoff approximation, which will lead us to the idea of magnons.3

Another very popular model is the Ising model:

H = −
∑
i,j

Ji,jσ
z
i σ

z
j (1.82)

It looks similar to Eq. (1.81), but it has one fundamental difference: we already
know all its eigenvalues and eigenvectors. The Ising Hamiltonian is written only
in terms of σz operators and these are all diagonal in the basis |σ1, . . . , σN 〉.
Thus, this basis diagonalizes H. The eigenvalues are then simply

E = −
∑
i,j

Ji,jσiσj (1.83)

There are in total 2N eigenvectors and eigenvalues. The funny thing is that,
even though we know all eigenvalues and eigenvectors, that still does not help
us much since we still have to deal with 2N of everything. So even though
we know how to diagonalize the Ising model, that does not mean we know
how to extract the physics out of it. That is the real challenge of statistical
mechanics and many-body physics: diagonalization is just the first step. Even
if we diagonalize a model, we still need to learn what to do with it. And, indeed,
the physics of the Ising model is extremely rich.

Lastly, I want to compare the Ising model with a longitudinal field,

H = −
∑
i,j

Ji,jσ
z
i σ

z
j − h

∑
i

σzi (1.84)

with the Ising model in a transverse field:

H = −
∑
i,j

Ji,jσ
z
i σ

z
j − h

∑
i

σxi (1.85)

3 You must admit, physicists are awesome at naming things. I mean, magnon, kron...
These all sound like the name of villains in a Transformers movie.
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At first they seem similar. But they are not. Oh boy they are not. Eq. (1.84)
only contains σz’s so we know how to diagonalize it (the eigenvectors con-
tinue to be the |σ1, . . . , σN 〉). But Eq. (1.85) contains σx’s, which means that
|σ1, . . . , σN 〉 will no longer be an eigenvector. In fact, the physics of the trans-
verse field Ising model is quite rich since the field term will compete with the
Ising term. One makes the spin point in the x direction and the other in the z
direction. This competition will, as we will learn one day, lead to a quantum
phase transition, which is similar to a phase transition, but occurs at zero
temperature. But before we can get to all these exciting models, we still have a
lot of fundamental concepts to cover. So hang on.

1.4 The quantum harmonic oscillator

The Hamiltonian of the quantum harmonic oscillator is given by

H =
p2

2m
+

1

2
mω2x2 (1.86)

where x and p are operators satisfying

[x, p] = i~ (1.87)

I will plug ~ back for now but soon I will throw it away again. I know this is
going to sound dramatic but I assure you: this is by far the most important
example in all of quantum mechanics. The reason for this will only become
clear later when we learn about second quantization. But trust me on this:
what you will learn in this section you will carry with you for the rest of your
life. Thus, even though you have probably seen this before, I will redo all the
calculations anyway, simply because they are so important.

The characteristic scales of position and momentum are given by

x0 =

√
~
mω

, p0 =
~
x0

=
√
~mω (1.88)

Apart from numerical factors, theses are the only quantities with dimension of
position and momentum that we can construct with ~, m and ω. To diagonalize
Eq. (1.86) we define a non-Hermitian operator a and its adjoint a† as

x =
x0√

2
(a† + a) a =

1√
2

(
x

x0
+ i

p

p0

)
⇐⇒ (1.89)

p =
ip0√

2
(a† − a) a† =

1√
2

(
x

x0
− i p

p0

)
you may verify that Eq. (1.87) implies

[a, a†] = 1 (1.90)
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Moreover, the Hamiltonian (1.86) becomes

H = ~ω(a†a+ 1/2) (1.91)

If you have never worked out the steps leading to these last two results, then
please do it. This is one of those things that you need to do once in your life.

An algebraic problem

Looking at Eqs. (1.90) and (1.91), we see that we have essentially reduced the
problem to the diagonalization of the operator a†a. We can frame the problem
as follows:

What are the eigenthings of a†a given that [a, a†] = 1 (1.92)

Note that a†a is Hermitian, even though a is not. Thus, its eigenvalues must
be real and its eigenvectors can be chosen to form an orthonormal basis. Let us
write them as

a†a|n〉 = n|n〉 (1.93)

My goal is to show you that the eigenvalues n can be all natural numbers (non-
negative integers):

eigs(a†a) = n ∈ {0, 1, 2, 3, . . .} (1.94)

One thing we can say out front: n cannot be negative because a†a is a
positive semi-definite operator. What this means is the following: start with
Eq. (1.93) and multiply on both sides by 〈n|. We get

〈n|a†a|n〉 = n

But the left-hand side is the absolute value of the ket a|n〉, which is always
non-negative. Consequently we must have n ≥ 0.4

To prove Eq. (1.94) we first work out some commutators. The following
formulas are useful to remember:

[A,BC] = B[A,C] + [A,B]C

(1.95)

[AB,C] = A[B,C] + [A,C]B

4If you want to be rigorous: an operator is said to be positive definite when its eigenvalues
are strictly positive and positive semi-definite when they are either zero or positive. Many
people don’t care about this subtlety and call both types “positive definite”. So watch out.
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There is an easy way to remember them. For instance, in [A,BC] you first take
B out to the left and then C out to the right. Now let’s use this to compute:

[a†a, a] = a†[a, a] + [a†, a]a = −a

where I used Eq. (1.90). We can obtain a similar result for a†, either using
the same procedure or by taking the dagger of this result. In any case, let me
summarize the results as

[a†a, a] = −a, [a†a, a†] = a (1.96)

This type of result also appears in other situations and it immediately implies
that the eigenvalues will form a ladder of equally spaced values.

To see why, we use this result to compute

(a†a)a|n〉 = [a(a†a)− a]|n〉 = a(a†a− 1)|n〉 = (n− 1)a|n〉

From this we conclude that if |n〉 is an eigenvector with eigenvalue n, then a|n〉
is also an eigenvector, but with eigenvalue (n − 1) [read this sentence again; it
is very important]. However, I wouldn’t call this |n − 1〉 just yet because a|n〉
is not normalized. Thus we need to write

|n− 1〉 = αa|n〉

where α is a normalization constant. To find it we simply write

〈n− 1|n− 1〉 = |α|2〈n|a†a|n〉 = |α|2n

Thus |α|2| = 1/n. The actual sign of α is arbitrary so we choose it for simplicity
as being real and positive. We then get

|n− 1〉 =
a√
n
|n〉

From this analysis we conclude that a reduces the eigenvalues by unity:

a|n〉 =
√
n|n− 1〉

We can do a similar analysis with a†. We again use Eq. (1.96) to compute

(a†a)a†|n〉 = (n+ 1)a†|n〉

Thus a† raises the eigenvalue by unity. Its normalization factor is found by a
similar procedure: we write |n + 1〉 = βa†|n〉, for some constant β, and then
compute

〈n+ 1|n+ 1〉 = |β|2〈n|aa†|n〉 = |β|2〈n|(1 + a†a)|n〉 = |β|2(n+ 1)
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Thus
a†|n〉 =

√
n+ 1|n+ 1〉

These results are important, so let me summarize them in a boxed equation:

a|n〉 =
√
n|n− 1〉, a†|n〉 =

√
n+ 1|n+ 1〉 (1.97)

Now start with some state |n〉 and keep on applying a a bunch of times. At
each application you will lower the eigenvalue by one tick:

a`|n〉 =
√
n(n− 1) . . . (n− `+ 1)|n− `〉

But this party cannot continue forever because, as we have just discussed, the
eigenvalues of a†a cannot be negative. They can, at most, be zero. The only
way for this to happen is if there exists a certain integer ` for which a`|n〉 6= 0
but a`+1|n〉 = 0. And this can only happen if ` = n because, then

a`+1|n〉 =
√
n(n− 1) . . . (n− `+ 1)(n− `)|n− `− 1〉 = 0

Since ` is an integer, we therefore conclude that n must also be an integer. This
analysis also serves to define the state with n = 0, which we call the vacuum,
|0〉. It is defined by

a|0〉 = 0 (1.98)

We therefore emerge from this analysis with the conclusion that, as anticipated
in Eq. (1.94), the eigenvalues of a†a can be all non-negative integers. The
operator a is the annihilation operator and a† is the creation operator.
Moreover, a†a is the number operator because it counts the number of quanta
in the system. What this analysis taught us is that, if you want to count how
many people are there in a room, you first need to annihilate them and then
create fresh new humans. Quantum mechanics is indeed strange.

We can build all states starting from the vacuum and applying a† succes-
sively:

|n〉 =
(a†)n√
n!
|0〉 (1.99)

Using this and the algebra of a and a† it then follows that the states |n〉 form
an orthonormal basis, as expected:

〈n|m〉 = δn,m (1.100)

Back to the Hamiltonian

Since H in Eq. (1.91) is a function of a†a, it will share the same eigenvectors.
We therefore get

H|n〉 = En|n〉, En = ~ω(n+ 1/2) (1.101)
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The energies of the harmonic oscillator are equally spaced, ∆E = ~ω. This is
a signature of harmonic motion. It is found, for instance, in the vibrational
spectra of molecules.

We can also look at wavefunctions, which are defined as

ψn(x) = 〈x|n〉 (1.102)

But wavefunctions are boring, so we will not look at them.

1.5 Coherent states

For the harmonic oscillator, there is a very special set of states which appear
frequently in condensed matter, quantum field theory and quantum optics.5

They are called coherent states. We begin by defining the displacement op-
erator

D(α) = eαa
†−α∗a (1.103)

where α is an arbitrary complex number and α∗ is its complex conjugate. The
reason why it is called a “displacement” operator will become clear soon. A
coherent state is defined as the action of D(α) into the vacuum state:

|α〉 = D(α)|0〉 (1.104)

We sometimes say that “a coherent state is a displaced vacuum”. This
sounds like a typical Star Trek sentence: “Oh no! He displaced the vacuum.
Now the entire planet will be annihilated!”

D(α) displaces a and a†

Let us first try to understand why D(α) is a displacement operator. First,
one may verify directly from Eq. (1.103) that

D†(α)D(α) = D(α)D†(α) = 1 (it is unitary) (1.105)

D†(α) = D(−α) (1.106)

This means that if you displace by a given α and then displace back by −α, you
return to where you started. Next I want to compute D†(α)aD(α). To do that

5 If you ever need more advanced properties of coherent states, the best source is the paper
by K. Cahill and R. Glauber entitled “‘Ordered expansions in boson amplitude operators”
Phys. Rev. 177, 1857-1881 (1969). Another comprehensive source is chapter 4 of the book
by Gardiner and Zoller called “Quantum Noise”.
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we use the BCH formula6

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + . . . (1.107)

with B = a and A = α∗a− αa†. Using Eq. (1.90) we get

[α∗a− αa†, a] = α

This is a c-number so that all higher order commutators are zero. We therefore
conclude that

D†(α)aD(α) = a+ α (1.108)

This is why we call D the displacement operator: it displacements the operator
by an amount α. Since D†(α) = D(−α) it follows that

D(α)aD†(α) = a− α (1.109)

The action on a† is similar: you just need to take the adjoint: For instance

D†(α)a†D(α) = a† + α∗ (1.110)

The coherent state is an eigenstate of a

What I want to do now is apply a to the coherent state |α〉 in Eq. (1.104).
Start with Eq. (1.108) and multiply by D on the left. Since D is unitary we get
aD = D(a+ α). Thus

a|α〉 = aD|0〉 = D(a+ α)|0〉 = D(α)|0〉 = α|α〉

where I used the fact that a|0〉 = 0. Hence we conclude that the coherent
state is the eigenvector of the annihilation operator:

a|α〉 = α|α〉 (1.111)

The annihilation operator is not Hermitian so its eigenvalues do not have to
be real. In fact, this equation shows that the eigenvalues of a are all complex
numbers.

Alternative way of writing D

It is possible to express D in a different way, which may be more convenient
for some computations. To do that we use another BCH formula: if it happens
that [A,B] commute with both A and B, then

eA+B = eAeBe−
1
2 [A,B] (1.112)

6There is no magic behind this formula: you simply need to expand the exponentials in a
Taylor series and organize the multiple terms.
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Since [a, a†] = 1, we may write

D(α) = e−|α|
2/2eαa

†
e−α

∗a = e|α|
2/2e−α

∗aeαa
†

(1.113)

This result is useful because now the exponentials of a and a† are completely
separated.

From this result it follows that

D(α)D(β) = e(β∗α−α∗β)/2D(α+ β) (1.114)

This means that if you do two displacements in a sequence, it is almost the same
as doing just a single displacement; the only thing you get is a phase factor (the
quantity in the exponential is purely imaginary).

Poisson statistics

Let us use Eq. (1.113) to write the coherent state a little differently. Since
a|0〉 = 0 it follows that e−αa|0〉 = |0〉. Hence we may also write Eq. (1.104) as

|α〉 = e−|α|
2/2eαa

†
|0〉 (1.115)

Now we may expand the exponential and use Eq. (1.99) to write (a†)n|0〉 in
terms of the number states. We get

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 (1.116)

Thus we find that

〈n|α〉 = e−|α|
2/2 α

n

√
n!

(1.117)

The probability of finding it in a given state |n〉, given that it is in a coherent
state, is therefore

|〈n|α〉|2 = e−|α|
2 (|α|2)n

n!
(1.118)

This is a Poisson distribution with parameter λ = |α|2. The photons in a laser
are usually in a coherent state and the Poisson statistics of photon counts can
be measured experimentally. If you measure this statistics for thermal light
you will find that it is not Poisson (usually it follows a geometric distribution).
Hence, Poisson statistics is a signature of coherent states.
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Orthogonality

Coherent states are not orthogonal. To figure out the overlap between two
coherent states |α〉 and |β〉 we use Eq. (1.115):

〈β|α〉 = e−|β|
2/2e−|α|

2/2〈0|eβ
∗aeαa

†
|0〉

We need to exchange the two operators because we know how a acts on |0〉 and
how a† acts on 〈0|. To do that we use Eq. (1.112):

eβ
∗aeαa

†
= eαa

†
eβ
∗aeβ

∗α (1.119)

We therefore conclude that

〈β|α〉 = exp

{
β∗α− |β|

2

2
− |α|

2

2

}
(1.120)

The overlap of the two states, squared, can be simplified to read:

|〈β|α〉|2 = exp

{
− |α− β|2

}
(1.121)

If β = α then
〈α|α〉 = 1 (1.122)

which we already knew from Eq. (1.104) and the fact that D is unitary.
We therefore conclude that, in general, two coherent states are not orthog-

onal. However, they become roughly orthogonal when both α and β are very
big (because then the exponential overlap becomes very small). Coherent states
therefore do not form an orthonormal basis. In fact, they form an overcomplete
basis in the sense that there is more states than actually needed.

Completeness

Even though the coherent states do not form an orthonormal basis, we can
still write down a completeness relation for them. However, it looks a little
different: ∫

d2α

π
|α〉〈α| = 1 (1.123)

where integral is over the entire complex plane and d2α = dαR dαI . The proof
of Eq. (1.123) is a little bit cumbersome, so you may skip it if you want.

It goes as follows. Consider an arbitrary state |ψ〉 and expand it in the
number basis |n〉:

|ψ〉 =
∑
n

ψn|n〉
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Now write ∫
d2α

π
|α〉〈α|ψ〉 =

∑
n

ψn

∫
d2α

π
|α〉〈α|n〉

To compute the integral we use Eq. (1.117) to write 〈α|n〉 and Eq. (1.116) to
expand |α〉. We then get, in addition to the α-integral, a double sum over the
number states:∫

d2α

π
|α〉〈α|ψ〉 =

∑
n,m

ψn√
n!m!

|m〉
∫

d2α

π
e−|α|

2

αm(α∗)m (1.124)

To compute the integral we change variables to polar coordinates:

α = reiθ, d2α = r dr dθ

The integral over θ will give us a δn,m:∫
d2α

π
e−|α|

2

αm(α∗)m =

∫
r dr dθ

π
rm+neiθ(m−n)e−r

2

= 2δn,m

∞∫
0

dr r2n+1e−r
2

= δn,mn!

Substituting this back into Eq. (1.124) finally gives∫
d2α

π
|α〉〈α|ψ〉 =

∑
n

ψn|n〉 = |ψ〉

This shows that Eq. (1.123) is indeed true.

Expectation values of normal-ordered operators

We say an operator is normal ordered when we have arranged all creation
operators to the left. For instance (a+ a†)2 is not normal ordered because

(a+ a†)2 = aa+ a†a† + a†a+ aa†

In the last term we have a dagger on the right. To normal order this operator,
we use the commutation relation (1.90) to write aa† = a†a + 1. Thus, if we
express this as

(a+ a†)2 = aa+ a†a† + 2a†a+ 1 (1.125)

then this operator is normal ordered.
The reason why normal ordering is useful is because, if we compute the

expectation value in any coherent states, we know how a acts on |α〉 and we
know how a† acts on 〈α|. Thus, for instance,

〈α|(a+ a†)2|α〉 = α2 + α∗2 + 2α∗α+ 1 (1.126)
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This looks identical to Eq. (1.125), except that the operators a and a† are re-
placed by the numbers α and α∗. Coherent states are the basis for several
approximate techniques that we will learn later. And, in this sense, it is use-
ful to remember the following rule: let H(a†, a) be some operator (usually a
Hamiltonian, but it can be other operators as well) which are written in normal
order. It then follows that

〈α|H(a†, a)|α〉 = H(α∗, α) (1.127)

1.6 The Schrödinger Lagrangian

It is possible to cast the Schrödinger equation as a consequence of the princi-
ple of least action, similar to what we do in classical mechanics. This method
has several advantages. First, it will introduce us to ideas of field theory. Sec-
ond, it is the starting point for a variational principle that can be used to
study approximations to the dynamics of a system.

Do you remember the usual variational principle? It says that if |ψ〉 is an
arbitrary wave-function then

Egs ≤
〈ψ|H|ψ〉
〈ψ|ψ〉

(1.128)

In words it says that the energy of the ground-state Egs is always a lower bound
to the sandwich of the Hamiltonian H. In practice, we use the variational
principle by choosing a trial state |ψ〉 which has some free parameters. We then
try to minimize the sandwich in the right-hand side of Eq. (1.128) with respect
to these parameters, which will give us an estimate of the ground-state energy.
The larger is the number of free parameters the better the estimate is (and
the more complicated the calculation becomes). The Schrödinger Lagrangian
does exactly this, but for the dynamics. Unlike the previous sections, this
theory is likely new to you and perhaps a little bit more advanced for this level.
Notwithstanding, I think it is really cute. So here it goes.7

The principle of least action in classical mechanics

Before we start with the quantum stuff, we need a brief review of classical
mechanics. Consider a system described by a set of generalized coordinates qi
and characterized by a Lagrangian L(qi, ∂tqi). Also, define the action as

S =

t2∫
t1

L(qi, ∂tqi) dt (1.129)

The motion of the system is then generated by the principle of least action;
ie, by requiring that the actual path should be an extremum of S. We can

7Since this is the last section in the chapter, you should interpret it as a boss fight. It is
definitely harder, but the loot is also better.
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find the equations of motion (the Euler-Lagrange equations) by performing a
tiny variation in S and requiring that δS = 0 (which is the condition on any
extremum point; maximum or minimum). To do that we write qi → qi + ηi,
where ηi(t) is supposed to be an infinitesimal distortion of the original trajectory.
We then compute

δS = S[qi(t) + ηi(t)]− S[qi(t)]

=

t2∫
t1

dt
∑
i

{
∂L

∂qi
ηi +

∂L

∂(∂tqi)
∂tηi

}

=

t2∫
t1

dt
∑
i

{
∂L

∂qi
− ∂t

(
∂L

∂(∂tqi)

)}
ηi

where, in the last line, I integrated by parts the second term. Setting each term
proportional to ηi to zero then gives us the Euler-Lagrange equations

∂L

∂qi
− ∂t

(
∂L

∂(∂tqi)

)
= 0 (1.130)

The example you are probably mostly familiar with is the case when

L =
1

2
m(∂tq)

2 − V (q) (1.131)

with V (q) being some potential. In this case Eq. (1.130) gives Newton’s law

m∂2
t q = −∂V

∂q
(1.132)

Another example, which you may not have seen before, but which will be in-
teresting for us, is the case when we write L as a function of coordinates q and
momenta p; , ie L(q, ∂tq, p, ∂tp). For instance,

L = p∂tq −H(q, p) (1.133)

where H is the Hamiltonian function. In this case there will be two Euler-
Lagrange equations:

∂L

∂q
− ∂t

(
∂L

∂(∂tq)

)
= −∂H

∂q
− ∂tp = 0

∂L

∂p
− ∂t

(
∂L

∂(∂tp)

)
= ∂tq −

∂H

∂p
= 0

Rearranging, this gives us Hamilton’s equations

∂tp = −∂H
∂q

, ∂tq =
∂H

∂p
(1.134)
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Another thing we will need is the conjugated momentum πi associated
to a generalized coordinate qi. It is always defined as

πi =
∂L

∂(∂tqi)
(1.135)

For the Lagrangian (1.131) we get π = m∂tq. For the Lagrangian (1.133)
we have two variables, q1 = q and q2 = p. The corresponding conjugated
momenta are π(q) = p and π(p) = 0 (there is no momentum associated with the
momentum!). Once we have the momentum we may construct the Hamiltonian
from the Lagrangian using the Legendre transform:

H =
∑
i

pi∂tqi − L (1.136)

For the Lagrangian (1.131) we get

H =
p2

2m
+ V (q)

whereas for the Lagrangian (1.133) we get

H = π(q)∂tq + π(p)∂tp− L = p∂tq + 0− p∂tq +H = H

as of course expected.

The principle of least action for Schrödinger’s equation

Now consider the Schrödinger equation (1.1)

i∂t|ψ(t)〉 = H|ψ(t)〉 (1.137)

and let us write it in terms of the components ψn in some basis, as in Eq. (1.10):

i∂tψn =
∑
m

Hn,mψm (1.138)

We now ask the following question: can we cook up a Lagrangian and an action
such that the corresponding Euler-Lagrange equations give Eq. (1.138)? The
answer, of course, is yes.8 The “variables” in this case are all components
ψn. But since they are complex variables, we actually have ψn and ψ∗n as an
independent set. That is, L = L(ψn, ∂tψn, ψ

∗
n, ∂tψ

∗
n). and the action is

S[ψ∗n, ψn] =

t2∫
t1

L(ψn, ∂tψn, ψ
∗
n, ∂tψ

∗
n) dt (1.139)

8If the answer was no, I would be a completely crazy person, because I just spent more
than one page describing Lagrangian mechanics, which would have all been for nothing.

29



I will now tell you what is the correct Lagrangian we should use and then
we will verify that it indeed works. The correct Lagrangian is:

L =
∑
n

iψ∗n∂tψn −
∑
n,m

Hn,mψ
∗
nψm (1.140)

where ψn and ψ∗n are to be interpreted as independent variables. Please take
notice of the similarity with Eq. (1.133): ψn plays the role of q and ψ∗n plays the
role of p. To check that this works we use the Euler-Lagrange equations with
q1 = ψ∗n and q2 = ψn:

∂L

∂ψ∗n
− ∂t

(
∂L

∂(∂tψ∗n)

)
= 0

The second term is zero since ∂tψ
∗
n does not appear in Eq. (1.140). The first

term then gives
∂L

∂ψ∗n
= i∂tψn −

∑
m

Hn,mψm = 0

which is precisely Eq. (1.138). Thus, we have just cast Schrödinger’s equation as
a principle of least action for a weird action that depends on the quantum state
|ψ〉. I will leave to you as an exercise to compute the Euler-Lagrange equation
for ψn; you will simply find the complex conjugate of Eq. (1.138).

Eq. (1.140) is written in terms of the components ψn of a certain basis. We
can also write it in a basis independent way, as

L = 〈ψ|(i∂t −H)|ψ〉 (1.141)

This is what I call the Schrödinger Lagrangian. Isn’t it beautiful? If this abstract
version ever confuse you, simply refer back to Eq. (1.140).

Let us now ask what is the conjugated momentum associated with the vari-
able ψn for the Lagrangian (1.140). Using Eq. (1.135) we get, as you may have
anticipated,

π(ψn) =
∂L

∂(∂tψn)
= iψ∗n, π(ψ∗n) = 0 (1.142)

This means that ψn and iψ∗n are conjugated variables. As a sanity check, we
can now find the Hamiltonian using the definition (1.136):

H =
∑
n

iψ∗n∂tψn − L (1.143)

which is, of course, just the actual Hamiltonian H.
The idea of using Eq. (1.141) [or Eq. (1.140)] is as follows. Suppose, just for

the sake of argument, that the dimension of your Hilbert space is d. This means
that there are in total d coefficients ψn which will completely describe your
quantum state. If you extremize the action with respect to all these coefficients
your Euler-Lagrange equations will be the exact Schrödinger equation. But in
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some problems that may be a complicated task. Instead, we may use only a
smaller set d′ < d of parameters. This will still give you some equation of
motion, but this equation will be approximate because we are focusing only on
a sub-space of the full Hilbert space. This is how we implement a variational
principle for the dynamics. The larger is the number of parameters d′, the better
will the approximation be, until d′ = d, in which case the calculation becomes
exact.

Position representation

Things get even naughtier if we look at the position representation. Assume
that

H =
p2

2m
+ V (x) (1.144)

Then we know that, in the position representation,

〈ψ|H|ψ〉 =

∫
d3x ψ∗

[
− ∇

2

2m
+ V (x)

]
ψ (1.145)

The Schrödinger Lagrangian (1.141) then becomes

L =

∫
d3x ψ∗(x, t)

[
i∂t +

∇2

2m
+ V (x)

]
ψ(x, t) (1.146)

We may also define a Lagrangian density L as

L =

∫
d3x L (1.147)

Then

L = ψ∗(x, t)

[
i∂t +

∇2

2m
+ V (x)

]
ψ(x, t) (1.148)

This is interesting because now we can write the action not as an integral in
time, but as an integral over space-time:

S =

∫
dt L =

∫
d4x L (1.149)

where d4x = dtd3x. Before S and L depended on a set of variables ψn(t) and
ψ∗n(t). Now they depend on a set of continuous variables ψ(x, t) and ψ∗(x, t).

This is perhaps your first encounter of a field theory. We have just shown
that a quantum system is described by a field ψ(x, t) (which is just the wave-
function of course). The system is governed by an action/Lagrangian and
Schrödinger’s equation is simply the corresponding Euler-Lagrange equation.
This is very similar to electromagnetism, which is also characterized by a field
and by a Lagrangian (you will learn about the electromagnetic Lagrangian in
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field theory courses). The Euler-Lagrange equations for the electromagnetic
Lagrangian are Maxwell’s equations. In this sense Schrödinger’s equation is
therefore a classical field theory. I know this sounds weird, but it is classical in
the sense that the field (in this case ψ) is a classical object; ie a complex num-
ber. To obtain a quantum field theory we must promote the fields themselves
to operators, a procedure called second quantization. In electromagnetism,
quantization leads to the idea of photons as the elementary excitations. We
may also think about quantizing the Schrödinger Lagrangian and this will lead
to a similar idea, with the actual particles interpreted as excitations out of the
field. We will learn how to do this on later chapters.

The momentum conjugated to ψ(x, t) is again iψ∗(x, t) (which is also a
field). From the Lagrangian density we then obtain the Hamiltonian density

H = iψ∗∂tψ − L = ψ∗
[
− ∇

2

2m
+ V (x)

]
ψ (1.150)

The total energy is then the integral of this quantity over all space

H =

∫
d3x H =

∫
d3x ψ∗

[
− ∇

2

2m
+ V (x)

]
ψ (1.151)

As expected, this is nothing but Eq. (1.145).
In the position representation L will depend not only on ψ and ∂tψ, but also

on ∂iψ. Thus, when constructing the equations of motion, we need to consider
the dependence on these derivatives as well. Actually, the Lagrangian (1.148)
also depends on ∂2

i ψ, which is a bit messy. But we can get rid of that by inte-
grating by parts and transferring one of the ∇’s to act on ψ∗ (two Lagrangians
differing only by an integration by parts are physically equivalent since boundary
terms always vanish). We then get

L = ψ∗i∂tψ −
1

2m
(∇ψ∗) · (∇ψ) + V (x)ψ∗ψ (1.152)

This is absolutely equivalent to Eq. (1.148), but it is more convenient to work
with.

The general structure of the Euler-Lagrange equations is almost identical to
Eq. (1.130); you just need to sum the derivatives with respect to the position
coordinates.9 That is, they become

∂L
∂ψ
− ∂t

(
∂L

∂(∂tψ)

)
−

3∑
i=1

∂i

(
∂L

∂(∂iψ)

)
= 0 (1.153)

And similarly for ψ∗. As before, the Euler-Lagrange equation for ψ∗ will give
an equation of motion for ψ and vice-versa.

9This can be demonstrated exactly as in Eq. (1.130), by adding to the field ψ(x, t) a small
perturbative field η(x, t) and analyzing the corresponding variation in the action.
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Chapter 2

Density matrix theory

2.1 Trace and partial trace

The concept of a trace will be used extensively in this course, starting in the
next section. So I want to take a second to explain it in detail. The trace of an
operator is defined as the sum of its diagonal entries:

tr(A) =
∑
i

〈i|A|i〉 (2.1)

It does not matter which basis you use: it turns out that the trace is always the
same. You can see that using completeness: for instance, if |a〉 is some other
basis then∑

i

〈i|A|i〉 =
∑
i

∑
a

〈i|a〉〈a|A|i〉 =
∑
i

∑
a

〈a|A|i〉〈i|a〉 =
∑
a

〈a|A|a〉

Thus, we conclude that

tr(A) =
∑
i

〈i|A|i〉 =
∑
a

〈a|A|a〉 (2.2)

The trace is a property of the operator, not of the basis you choose.
Since it does not matter which basis you use, let us choose the basis which

diagonalizes the operator A. If |a〉 happens to be that basis, then 〈a|A|a〉 = λa
will be an eigenvalue of A. Thus, we also see that

tr(A) =
∑
a

λa = sum of all eigenvalues of A (2.3)

For instance, tr(H) =
∑
nEn is the sum of all energies. Or we can also look at

the operator e−iHt. We have seen before that the eigenvalues of this operator
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are e−iEnt. Thus, we conclude that

tr(e−iHt) =
∑
n

e−iEnt (2.4)

Perhaps the most useful property of the trace is that it is cyclic:

tr(AB) = tr(BA) (2.5)

I will leave it for you to demonstrate this. You can do it, as with all demonstra-
tions in quantum mechanics, by inserting a convenient completeness relation in
the middle of AB. Using the cyclic property (2.5) you can also move around an
arbitrary number of operators, but only in cyclic permutations. For instance:

tr(ABC) = tr(CAB) = tr(BCA) (2.6)

Note how I am moving them around in a specific order: tr(ABC) 6= tr(BAC).
An example that appears often is a trace of the form tr(UAU†), where U is a
unitary operator; i.e., UU† = U†U = 1. In this case, it follows from the cyclic
property that

tr(UAU†) = tr(AU†U) = tr(A)

Finally, let |ψ〉 and |φ〉 be arbitrary kets and let us compute the trace of the
outer product |ψ〉〈φ|:

tr(|ψ〉〈φ|) =
∑
i

〈i|ψ〉〈φ|i〉 =
∑
i

〈φ|i〉〈i|ψ〉

The sum over |i〉 becomes a 1 due to completeness and we conclude that

tr(|ψ〉〈φ|) = 〈φ|ψ〉 (2.7)

Notice how this follows the same logic as Eq. (2.5), so you can pretend you just
used the cyclic property. As an example, consider the coherent states of the
harmonic oscillator discussed in Sec. 1.5. Using the completeness relation (1.123)
together with Eq. (2.7) we may write the trace of any operator as

trO = tr

∫
d2α

π
|α〉〈α|O =

∫
d2α

π
〈α|O|α〉 (2.8)

This is similar to a sum over the diagonal entries, except that now we are using
an overcomplete basis.

The partial trace

The trace is an operation which starts with an operator and spits out a
number. It is also possible to do a partial trace, which eliminates only part of
a Hilbert space. Why this is useful will only become clear in Sec. 2.3, but the
mathematical procedure can be outlined here.
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Suppose you have a system composed of two parts, A and B. They may
be, for instance, two particles. Or each part may be a set of particles. It does
not matter. When a system is divided in two, we call it a bipartite system.
Suppose system A has a certain basis set |a〉 spanning a Hilbert space HA,
whereas B has a basis |b〉 for the Hilbert space HB . As we learned in Sec. 1.3,
when we work with the two systems combined, we can use as basis kets the
Kronecker product

|a, b〉 = |a〉 ⊗ |b〉 (2.9)

This is just like the |σ1, σ2〉 in Sec. 1.3, only a bit more general. The state |a, b〉
lives in the product space HAB = HA ⊗HB .

Now let us study the trace of operators that act on HAB . The most general
such operator may always be written as

O =
∑
α

Aα ⊗Bα (2.10)

for some index α and some set of operators Aα and Bα. For instance, in Sec. 1.3
we saw the operator σA · σB , which had exactly this form. In order not to
complicate things, we start with an operator of the form O = A ⊗ B. To find
its trace, we may use the |a, b〉 basis:

tr(O) =
∑
a,b

〈a, b|O|a, b〉 (2.11)

Expanding out the krons we get

tr(O) =
∑
a,b

(〈a| ⊗ 〈b|)(A⊗B)(|a〉 ⊗ |b〉)

=
∑
a,b

〈a|A|a〉 ⊗ 〈b|B|b〉

=
∑
a

〈a|A|a〉
∑
b

〈b|B|b〉

I got rid of the ⊗ in the last line because the kron of two numbers is a number.
The two terms in this formula are simply the trace of the operators A and B in
their respective Hilbert spaces. Whence, we conclude that

tr(A⊗B) = tr(A) tr(B) (2.12)

Now we can imagine an operation where we only trace over a part of the
system. This is what we call the partial trace. It is defined as

trA(A⊗B) = tr(A)B, trB(A⊗B) = A tr(B) (2.13)
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When you “trace over A”, you eliminate the variables pertaining to A and what
you get left is an operator acting only on HB . This is something we often forget,
so please pay attention: the result of a partial trace is still an operator. More
generally, for an arbitrary operator O as defined in Eq. (2.10), we have

trAO =
∑
α

tr(Aα)Bα trB O =
∑
α

Aα tr(Bα) (2.14)

As an example, suppose we have two spins, with Pauli operators σiA and σiB .
Then we would have, for instance,

trA(σxAσ
x
B) = tr(σx)σxB

Note how in the right-hand side I write σx instead of σxB . The partial trace acts
only on the single-spin subspace, so it does not matter which notation I use.
Of course, this example I just gave is a bit silly because tr(σx) = 0. But still,
you get the idea. As another example, consider the partial trace of σA ·σB . To
compute it we need to use the linearity of the trace:

trA(σA · σB) = tr(σx)σxB + tr(σy)σyB + tr(σz)σ
z
B

Again, all terms are zero in the end. In principle every operator may be written
in the form (2.10) so linearity solves all problems. However, that does not mean
that writing down such an expansion is easy. For instance, suppose you want
to compute the partial trace of eσA·σB . This turns out to be a quite clumsy
calculation. For two spin 1/2 particles the matrices will be 4 × 4, so albeit
clumsy, this is something a computer can readily do. For N spin 1/2 particles
things become more difficult.

We can also write down the partial trace in terms of components. For in-
stance, the partial trace over B reads:

trB O =
∑
b

〈b|O|b〉 (2.15)

This notation may be a bit confusing at first. Actually, when we write |b〉 here,
what we really mean is 1⊗ |b〉. So the full formula would be

trB O =
∑
b

(1⊗ 〈b|)O(1⊗ |b〉) (2.16)
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We can check that this works using O = A⊗B. We then get

trB O =
∑
b

(1⊗ 〈b|)(A⊗B)(1⊗ |b〉)

=
∑
b

(1A1)⊗ (〈b|B|b〉)

= A
∑
b

〈b|B|b〉

= A tr(B)

Eq. (2.15) with 1 ⊗ |b〉 is a convenient way to implement the partial trace in a
computer.

Finally we could also write down a general formula for the partial trace in
terms of the components of O in a basis. To do that, note that we may always
insert two identities to decompose O as

O =
∑

a,b,a′,b′

|a, b〉〈a, b|O|a′, b′〉〈a′, b′| (2.17)

To perform the partial trace over B, for instance, we sum over the diagonal
entries of the B part (b′ = b) :

trB O =
∑
a,b,a′

|a〉〈a, b|O|a′, b〉〈a′| (2.18)

The result is an operator acting on HA, which we can see from the fact that this
is a sum of outer products of the form |a〉〈a′|. To make that more transparent,
we can factor the sum over b and write

trB O =
∑
a,a′

[∑
b

〈a, b|O|a′, b〉
]
|a〉〈a′| (2.19)

An example that is often encountered is the partial trace of some outer
product, such as |a, b〉〈a′, b′|. To take the partial trace, remember that this can
be written as

|a, b〉〈a′, b′| = |a〉〈a′| ⊗ |b〉〈b′|

The partial trace over B, for instance, will simply go right through the first part
and act only on the second part; i.e.,

trB |a, b〉〈a′, b′| = |a〉〈a′| tr
{
|b〉〈b′|

}

= |a〉〈a′|
{
〈b′|b〉

}
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Thus, we conclude that

trA |a, b〉〈a′, b′| = δa,a′ |b〉〈b′|, trB |a, b〉〈a′, b′| = |a〉〈a′|δb,b′ (2.20)

2.2 The density matrix

A ket |ψ〉 is actually not the most general way of defining a quantum state.
To motivate this, consider the state |gn〉 in Eq. (1.42) and the corresponding
expectation values computed in Eq. (1.44). The spin in this state always points
somewhere: it points at the direction n of the Bloch sphere. It is never possible
to find a quantum ket |ψ〉 where all spin components are zero on average; ie,
where the spin is isotropic. That sounds strange since, if we put the spin in a
high temperature oven without any magnetic fields, then we certainly expect
that it will never have a preferred magnetization direction. The solution to
this paradox is that, when we put a spin in an oven, we are actually adding a
classical uncertainty to the problem, whereas kets are only able to encompass
quantum uncertainty.

The most general representation of a quantum system is written in terms of
an operator ρ called the density operator, or density matrix. It is built in such
a way that it naturally encompasses both quantum and classical probabilities.
This is very important for quantum statistical mechanics since finite tempera-
ture states mix both. The need for a density operator is also closely related to
the notion of entanglement, as will be discussed below.

The density matrix from classical probabilities

Suppose we have an apparatus which prepares quantum systems in certain
states. For instance, this could be an oven producing spin 1/2 particles, or a
quantum optics setup producing photons. But suppose that this apparatus is
imperfect, so it does not always produces the same state. That is, suppose that
it produces a state |ψ1〉 with a certian probability q1 or a state |ψ2〉 with a
certain probability q2 and so on. Notice how we are introducing here a classical
uncertainty. We can have as many q’s as we want. All we assume is that they
behave like classical probabilities:

qi ∈ [0, 1], and
∑
i

qi = 1 (2.21)

Now let A be an observable. If the state is |ψ1〉, then the expectation value of
A will be 〈ψ1|A|ψ1〉. But if it is |ψ2〉 then it will be 〈ψ2|A|ψ2〉. To compute the
actual expectation value of A we must therefore perform an average of quantum
averages:

〈A〉 =
∑
i

qi〈ψi|A|ψi〉 (2.22)
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What is important to realize is that this type of average cannot be writen as
〈φ|A|φ〉 for some ket |φ〉. If we want to attribute a “state” to our system, then
we must generalize the idea of ket. To do that, we use Eq. (2.7) to write

〈ψi|A|ψi〉 = tr

[
A|ψi〉〈ψi|

]
Then Eq. (2.22) may be written as

〈A〉 =
∑
i

qi tr

[
A|ψi〉〈ψi|

]
= tr

{
A
∑
i

qi|ψi〉〈ψi|
}

This motivates us to define the density matrix as

ρ =
∑
i

qi|ψi〉〈ψi| (2.23)

Then we may finally write Eq. (2.22) as

〈A〉 = tr(Aρ) (2.24)

which, by the way, is the same as tr(ρA) since the trace is cyclic [Eq. (2.5)].
Instead of working with kets, we may now start to work only with den-

sity matrices. In fact, the density matrix is the actual general quantum state.
Whenever a density matrix can be writte as ρ = |ψ〉〈ψ|, we say we have a pure
state. In this case Eq. (2.24) reduces to the usual result: 〈A〉 = 〈ψ|A|ψ〉. A
state which is not pure is usually called a mixed state.

The density matrix and entanglement

We will discuss entanglement in more detail in the next section. For now,
a short introduction will suffice. Suppose we have a bipartite system and, for
simplicity, assume that the two parts are identical. Let |i〉 denote a basis for
any such part and assume that the composite system is in a state of the form

|ψ〉 =
∑
i

ci|i〉 ⊗ |i〉 (2.25)

for certain coefficients ci.
1 If c1 = 1 and all other ci = 0 then |ψ〉 = |i〉 ⊗ |i〉

becomes a product state. When more than one ci is non-zero, then the state
can never be written as a product. Whenever a state of a bipartite system
cannot be written as a product state, we say it is entangled.

1At first this may seem like a restrictive choice. However, as we will discuss in the next
section, it turns out that any state of the composite system can always be written in this way.
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The expectation value of some operator A that acts only on the first system
is, by definition,

〈A〉 = 〈ψ|(A⊗ 1)|ψ〉 (2.26)

where, just for caution, I wrote A⊗ 1 to emphasize that |ψ〉 is actually a state
in HAB . Carrying out the calculation we get:

〈A〉 =
∑
i,j

c∗i cj〈i, i|(A⊗ 1)|j, j〉

=
∑
i,j

c∗i cj〈i|A|j〉〈i|j〉

=
∑
i

|ci|2〈i|A|i〉

This result is quite remarkable. Note how it has exactly the same form as
Eq. (2.22), even though we have no classical probabilities at play here (we
started with a pure state). We could then define a density matrix, exactly as
before:

ρ =
∑
i

|ci|2|i〉〈i| (2.27)

In general, therefore, we find that the reduced state of a bipartite system will
be a mixed state. The only exception is when the state is a product state; ie,
when the two systems are not entangled. In this case ρ = |i〉〈i|. We thus reach
the following important conclusion: when a bipartite system is entangled, the
reduced states of each sub-systems will be mixed states.

Examples

Consider again spin 1/2 systems. Suppose that the system is in a pure state
characterized by the ket |x+〉 = 1√

2
(1, 1), which is the eigenvector of σx with

eigenvalue +1. The corresponding density matrix will be

ρ = |x+〉〈x+| =
1

2

(
1
1

)(
1 1

)
=

1

2

(
1 1
1 1

)
We may now use Eq. (2.24) to compute some expectation values (of course,
in this case, we could also use 〈x+|O|x+〉). We will find that tr(σxρ) = 1
and tr(σy,zρ) = 0, which makes sense. Similarly, if we consider the state
|x−〉 = 1√

2
(1,−1), which is the eigenstate of σx with eigenvalue −1, then the

corresponding density matrix will be

ρ = |x−〉〈x−| =
1

2

(
1
−1

)(
1 −1

)
=

1

2

(
1 −1
−1 1

)
In this state we have 〈σx〉 = −1.
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Now consider a 50-50 mixture of these two states:

ρ =
1

2
|x+〉〈x+|+

1

2
|x−〉〈x−| =

1

2

(
1 0
0 1

)
This state has 〈σx〉 = 〈σy〉 = 〈σz〉 = 0. It is fully isotropic, with no preferred
spin direction. We may also reach the same state if we consider a 50-50 mixture
of |+〉 and |−〉 (the σz eigenstates):

ρ =
1

2
|+〉〈+|+ 1

2
|−〉〈−| = 1

2

(
1 0
0 1

)
Even though the states we started with are different, the final density matrix
is the same: a 50-50 mixture of |x±〉 gives the same quantum state as a 50-50
mixture of |±〉. This example shows us that there is more than one way to
decompose a certain ρ in the form (2.23) (actually, there are an infinte number
of ways).

Properties of the density matrix

The density matrix satisfies a bunch of very special properties. We can
figure them out using only the definition (2.23) and recalling that qi ∈ [0, 1] and∑
i qi = 1 [Eq. (2.21)]. First, the density matrix is a Hermitian operator:

ρ† = ρ (2.28)

Second,

tr(ρ) =
∑
i

qi tr(|ψi〉〈ψi|) =
∑
i

qi〈ψi|ψi〉 =
∑
i

qi = 1 (2.29)

This is the normalization condition of the density matrix. You can also see this
directly from Eq. (2.24) by choosing A = 1 (the identity operator). Then, since
〈1〉 = 1 we get again tr(ρ) = 1. Third, ρ is positive semi-definite. What this
means is that the sandwich of ρ in any quantum state is always non-negative.
In symbols, if |φ〉 is an arbitrary quantum state then

〈φ|ρ|φ〉 =
∑
i

qi|〈φ|ψi〉|2 ≥ 0 (2.30)

These are the two defining properties of a density operator: it normalizes to one
and is positive semi-definite. We usually write the latter symbolically as ρ ≥ 0.
Thus:

Defining properties of a density matrix: tr(ρ) = 1 and ρ ≥ 0

(2.31)
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We also see from Eq. (2.30) that 〈φ|ρ|φ〉 is a sum of quantum probabili-
ties |〈φ|ψi〉|2 averaged by classical probabilities qi. This entails the following
interpretation: for an arbitrary state |φ〉,

〈φ|ρ|φ〉 = Prob. of finding the system at state |φ〉 given that it’s state is ρ

(2.32)
Now let’s talk about eigenvalues and eigenvectors. In Eq. (2.23) it already

looks as if ρ is in diagonal form [cf. Eq. (1.13)]. However, we need to be a bit
careful because the |ψi〉 are arbitrary states and do not necessarily form a basis.
Thus, in general, the diagonal structure of ρ will be different. Notwithstanding,
ρ is Hermitian and may therefore be diagonalized by some orthonormal basis
|k〉 as

ρ =
∑
k

pk|k〉〈k| (2.33)

for certain eigenvalues pk. Since Eq. (2.30) must be true for any state |φ〉 we
may choose, in particular, |φ〉 = |k〉, which gives

pk = 〈k|ρ|k〉 ≥ 0

This is another way of stating that an operator is positive semi-definite: its
eigenvalues are non-negative. In addition to this, we also have that tr(ρ) = 1,
which implies that

∑
k pk = 1. Thus we conclude that the eigenvalues of ρ

behave like probabilities:

pk ∈ [0, 1],
∑
k

pk = 1 (2.34)

Next let us look at ρ2. The eigenvalues of this matrix are p2
k so

tr(ρ2) =
∑
k

p2
k ≤ 1 (2.35)

The only case when tr(ρ2) = 1 is when ρ is a pure state. In that case it can
be written as ρ = |ψ〉〈ψ| so it will have one eigenvalue p1 = 1 and all other
eigenvalues equal to zero. Hence, the quantity tr(ρ2) represents the purity of
the quantum state. When it is 1 the state is pure. Otherwise, it will be smaller
than 1:

Purity := tr(ρ2) ≤ 1 (2.36)

There are three absolutely equivalent ways of determining whether a state is
pure: (i) ρ = |ψ〉〈ψ|; (ii) ρ2 = ρ (which is a direct consequence of (i)) and (iii)
tr(ρ2) = 1. The last one is, perhaps, the most practical one.
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As a side note, when the dimension of the Hilbert space d is finite, it also
follows that tr(ρ2) will have a lower bound:

1

d
≤ tr(ρ2) ≤ 1 (2.37)

This lower bound occurs when ρ is the maximally disordered state

ρ =
Id
d

(2.38)

where Id is the identity matrix of dimension d.

Two-state systems

For a spin 1/2 or two-state system, the most general density matrix may be
written as

ρ =
1

2
(1 + s · σ) =

1

2

(
1 + sz sx − isy
sx + isy 1− sz

)
(2.39)

where s = (sx, sy, sz) is a vector. The physical interpration of s becomes evident
from the following relation, which I leave for you to check:

si = tr(σiρ) (2.40)

Looking at Eq. (2.39) we can see that tr(ρ) = 1 since we just need to sum the
diagonal entries. Moreover, a straightforward calculation shows that

tr(ρ2) =
1

2
(1 + s2) (2.41)

Thus, due to Eq. (2.35), it also follows that

s2 = s2
x + s2

y + s2
z ≤ 1 (2.42)

When s2 = 1 we are in a pure state. In this case the vector s lays on the surface
of the Bloch sphere. For mixed states s2 < 1 and the vector is inside the Bloch
sphere. The maximally disordered state occurs when s = 0.

The von Neumann equation

The time evolution of any ket |ψ〉 under unitary dynamics is given by
Eq. (1.16): |ψ(t)〉 = e−iHt|ψ(0)〉. Any density operator may be written in
the form (2.23) so its time evolution will be

ρ(t) =
∑
i

qie
−iHt|ψi(0)〉〈ψi(0)|eiHt = e−iHtρ(0)eiHt
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Differentiating with respect to t we then get

dρ

dt
= (−iH)e−iHtρ(0)eiHt + e−iHtρ(0)eiHt(iH) = −iHρ(t) + iρ(t)H

Thus, we reach von Neumann’s equation:

dρ

dt
= −i[H, ρ], ρ(t) = e−iHtρ(0)eiHt (2.43)

This is somewhat similar to Heisenberg’s equation (1.22), except for a minus
sign.

We can still define the Heisenberg picture for density matrices. For instance,
the expectation value of an operator is 〈A〉t = tr(Aρ(t)). Using the cyclic
property of the trace we may write this in two ways:

〈A〉t = tr

{
Ae−iHtρ(0)eiHt

}
= tr

{
eiHtAe−iHtρ(0)

}
(2.44)

The first way is Aρ(t) and the second is AH(t)ρ(0).

2.3 Reduced density matrices and entanglement

Consider again a bipartite system AB with a certain density matrix ρ (which
can be either pure or mixed). If we want, we can trace out one of the sub-systems
to obtain a reduced density matrix for the other system. To do that, we simply
take the partial trace (Sec. 2.1) over the system we don’t want anymore:

ρA = trB ρ, ρB = trA ρ (2.45)

To see where this may come in, let A be an operator acting only on HA. Its
expectation value in the state ρ is, by definition 〈A〉 = tr(Aρ). But this is a
trace over the full Hilbert space HAB . Using the reduced density matrix, on
the other hand, we can write down the expectation value as a trace only over
HA:

〈A〉 = tr(Aρ) = trA(AρA) (2.46)

The reduction operation in Eq. (2.45) can always be performed and, when deal-
ing with operators that act only on HA or HB , it is always possible to use
the reduced density matrices to compute expectation values, as in Eq. (2.46).
However, please bear in mind that in general ρA ⊗ ρB 6= ρ, so when computing
expectation values of operators in HAB (such as, e.g., A⊗B), we must use the
full density matrix ρ.
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The test of whether ρA⊗ρB 6= ρ is also what we use to define the correlation
between two systems:

If ρA ⊗ ρB = ρ then A and B are uncorrelated (2.47)

This follows a logic similar to classical probability theory. However, unlike classi-
cal probability theory, correlation for quantum systems may be either of classical
or quantum origin. Quantum correlations is what we call entanglement. Below
we will learn how to distinguish the two. Another thing that you should bear
in mind is that taking the partial trace is, in general, an irreversible operation
in the sense that in general you cannot reconstruct ρ from ρA and ρB . Putting
it differently, information is generally lost when taking the partial trace.

Example

As an example suppose that we have two spin 1/2 particles in a singlet state

|ψ〉 =
|+−〉 − | −+〉√

2
(2.48)

In this state we have 〈σiα〉 = 0 for α ∈ {A,B} and i ∈ {x, y, z}. However,
one may verify that, for instance, 〈σzAσzB〉 = −1. This immediately means
that the two particles are correlated. For, if they were not, we would have
〈σzAσzB〉 = 〈σzA〉〈σzB〉. Since the state (2.48) is a pure state, all correlation must
be of quantum origin; ie, entanglement.

Let us compute the reduced density of system A. To do that we first write
the full density matrix

ρ = |ψ〉〈ψ| = 1

2

{
|+−〉〈+− |+ | −+〉〈−+ | − |+−〉〈−+ | − | −+〉〈+− |

}
Now we use Eq. (2.20) to get

ρA = trB ρ =
1

2

{
|+〉〈+|+ |−〉〈−|

}
=

I2
2

(2.49)

By symmetry, ρB will be exactly the same. We can therefore readily see that
ρA⊗ρB will be a diagonal operator, whereas ρ is clearly not diagonal. Whence,
ρA⊗ρB 6= ρ, as expected. Also note that, if we use ρA⊗ρB to compute 〈σzAσzB〉
we will get zero, even though the actual result is −1.

Entanglement

The most general pure state of a bipartite system may be written as

|ψ〉 =
∑
a,b

Ca,b|a〉 ⊗ |b〉 (2.50)
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for certain coefficients Ca,b. A particular case of this state is when the coefficients
Ca,b can be written as a product: Ca,b = fagb. In this case the state |ψ〉 will
factor as

|ψ〉 =

[∑
a

fa|a〉
]
⊗
[∑

b

gb|b〉
]

:= |ψa〉 ⊗ |ψb〉 (2.51)

which is a product state. It is what you expect to happen when sub-system
1 is in Tokyo and sub-system 2 is in Aruba (specially if they are on vacation).
When a state cannot be written as a product state (ie, when Ca,b cannot be
factored as a product) we say the two sub-systems are entangled. This is how
we define entanglement for pure states. The definition for mixed states will be
discussed below.

Now let us compute the reduced density matrix of system A:

ρA = trB(|ψ〉〈ψ|)

= trB
∑
a,b

∑
a′,b′

C∗a,bCa′,b′

[
|a〉 ⊗ |b〉]

[
〈a′| ⊗ 〈b′|

]

=
∑
a,b

∑
a′,b′

C∗a,bCa′,b′

[
|a〉〈a′|

]
⊗
[

trB |b〉〈b′|
]

︸ ︷︷ ︸
δb,b′

=
∑
a,a′

[∑
b

C∗a,bCa′,b

]
|a〉〈a′| (2.52)

This is in general a mixed state. The only exception is again when Ca,b = fagb.
Due to normalization we must have

∑
b |gb|2 = 1 so, in this case, ρA becomes

ρA =
∑
a,a′

f∗afa′ |a〉〈a′| =
[∑

a

f∗a |a〉
][∑

a′

fa′〈a′|
]

= |ψa〉〈ψa|

Thus, entanglement means that the reduced density matrices will be in mixed
states. We of course already seen this from the previous section. This is just a
different way to do the same calculation.

The Schmidt decomposition

The Schmidt decomposition is a way of writing the general state (2.50) in
a cleaner way, which will make the physics of entanglement more transparent
[the final result will have the form (2.25)]. The basic idea is to note that the
coefficients Ca,b may be interpreted as forming a matrix (which will be rectan-
gular if HA and HB are of different dimensions). Any rectangular matrix may
be decomposed in the so-called Singular Value Decomposition (SVD):

C = UΣV † (2.53)
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where U and V are unitary matrices and

Σ = diag(σ1, σ2, . . . , σr, 0, 0, . . .)

The quantities σi are called the singular values of the matrix and they are
always non-negative: σi > 0.2 The number of non-zero σi, which I denoted
by r, is called the Schmidt rank. I will not discuss here how to compute the
SVD in practice. It is an operation that is seldom done analytically, but it is
implemented in any linear algebra library you can imagine.

Inserting the SVD (2.53) into Eq. (2.50) we get

|ψ〉 =
∑
a,b

∑
i

(Ua,iσiV
∗
b,i)|a〉 ⊗ |b〉

Now define
|iA〉 =

∑
a

Ua,i|a〉, |iB〉 =
∑
b

V ∗b,i|b〉

Moreover (just for convenience) define the Schmidt coefficients λi = σ2
i . Then

we may finally write the state (2.50) as

|ψ〉 =

r∑
i=1

√
λi |iA〉 ⊗ |iB〉 (2.54)

The vectors |iA〉 and |iB〉 are orthonormal due to the unitarity of U and V .
Moreover, since the state |ψ〉 must be normalized, it follows that∑

i

λi = 1 (2.55)

If the Schmidt rank is r = 1 (i.e., if there is only one non-zero λi) then the
state is a product state (no entanglement). Otherwise, the two systems are
entangled. The Schmidt rank therefore characterizes entanglement. We used
this in the previous section in the context of Eq. (2.25).

Now let us compute the reduced density matrix of sub-systems A and B.
Following the exact same procedure as above, we get

ρA = trB |ψ〉〈ψ| =
∑
i

λi|iA〉〈iA| (2.56)

ρB = trA |ψ〉〈ψ| =
∑
i

λi|iB〉〈iB | (2.57)

We see that the Schmidt coefficients play the role of the probabilities for the
two reduced density matrices. Moreover, the purity of these reduced density

2In general the singular value decomposition has no relation whatsoever with the eigende-
composition of a matrix. The only exception is for Hermitian positive semi-definite matrices
(like density matrices) for which the two coincide.
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matrices turn out to be equal and have the value:

purity = tr ρ2
A = tr ρ2

B =
∑
i

λ2
i (2.58)

They therefore serve as a way to characterize the degree of entanglement: if
the two systems are not entangled then λ1 = 1 and all other λi = 0. In this
case the purity is 1. The distance from 1 therefore quantifies the degree of
entanglement. Highly entangled states lead to highly impure reduced density
matrices. The maximally entangled state is obtained by making the purity as
small as possible. For simplicity assume both systems have dimension d. Then
the maximally entangled state will occur when r = d and λi = 1/d. In this case
the purity will be 1/d. The state (2.48) is an example of a maximally entangled
state.

The purity is not the only measure of entanglement. Usually, entanglement
is quantified using entropies, as we will discuss in the next section. But it turns
out that the purity is related to the so-called Rényi-2 entropy so in essence,
characterizing the entanglement by the purity is the same as characterizing by
an entropy.

State purification

The Schmidt decomposition is also closely related to the idea of state pu-
rification. Consider a physical system A described by a general mixed state ρA
with diagonal form

ρ =
∑
a

pa|a〉〈a|

Purification is a method to write this mixed state as a pure state in a larger
Hilbert space. That is, we expand the Hilbert space and in this larger space we
have more room to work with, so we can write a mixed state as a pure state.
There is more than one way of purifying a state. The simplest is to introduce
an auxiliary system R which is an exact copy of A. We then define the pure
state

|ψ〉 =
∑
a

√
pa|a〉 ⊗ |a〉 (2.59)

Then, tracing over R we get

trR |ψ〉〈ψ| = ρ (2.60)

Thus, |ψ〉 is a purified version of ρ, which lives in a doubled Hilbert space. Notice
how the probabilities pa appear naturally here as the Schmidt coefficients.

As an example, consider the general two-state density matrix in Eq. (2.39).
Let |s| = s and write s = sn, where n is a unit vector. Recall that s ≤ 1,
with s = 1 for a pure state. As we have seen in Eq. (1.49), the matrix n · σ
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can be diagonalized by the matrix G defined in Eq. (1.48). Thus we may write
Eq. (2.39) as

ρ = G

(
1 + sσz

2

)
G† (2.61)

This shows that the eigenvalues of ρ are p1 = (1 + s)/2 and p2 = (1− s)/2, with
eigenvectors |gn〉 and |g′n〉, as defined in Eqs. (1.42) and (1.47). That is

ρ =
(1 + s)

2
|gn〉〈gn|+

(1− s)
2
|g′n〉〈g′n| (2.62)

When s = 1 the state becomes pure and ρ = |gn〉〈gn|. Otherwise, the state is
mixed. This density matrix is already in Schmidt form, so the corresponding
purified state is readily found to be

|ψ〉 =

√
1 + s

2
|gn〉 ⊗ |gn〉+

√
1− s

2
|g′n〉 ⊗ |g′n〉 (2.63)

Classical correlations

We have just learned that there is a concrete recipe for quantifying the en-
tanglement between two systems when they are in a pure state. Things become
much more difficult if their state is mixed. For, in that case, they may also have
some degree of classical correlation and separating the classical and quantum
contributions is usually very difficult.3 The total degree of correlation (irrespec-
tive of whether it is quantum or classical) can be quantified by something called
the quantum mutual information, that will be introduced in Sec. 2.4. But
separating the two is not at all trivial.

A density matrix is termed separable if it can be written as

ρ =
∑
k

pk|φk〉〈φk| ⊗ |ψk〉〈ψk| (2.64)

for certain probabilities pk adding up to 1. A separable density matrix is a
linear combination of product states and hence is not entangled. Putting it
differently, for a separable density matrix, all correlation is classical. We have
therefore seen two particular cases of a general density matrix: when it is a
pure state, all the correlation is quantum (entanglement). When it is separable,
all the correlation is classical. In between there will be a messy mixture of the
two. Quantifying the degree of entanglement of a bipartite system in a mixed
state is not at all trivial. Different criteria are used in different contexts and the
calculations are usually quite difficult. We will not discuss this further here.

3In quantum information processing, there is a discussion that even for pure state only half
of the correlations are quantum, with the other half being classical. Here I will not make this
distinction and simply call “quantum correlations” the entanglement of pure states.
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2.4 Entropies and mutual information

A quantity which appears throughout all of statistical mechanics and quan-
tum information is the von Neumann entropy, defined as

S = − tr(ρ ln ρ) (2.65)

It is a little bit awkward to work with the log of an operator. The best way
to operate with it is by working in a basis where ρ is diagonal. Recall that if
f(ρ) is an arbitrary function of ρ and if pk are the eigenvalues of ρ, then the
eigenvalues of f(ρ) will be f(pk). Thus, using the basis |k〉 to take the trace in
(2.65) gives

S = −
∑
k

pk ln(pk) (2.66)

In information theory this is also called the Shannon entropy (they usually
use the log in base 2, but the idea is the same).

The entropy is seen to be a sum of functions of the form −p ln(p), where
p ∈ [0, 1]. The behavior of this function is shown in Fig. 2.1. It tends to zero
both when p → 0 and p → 1, and it has a maximum at p = 1/e. Hence, any
state which has pk = 0 or pk = 1 will not contribute to the entropy. The entropy
does not like certainty. It feeds on randomness.

Since each −p ln(p) is always non-negative, the same must be true for S:

S ≥ 0 (2.67)

Moreover, if the system is in a pure state (ρ = |ψ〉〈ψ|) then it will have one
eigenvalue p1 = 1 and all others zero. Consequently, in a pure state the entropy
will be zero:

The entropy of a pure state is zero (2.68)

In information theory the quantity − ln(pk) is sometimes called the surprise.
When an “event” is rare (pk ∼ 0) this quantity is big and when an event is
common (pk ∼ 1) this quantity is small. The entropy is then interpreted as
the average surprise of the system. I think this is funny. But maybe I am just
immature.

As we have just seen, the entropy is bounded below from 0. Now we will
show that when the dimension d of the Hilbert space is finite, the entropy will
also be bounded above by ln(d). To show this we need to maximize Eq. (2.66)
with respect to the pk. But that must be done carefully since the maximization
must always be subject to the constraint

∑
k pk = 1. Thus, we should introduce
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Figure 2.1: The function −p ln(p), corresponding to each term in the von Neumann
entropy (2.66).

a Lagrange multiplier and redefine

S′ = −
∑
k

pk ln(pk) + α

(
1−

∑
k

pk

)
Then the condition ∂S′/∂α = 0 guarantees that

∑
k pk = 1. As for the other

derivatives, we get
∂S′

∂pk
= − ln(pk)− 1− α = 0

This shows that all pk must be equal to a constant. By normalization, this
constant must be 1/d; that is we will have all pk = 1/d. The corresponding
entropy will then be

S = −1

d
ln(1/d)

∑
k

(1) = ln(d)

Thus, we conclude that

max(S) = ln(d). Occurs when pk =
1

d
(2.69)

The entropy is maximum for the maximally disordered state. Whence, we con-
clude that the entropy varies between 0 for pure states and ln(d) for maximally
disordered states. It therefore serves as a measure of how disordered (mixed) is
a state.

Another special property of the von Neumann entropy is that it is invariant
under unitary transformations ρ→ UρU†. To see this note that, since UU† = 1,
it follows that Uρ2U† = (UρU†)(UρU†) and similarly for higher powers of ρ.
This means that, for any function that can be written as a power series in ρ,
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we will have f(UρU†) = Uf(ρ)U†. Thus, using also the cyclic property of the
trace, we get

tr

[
UρU† ln(UρU†)

]
= tr

[
UρU†U(ln ρ)U†

]
= tr(ρ ln ρ)

which shows that

S(UρU†) = S(ρ) (2.70)

The most important such transformation is unitary time-evolution with U =
e−iHt [Eq. (2.43)]. Our result then shows that in any closed system, the entropy
is a constant of the motion. This may sound weird to you at first, because you
probably heard that the entropy of a closed system can only increase. We will
get to that in the next chapter.

Quantum relative entropy

Given two density matrices ρ and σ, we define their relative entropy or
Kullback-Leibler divergence as

S(ρ||σ) = tr

{
ρ ln ρ− ρ lnσ

}
(2.71)

Even though it is called a relative entropy, we will learn in the next chapter
that in quantum statistical mechanics this quantity is related to the relative
free energy. The relative entropy is always non-negative and is zero only
when ρ = σ:

S(ρ||σ) ≥ 0, S(ρ||σ) = 0 iff ρ = σ (2.72)

The proof of this inequality is really boring. I will give it in the end of this
section but you can skip it if you want (or you can look it up on Wikipedia).
This property of the relative entropy gives us the idea that we could use the
relative entropy as a measure of the distance between two density matrices. But
that is not actually true since the relative entropy does not satisfy the triangle
inequality, something a true measure of distance must always satisfy.

Quantum mutual information

Consider again a bipartite system AB. Let ρAB be the total density matrix
and ρA and ρB the reduced density matrices of each sub-systems. We have seen
in the previous section that, in general ρA ⊗ ρB 6= ρAB . In fact, when there is
an equality we say the two systems are uncorrelated. The question I want to
answer now is how to quantify the degree of correlation between two systems.
This is done using the quantum mutual information.
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The starting point is the so-called subadditivity condition of the von
Neumann entropy, which states that

S(ρAB) ≤ S(ρA) + S(ρB) (2.73)

with the equality holding only when ρAB = ρA ⊗ ρB . Saying it differently, if
the two systems are independent (ρAB = ρA⊗ ρB) the entropy will be additive:
S(ρAB) = S(ρA) + S(ρB). But when they have some correlation, S(ρA) +
S(ρB) ≥ S(ρAB). We can also write this as S(ρA ⊗ ρB) ≥ S(ρAB), which
has a clear physical interpretation: when we take the partial trace we loose
information, hence increasing the entropy.

Another related result, which is straightforward to check, is that

S(ρAB ||ρA ⊗ ρB) = S(ρA) + S(ρB)− S(ρAB) (2.74)

This quantity therefore measures the relative information lost when taking the
partial trace. The quantum mutual information is defined precisely as this
quantity:

I(A : B) := S(ρ||ρA ⊗ ρB) = S(ρA) + S(ρB)− S(ρAB) (2.75)

Since it is simply a relative entropy, it follows from Eq. (2.72) that

I(A : B) ≥ 0 (2.76)

with the equality holding only when the two sub-systems are uncorrelated
(ρAB = ρA ⊗ ρB). The mutual information therefore measures the degree of
correlation between two systems, be it of quantum or classical origin.

Rényi entropy

A generalization of the von Neumann entropy that is being used more and
more each day is the so-called Rényi entropy, defined as

Sα(ρ) =
1

1− α
ln tr ρα (2.77)

where α is a tunable parameter in the range [0,∞). I particularly like α = 2,
which is simply minus the logarithm of the purity:

S2(ρ) = − ln tr ρ2 (2.78)
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Figure 2.2: The Rényi entropies for a 2-state system, computed using Eq. (2.80) for
different values of α.

But, by far, the most important case is α = 1, where we recover the von Neu-
mann entropy. To see this, what I like to do is expand xα in a Taylor series in
α around α = 1. We have the following result from introductory calculus:

d

dα
xα = xα ln(x)

Thus, expanding xα around α = 1 we get:

xα ' x1 + x1 ln(x)(α− 1)

Now we substitute this into Eq. (2.77) to get

Sα(ρ) ' 1

1− α
ln

{
tr ρ+ (α− 1) tr(ρ ln ρ)

}

=
1

1− α
ln

{
1 + (α− 1) tr(ρ ln ρ)

}
Since we want the limit α → 1, we my expand the logarithm above using the
formula ln(1 + x) ' x. The terms α− 1 will then cancel out, leaving us with

lim
α→1

Sα(ρ) = − tr(ρ ln ρ) (2.79)

which is the von Neumann entropy. The Rényi entropy therefore forms a family
of entropies which contains the von Neumann entropy as a particular case.

To get a feeling of what we are dealing with, suppose we have a 2-state
system. Since the eigenvalues of a density matrix must behave like probabilities,
we may parametrize them by p1 = p and p2 = 1− p, where p ∈ [0, 1]. We then
get tr(ρα) = pα + (1− p)α so that Eq. (2.77) becomes

Sα(ρ) =
1

1− α
ln

{
pα + (1− p)α

}
(2.80)
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This result is plotted in Fig. 2.2 for several values of α. As can be seen, except
for α→ 0, which is crazy, the behavior of all curves is qualitatively similar.

In Eq. (2.58) we saw how to use the purity of the reduced density matrix
as a measure of the entanglement of a bipartite system. But in practice, most
researchers quantify entanglement using the entropy of the reduced state. The
most common choice is the von Neumann entropy but, based on Fig. 2.2 we can
anticipate that most Rényi entropies will give similar measures of entanglement.
I like to use the Rényi-2 entropy since it is directly related to the purity and
hence is very easy to calculate.

Proof that S(ρ||σ) ≥ 0

Now let me prove Eq. (2.72) to you. This proof is really boring so please try
not to fall asleep. We will need two inequalities. The first is very easy:

ln(x) ≥ 1− 1

x
(2.81)

This follows from the fact that y ≥ ln y, by making y = 1
x − 1.

The second inequality is due to Jensen. Let f(x) be a convex function.4 It
the follows that if λ ∈ [0, 1],

f((1− λ)x1 + λx2) ≤ (1− λ)f(x1) + λf(x2) (2.82)

The usual way of understanding this result is through a figure like Fig. 2.3.
Changing λ from 0 to 1 takes (1 − λ)x1 + λx2 linearly from x1 to x2. The
right-hand side of Eq. (2.83) is therefore the straight dashed line in the figure,
whereas the left-hand side is the function itself. Since f(x) is convex, the line
is always above the real curve. Conversely, if g(x) is a concave function, the
picture is reversed and we obtain:

g((1− λ)x1 + λx2) ≥ (1− λ)g(x1) + λg(x2) (2.83)

Eq. (2.83) can be generalized to combinations of the form λ1x1 + λ2x2 +
λ3x3 + . . ., provided that

∑
n λn = 1 and each λn ∈ [0, 1]. That is, for a convex

function f(x),

f

(∑
n

λnxn

)
≤
∑
n

λnf(xn) (2.84)

which is Jensen’s inequality. For a concave function

g

(∑
n

λnxn

)
≥
∑
n

λng(xn) (2.85)

This formula has many uses, an important one being in probability theory. For
instance, it states that

f(〈O〉) ≤ 〈f(O)〉 (2.86)

4 Prof. Mario José de Oliveira taught me a neat mnemonic to remember the difference
between convex and concave. You just need to remember that ex is convex.
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Figure 2.3: The graphical motivation for Jensen’s inequality.

An example which appears in quantum thermodynamics is that of 〈eαH〉. Since
eαEn is a convex function we must have

〈eαH〉 ≤ eα〈H〉

To prove Eq. (2.72) we must be a bit careful since we have to work with the
logarithm of a matrix. Let us then introduce the eigendecomposition of the two
density matrices:

ρ =
∑
n

pn|n〉〈n|

σ =
∑
`

q`|`〉〈`|

The states |n〉 and |`〉 form two different set of basis states, with no relation
whatsoever to one another. With this decomposition we may write

ln ρ =
∑
n

ln(pn)|n〉〈n|

lnσ =
∑
`

ln(q`)|`〉〈`|

which gives

tr(ρ ln ρ) =
∑
n

pn ln pn

tr(ρ lnσ) =
∑
n

pn〈n| lnσ|n〉 =
∑
n,`

pn|〈n|`〉|2 ln q`

The relative entropy may therefore be written in components as

S(ρ||σ) =
∑
n

pn

{
ln pn −

∑
`

|〈n|`〉|2 ln qn

}
(2.87)
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The quantity |〈n|`〉|2 satisfies∑
`

|〈n|`〉|2 =
∑
`

〈n|`〉〈`|n〉 = 〈n|n〉 = 1

Hence, it has the same properties as the λ’s in Jensen’s inequality (2.85). Since
ln(x) is a concave function we must then have

∑
`

|〈n|`〉|2 ln q` ≤ ln

(∑
`

|〈n|`〉|2q`

)

Consequently,

S(ρ||σ) ≥
∑
n

pn

{
ln pn − ln

(∑
`

|〈n|`〉|2q`

)}
Let us call this sum over ` inside the parenthesis as an =

∑
` |〈n|`〉|2q`. It

follows that
∑
n an = 1 so we may write

S(ρ||σ) ≥
∑
n

pn ln

(
pn
an

)
Using Eq. (2.81) gives∑

n

pn ln

(
pn
an

)
≥
∑
n

pn

(
1− pn

an

)
= 0

This is zero because both pn and an add up to 1. Combining this with our
previous inequality finally shows that

S(ρ||σ) ≥ 0

which is what we wanted to show in the first place. That S = 0 only when ρ = σ
follows from Eq. (2.87). The right-hand side will only be zero if |`〉 and |n〉 form
an orthonormal basis and if q` = p`. These two requirements are tantamount
to saying that σ = ρ. I just spent 3 pages on a really boring proof that can be
found on Wikipedia. Should I really have done that?

57



Chapter 3

The Gibbs formalism

3.1 Introduction

Here is the most important result in all of equilibrium statistical mechanics:
if a system with Hamiltonian H is in thermal equilibrium with a heat bath at
a certain temperature T , then its density matrix will be

ρ =
e−βH

Z
, Z = tr(e−βH), β =

1

kBT
(3.1)

This is called the Gibbs formula or the canonical ensemble. When I say it
is the most important result, trust me: I am not exaggerating. The quantity Z
is called the partition function:1

Z = tr(e−βH) =
∑
n

e−βEn (3.2)

and

kB = 8.6173324× 10−5 eV/K (3.3)

= 1.38× 10−23 J/K

is Boltzmann’s constant. Pieces of these results were already contemplated
by Maxwell and Boltzmann, but it was Josiah Willard Gibbs, a professor at Yale,
around 1902, who really saw its enormous potential and scope.2 This chapter
and the next contains the essential ingredients for dealing with and understand-
ing these thermal states. We will go back and forth between applications and

1 The use of the letter Z stems from the German word for it, “Zustandssumme”, which
literally means “Sum over states”.

2If you want, you can read his results straight from the source: J. W. Gibbs, Elementary
Principles in Statistical Mechanics. This book was republished by Dover so you can purchase
it cheaply.
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formal results which will help us justify the correctness of Eq. (3.1). Please
make sure you thoroughly understand the contents of these two chapters. They
will be the basis for much that follows.

The state (3.1) is the state a system will relax to when it is weakly coupled
to a very large heat bath. It contains no information about how the system
relaxes toward the thermal state (3.1), which is a much more difficult question.
Moreover, the size of the system is not important (it can even be a single
electron), but the bath is always a macroscopic body. If the system itself is
macroscopically large then it does not really need a heat bath: you can just
divide it in multiple parts and one part will play the role of the heat bath for
the other part. In either case, T always represent the temperature of the bath,
not the system. The system may be a single electron and you cannot define
temperature for a single electron.

Eq. (3.1) holds quites generally but, of course, there are situations where it
fails. Most notably, it requires the system to be weakly coupled to the bath. This
means that the typical interaction energies be much smaller than the energies of
the system. A typical example where we may run into trouble is systems with
long-range interactions, like gravitational systems. The validity of Eq. (3.1) also
relies on the assumption that the bath is a macroscopically large and highly
complex body. This is true if your bath is a bucket of water. Sometimes, when
very special baths are used, the system may relax to a so-called Generalized
Gibbs State, which are the subject of intensive theoretical research nowadays.
We won’t be discussing these anytime soon.

Another comment I must make right from the start is this: Boltzmann’s
constant simply converts temperature units (Kelvin) into energy units (Joules
or eV). If you set kB = 1 you are simply measuring temperature in energy units.
For instance T = 300K is the same as T = 0.026 eV. Throughout these notes
we will adopt this convention and set kB = 1:

In these notes kB = 1

I guarantee that doing this will never lead to any confusion. All you need to
remember is that T is measured in eV. If you ever want to get kB back, simply
replace T by kBT everywhere:

Since ρ in Eq. (3.1) is an exponential of H, both are diagonalized by the
same basis. That is, if

H|n〉 = En|n〉 (3.4)

then
e−βH |n〉 = e−βEn |n〉

Whence, we may write

ρ =
∑
n

Pn |n〉〈n|, Pn =
e−βEn

Z
(3.5)
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The quantities Pn = 〈n|ρ|n〉 are the eigenvalues of ρ and represent the proba-
bilities of finding the system in the energy eigenstates |n〉.

Expectation values of operators are written as usual, with Eq. (2.24):

〈O〉 = tr(Oρ) =
tr(Oe−βH)

tr(e−βH)
=
∑
n

〈n|O|n〉Pn (3.6)

The most important expectation value is that of the energy. For historical
reasons it is called the internal energy and receives the special symbol U :

U = 〈H〉 = tr(Hρ) =
∑
n

EnPn (3.7)

It is possible to relate the internal energy to the partition function Z in Eq. (3.2)
as

U = − ∂

∂β
ln(Z) = T 2 ∂

∂T
ln(Z) (3.8)

which I leave for you as an exercise. This formula is very useful, specially in more
sophisticated problems. Finding Z can already be a terribly difficult task and
to find U would require the computation of an even more difficult sum. With
this formula we avoid that entirely and obtain U from a simple differentiation.
It also shows that Z is more than simply a “normalization constant”. You will
be amazed by how much information is hidden inside it.

Another important quantity that will appear often, starting on the next
section, is the von Neumann entropy:

S = − tr(ρ ln ρ) (3.9)

It measures the degree of disorder of the distribution. If you work with kB 6= 1,
then the entropy is usually defined to have units of kB ; ie, S = −kB tr(ρ ln ρ).
Since the thermal density matrix is already diagonal in the energy basis, we
may also write

S = −
∑
n

Pn lnPn (3.10)

The physics behind entropy will be discussed in more detail on the next section.

Example: 2-state system

To practice, let us consider the simplest example: a two-state system with
eigenstates |0〉 and |1〉. Since energy is only defined up to a constant we may
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parametrize the energy eigenvalues as E0 = 0 and E1 = ε. The Hamiltonian
may then be written as

H = ε|1〉〈1| =
(

0 0
0 ε

)
(3.11)

The state of this system when it is in thermal equilibrium will be given by the
Gibbs formula (3.1). To compute the exponential of an operator that is already
diagonal, we simply exponentiate its diagonal entries:

e−βH = |0〉〈0|+ e−βε|1〉〈1| =
(

1 0
0 e−βε

)
(3.12)

The |0〉〈0| term sometimes confuses people. But it is there since e0 = 1.
The partition function is the trace of e−βH and hence reads

Z = 1 + e−βε (3.13)

If you are feeling a little insecure, you can also do it step by step:

Z = tr(e−βH)

= 〈0|e−βH |0〉+ 〈1|e−βH |1〉

= e−βE0 + e−βE1

which is the same as (3.13). The density matrix will then be

ρ = P0|0〉〈0|+ P1|1〉〈1| =
(
P0 0
0 P1

)
(3.14)

where

P0 =
1

1 + e−βε
(3.15)

P1 =
e−βε

1 + e−βε
=

1

eβε + 1
(3.16)

These results are plotted in Fig. 3.1(a) as a function of T/ε. As the temperature
goes to zero we see that P0 → 1, so the density matrix tends to the pure state

lim
T→0

ρ = |0〉〈0| (3.17)

Thus, in the limit T → 0 the system tends to occupy predominantly the ground
state. On the other hand, as the temperature increases both probabilities grad-
ually tend to 1/2, leading to the maximally disordered density matrix:

lim
T→∞

ρ =
I2
2

=
1

2

(
1 0
0 1

)
(3.18)

This means that at high temperatures you are equally likely to find the system
in any of the two states, Note, however, that P0 is always larger than P1 so it is
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Figure 3.1: (a) The probabilities P0 and P1 of a 2-state system, Eqs. (3.15) and
(3.16). (b) The entropy of a 2-state system, computed using Eq. (3.20).

always more likely to find the system in the ground state. In thermal states you
will never find a population inversion, where the excited state is more populated.
As we will learn soon, these properties are actually general features of thermal
states.

The probability P1 physically means the probability of finding the system
in the excited state.3 When T/ε ∼ 1, this probability is around 0.2, but when
T/ε ∼ 0.1, this already falls to approximately 10−5. This means that excited
states will only be significantly occupied when the temperature has the same
order of magnitude as the energy gap between the two states. This is a good
thing to remember: always try to compare energy gaps with the thermal energy
T (or kBT if you want kB back). If T � ε then the excited states will be
practically unoccupied.

The internal energy can be computed using Eq. (3.7):

U = E0P0 + E1P1 = εP1 =
ε

eβε + 1
(3.19)

Thus, a graph of U/ε will be exactly the curve P1 in Fig. 3.1. At T = 0 the
internal energy is zero, which is the same energy as the ground state. And then
U increases monotonically with T until it reaches the value (E0 + E1)/2 = ε/2
at T = ∞. The entropy, on the other hand, is computed from Eq. (3.10) and

3We will find an identical formula later on under the name of Fermi-Dirac distribution.

62



reads

S = −P0 lnP0 − P1 lnP1

=
βε

eβε + 1
+ ln(1 + e−βε) (3.20)

This result is shown in Fig. 3.1(b). When T → 0 the entropy tends to zero and
when T → ∞ it tends to ln(2). The meaning of ln(2) was already discussed in
Eq. (2.69): it represents the maximum value possible for S, which occurs in the
maximally disordered state (3.18).

Making sense of e−βH

The first thing to note about the Gibbs state is that ρ is a function only of
the system Hamiltonian: ρ = ρ(H). Putting it differently, since Pn = e−βEn/Z,
two states which have the same energy will be equally likely. This puts energy on
a pedestal. It says that, somehow, the consequence of the interaction between
the system and the bath will produce a state which is a functional only of the
system Hamiltonian. It could, in principle, depend on other observables, which
are precisely the generalized Gibbs states mentioned earlier. But they only
appear when your bath has a very special structure. Whenever your bath is
something ordinary like a bucket of water, the state will be the Gibbs state.

Now suppose our system is actually composed of two non-interacting parts,
meaning that the Hamiltonian H has the form:

H = HA +HB = HA ⊗ 1 + 1⊗HB

[I am writing the formulas with and without the kron notation, just so you can
practice with it.] The corresponding Gibbs state will then be

e−βH = e−βHAe−βHB = e−βHA ⊗ e−βHB

which means that the density matrix will factor as a product:

ρ = ρAρB = ρA ⊗ ρB (3.21)

In Sec. 2.3 we saw that whenever the density matrix of a bipartite system could
be factored in this way, the two systems were completely uncorrelated. Whence
we conclude that when two non-interacting systems are placed in the same
thermal bath, there will be no correlation between them.

In principle, however, one could expect the bath to serve as an interacting
medium between systems A and B. That is to say, even though A and B do not
interact directly, if you wiggle system A this excitation could propagate through
the bath and eventually tickle system B. However, according to the above result,
that does not happen. The reason for this is actually related to the underlying
assumption that the bath is macroscopically large and highly complex, which
means that excitations within it do not propagate efficiently. This is, of course,
an idealization. But it turns out that it is not such a bad one after all.
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We could now reverse the question. Assume that the density matrix is some
function of the system Hamiltonian, ρ = ρ(H). What is the only function which
is such that H = HA +HB implies ρ = ρAρB . Answer: an exponential. In fact,
the most general function must have exactly the form ρ = e−βH/Z, for some
yet unknown functions β and Z. The function Z is readily determined from
normalization (tr ρ = 1), so all we are left with is figuring out what β should be.
Quite remarkably, all information about the bath is contained within β. This
shows that e−βH is a universal result; it is the only functional form which
satisfies: (i) ρ = ρ(H) and (ii) H = HA +HB implies ρ = ρAρB .

Now suppose we didn’t know what β was. What can we say about it based
only on reasonable physical arguments? Well, one thing we can say upfront: we
must have β > 0. The reason is that, from Eq. (3.5) we have Pn = e−βEn/Z.
Now consider two states with energies En and Em and assume that En < Em.
The ratio of the probabilities will then be

Pn
Pm

=
e−βEn

e−βEm
= e−β(En−Em) (3.22)

If β < 0 then the condition En < Em would imply Pm > Pn. This means that it
would be more likely to find the system in an excited state, which is absolutely
nonsensical. If that were true, we would always find the system in higher and
higher energy levels. For instance, if our system were a hydrogen atom, this
would say that it is more likely to find the electron ionized than it is to find it
bounded to the proton. Matter would be unstable and we would all die. Since
we are all alive we must conclude that β > 0. We therefore reach the conclusion
that lower energy states are always more likely.

This is essentially a statement on thermodynamic stability. Of course,
in general, there is nothing wrong with having a system whose excited states
are more populated than the ground state (that is what happens in a Laser,
for instance). But that is just not thermal equilibrium. In thermal equilibrium
things must be stable and the only way for things to be stable is by having
most particles in the lower energy states. That said, it is worth mentioning
that in certain situations it is possible to produce states which have negative
temperature; ie, states of the form e|β|H . But this type of state is unstable
and can only exist for a small period of time. Hence, it is not an equilibrium
state.

Finally, suppose we didn’t know that β = 1/T . Could we infer this from some
smart reasoning? In the 2-state system example the energy U in Eq. (3.19) was
a decreasing function of β. This is actually a general result for thermal states,
which will be proved in Sec. 3.5. On the other hand, from our intuition we
expect that high temperatures imply high energies, giving us an idea that β
should somehow be inversely proportional to T . However, is it 1/T or is it 1/T 2

or something even weirder? That we cannot say. And for a very simple reason:
the definition of temperature is something we, humans, created. We defined the
quantity T centuries ago analyzing the properties of gases and liquids. Maybe
aliens did the same thing but used T 2 as temperature. So this final piece of the
puzzle actually requires experimental input. We must compare the predictions
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of the Gibbs theory with experiment and from that fix the relation between β
and T . Lucky for us, we only need to do that for a single system because, since
both are universal, once you fix that for a specific experiment, it is fixed for all
of them. Historically, the ideal gas was used to do this since it is both exactly
soluble and experimentally realizable.

To summarize, the calculations we just did touched upon the three most
important properties of the thermal state:

1. States with the same energy are equally likely.

2. When the energy is a sum, the state is a product (no correlation).

3. Lower energy states always have higher probabilities (thermodynamic sta-
bility).

The zero-temperature limit

Suppose the energy levels are labeled in ascending order, with E0 represent-
ing the ground-state of the system:

Egs = E0 ≤ E1 ≤ E2 ≤ . . .

For any excited state En > E0, the Gibbs formula (3.5) gives, when T is small
(large β):

P0

Pn
= e−β(E0−En) � 1

This shows that

When T → 0 the system always tends to the ground state

If the ground-state is non-degenerate then P0 → 1. Otherwise, if the ground-
state has degeneracy g, we may label the states as |0, i〉, with i = 1, . . . , g. Since
thermal probabilities depend only on their corresponding energies, all ground-
states will be equally likely. To preserve normalization we should then have

lim
T→0

P0,i =
1

g
(3.23)

Moreover, irrespective of whether there is degeneracy or not, the average energy
tends to the ground-state energy:

lim
T→0

U = Egs (3.24)

As for the entropy, using Eq. (3.10) we get

S = −
g∑
i=1

1

g
ln(1/g) =

g

g
ln(g)
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Thus, we conclude that

lim
T→0

S = ln g = ln(degeneracy of the ground-state ) (3.25)

Suppose now that our system actually has N particles, where N is a large
number. Most of the times the degeneracy is a finite number, like g = 42,
or something. In this case the entropy per particle S/N will tend to zero in
the ground state, even though it is degenerate. Conversely, there are more
unusual cases (the most famous of which are the so-called spin glasses) where
the ground-state degeneracy is of the form gN , for some g. In these cases the
entropy per particle will remain finite at zero temperatures. These results are
known as the third law of thermodynamics or Nernst’s postulate:

3rd law: the entropy tends to a constant when T → 0 (3.26)

The meaning of “low temperature” depends on the energy gap between the
ground state and the first excited state, ∆E = E1 −E0. If this gap is 1 eV and
we are at room temperature (T = 0.026 eV), then

P1

P0
' e−1/0.026 ∼ 10−18

So for a 1 eV gap, room temperature is still a very very low temperature: it
is overwhelmingly more likely to find the system in the ground state. This is
why, when we construct the atomic orbitals, we place the electrons sequentially
in lower energy states. The excited states will start to become populated when
∆E ∼ T . So for room temperature, gaps of the order of 0.02 eV already lead
to a reasonable population of the first excited state.

Very high temperatures; finite Hilbert space

Now let us study the opposite limit of extremely high temperatures and let
us suppose that our system has a finite number of states (as, for instance, in
the spin 1/2 case). We denote by d the total number of states. For one spin
1/2 particle d = 2. For N spin 1/2 particles d = 2N and so on. When β is very
small e−β(En−Em) ∼ 1 so all probabilities become roughly equal. In the limit of
T →∞ we then find

Pn →
1

d

The density operator will therefore tend to the maximally disordered state

lim
T→∞

ρ =
Id
d

(3.27)
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Consequently, the internal energy will tend to the arithmetic average of all
energies:

lim
T→∞

U =
E0 + E1 + . . .+ Ed−1

d
(3.28)

and the entropy will tend to

lim
T→∞

S = ln d = ln(dimension of the entire Hilbert space) (3.29)

3.2 The Gibbs state minimizes the free energy

There is a beautiful way of interpreting the Gibbs state (3.1), which I really
think is worth remembering. We saw in the previous section that at T = 0 the
system tends to the ground state. This can be stated as a variational principle:
at T = 0 the system will tend to that state which minimizes the energy U of the
system. At finite temperatures that is no longer true since the system will have
a tendency to occupy also some of the excited states. What I want to show you
in this section is that, at finite temperatures, instead of minimizing the energy,
the state of the system will be that which minimizes the free energy:

F = U − TS (3.30)

where U is given in Eq. (3.7) and S is the von Neumann entropy given in
Eq. (3.9). When temperature is present there is a competition between the
energy U and the disorder−TS. The state which minimizes these two competing
quantities is the Gibbs state (3.1).

But let’s start from the beginning. We defined the free energy as in Eq. (3.30),
which is a general definition since U and S can be defined for any density matrix
ρ. However, when ρ is a Gibbs state there is a much more convenient way to
write it. To do that we massage the entropy a bit. As we have seen, since ρ is
diagonal in the energy basis we may write it as [Eq. (3.10)]:

S = −
∑
n

Pn lnPn

Now substitute Pn = e−βEn/Z only in the logarithm, leaving the other Pn
untouched:

S = −
∑
n

Pn

{
− βEn − lnZ

}
The first term is −βU since U =

∑
nEnPn. In the second term the quantity

lnZ goes outside of the sum and we are left with
∑
n Pn = 1. Thus we conclude

that
S = −βU − lnZ (3.31)
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Substituting this in Eq. (3.30) then gives

F = −T lnZ or Z = e−βF (3.32)

This clarifies the physical meaning of Z, as being directly related to the free
energy. In the limit T → 0 we have seen that U → Egs and S tends to a
constant. Whence, F = U − TS will also tend to the ground-state energy:

lim
T→0

F = Egs (3.33)

When dealing with equilibrium problems, specially the more difficult ones,
I always compute Z then F then U then S. This order is nice because F and
U are very easily found from Z using Eqs. (3.8) and (3.32). Then from U and
F we can find S by inverting Eq. (3.30) and writing:

S =
U − F
T

(3.34)

This is usually much easier to use than Eq. (3.9). But, of course, it only holds
for the Gibbs state, whereas (3.9) is absolutely general.

Minimizing the free energy using the relative entropy

We are now ready to prove our main claim: namely that the Gibbs state is the
state which minimizes the free energy. This is a calculation I really like. I hope
you enjoy it too. Suppose that we have a system with some arbitrary density
matrix ρ, which does not need to be the Gibbs state. We continue to define
a free energy for this system using Eq. (3.30), whether or not the system is in
equilibrium. Now consider the relative entropy (or Kullback-Leibler divergence)
defined in Eq. (2.71) between the state of the system ρ and the Gibbs state
ρeq = e−βH/Z [Eq. (3.1)]:

S(ρ||ρeq) = tr

{
ρ ln ρ− ρ ln ρeq

}
(3.35)

The first term is −S(ρ). In the second term we substitute ρeq = e−βH/Z to get

S(ρ||ρeq) = −S(ρ) + βU(ρ) + lnZ (3.36)

Multiplying both sides by T we see, on the right-hand side, the quantities U −
TS := F (ρ) and T lnZ = −F (ρeq) (the equilibrium free energy). Thus, we
conclude that

F (ρ) = F (ρeq) + TS(ρ||ρeq) (3.37)
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Even though S(ρ||ρeq) is called the relative entropy, in this case it is really a
relative free energy.

We set out to show that the state which minimizes the free energy is the
Gibbs state ρeq. By expressing F (ρ) in terms of the relative entropy, we just
did precisely that. For, as discussed in Sec. 2.4 the relative entropy S(ρ||ρeq) is
always non-negative and it is zero if and only if ρ = ρeq:

S(ρ||ρeq) ≥ 0, S(ρ||ρeq) = 0 iff ρ = ρeq (3.38)

Eq. (3.37) therefore shows that F (ρ) ≥ F (ρeq), which means that the state ρ
which minimizes F (ρ) is precisely ρ = ρeq. I really like this proof since it is a
fully operator-based demonstration: nowhere did we have to assume that ρ is
diagonal in the energy eigenbasis.

Minimizing the free energy by hand

However, if you prefer, we can also do a more “by hand” demonstration,
assuming that ρ is diagonal in the basis |n〉. In this case the free energy becomes

F =
∑
n

EnPn + T
∑
n

Pn lnPn (3.39)

The idea is to minimize F with respect to each Pn and show that the minimum
condition implies that we must have Pn = e−βEn/Z. However, to carry out this
minimization, we need to be a bit careful since it is subject to the constraint∑
n Pn = 1. To enforce this we introduce a Lagrange multiplier and redefine

F ′ =
∑
n

(En + T lnPn)Pn + α

(
1−

∑
n

Pn

)
(3.40)

Then ∂F ′/∂α = 0 imposes the condition
∑
n
Pn = 1. We now have,

∂F ′

∂Pn
= En + T lnPn + T − α = 0

This shows that indeed Pn = Ce−βEn , where C = e(α−T )/T . The value of α (or
C) is then fixed to ensure normalization.

In some books the Gibbs ensemble is derived from the argument that it is
the distribution which maximizes the entropy, subject to the constraint that the
average energy is fixed. That is to say, we maximize

S′ = −
∑
n

Pn lnPn + β

(
U −

∑
n

EnPn

)
+ α

(
1−

∑
n

Pn

)

where β is to be interpreted as a Lagrange multiplier. Maximizing S′ is exactly
the same thing as minimizing F ′ in Eq. (3.40) since, except for a constant here
and there, S′ = −βF ′. This therefore gives two complementary interpretations
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of the Gibbs state: it is the state which minimizes the free energy and it is the
state which maximizes the entropy, subject to the constraint that the average
energy is fixed. I personally prefer the former, since thinking in terms of energy
is easier. But that is simply a matter of taste.

The Bogolyubov variational formula

Eq. (3.37) can also be used as the basis for an approximation method due
to Bogolyubov, that is frequently used in diverse problems.4 I will not give any
applications of this method here, but I feel an obligation to write down the result
since it is almost starring at our face. If you are a bit tired of formal results and
want to look at some applications, then I suggest you skip this section for now.

Recall the variational principle of quantum mechanics: If H is a Hamiltonian
with ground-state energy Egs, then for any state |ψ〉 we have

Egs ≤ E(ψ) = 〈ψ|H|ψ〉 (3.41)

The trick is to use a |ψ〉 with some free parameters and then minimize the
functional E(ψ). The better is your choice of |ψ〉 (and the larger is the number
of free parameters) the closer you will get to the ground-state energy.

With Eq. (3.37) we can do the exact same thing for thermal states. Suppose
the system has thermal state ρeq = e−βH/Z and we don’t really know how to
find the corresponding free energy F (ρeq) exactly. Since S(ρ||ρeq) ≥ 0, from
Eq. (3.37) we get that, given an arbitrary density matrix ρ

F (ρeq) ≤ F (ρ) = U(ρ)− TS(ρ) (3.42)

Thus, if you choose an arbitrary ρ with a bunch of free parameters and minimize
the quantity U(ρ)−TS(ρ) you will get an approximation to the real free energy
which becomes better the larger is the number of parameters being used.

A natural choice is to use a trial density matrix ρ which is itself a Gibbs
state, but with some other trial Hamiltonian H0 that we know how to deal with.
That is, we can choose

ρ = ρ0 = e−βH0/Z0

where Z0 = tr(e−βH0). The free parameters are then encoded inside the trial
Hamiltonian H0. To evaluate U − TS we need to be a bit careful not to mix
the real Hamiltonian H with the trial Hamiltonian H0. This is specially so for
the internal energy which is defined in terms of the actual Hamiltonian H:

U(ρ0) = tr(Hρ0) := 〈H〉0

Here I also introduced the notation 〈O〉0 := tr(Oρ0). On the other hand, for
the entropy we get

S(ρ0) = − tr(ρ0 ln ρ0) = β tr(ρ0H0) + lnZ0

4 See N. N. Bogolyubov, Physica 32 (1966) 933-944.
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Thus,
−TS(ρ0) = −〈H0〉0 + F0

where F0 = −T lnZ0 (the confusing part is that F0 6= F (ρ0) because F (ρ0) is
defined for the Hamiltonian H not H0). Substituting all this in Eq. (3.42) we
then finally get

F (ρeq) ≤ F0 + 〈H −H0〉0 (3.43)

This is the Bogolyubov variational formula. All quantities in the right-hand side
are computed from the trial state ρ0 = e−βH0/Z0. By minimizing parameters
contained in the trial Hamiltonian H0 we can get closer and closer to the true
free energy. In the limit T → 0 the free energy tends to the ground-state energy
and we recover the usual variational principle of quantum mechanics.

3.3 The quantum harmonic oscillator

A simple, yet fundamental example, is the quantum harmonic oscillator dis-
cussed in Sec. 1.4. The Hamiltonian is given by Eq. (1.86) or (1.91):

H = ω(a†a+ 1/2) (3.44)

and the eigenvalues are

En = ω(n+ 1/2), n ∈ N (3.45)

The ground state corresponds to n = 0 and has energy ω/2. As usual I will set
~ = 1. To get it back simply replace ω → ~ω everywhere.

We begin by computing the partition function:

Z = tr(e−βH) =

∞∑
n=0

〈n|e−βH |n〉 =

∞∑
n=0

e−βEn

We can also write it as

Z = e−βω/2
∞∑
n=0

(e−βω)n

Since βω > 0 it follows that e−βω < 1 so the resulting sum is nothing but a
geometric series:

∞∑
n=0

xn =
1

1− x
(3.46)

where x = e−βω. Hence,

Z =
e−βω/2

1− e−βω
(3.47)
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The free energy is then readily found from Eq. (3.32):

F = −T lnZ =
ω

2
+ T ln(1− e−βω) (3.48)

The first term is the constant shift ω/2 in the energy eigenvalues. When T → 0
this is the only term that survives. We can also see that from the fact that
F = U − TS so that, at T = 0, we get F = U = Egs = ω/2.

Armed with Z, we now have the complete set of probabilities Pn from
Eq. (3.5):

Pn =
1− e−βω

e−βω/2
e−βω(n+1/2)

Note how the factor e−βω/2 cancels, to give only:5

Pn = (1− e−βω)e−βωn (3.49)

This cancelation is actually reassuring: the factor e−βω/2 traces back to the
constant energy shift ω/2 in Eq. (3.45). A constant energy shift of all energy
levels should not affect the probabilities since energy is only defined up to a
constant. The density matrix is

ρ = (1− e−βω)e−βωa
†a (3.50)

We cannot write it as a matrix since the matrix would be infinite. Thus, we
just leave it in this abstract form. If you ever need to work with it, it is simpler
to write it as a sum of outer products:

ρ = (1− e−βω)

∞∑
n=0

e−βωn|n〉〈n| (3.51)

Let us first analyze P0, the probability of finding the oscillator in the ground
state:

P0 = 1− e−ω/T (3.52)

The convenient dimensionless temperature here is T/ω (or kBT/~ω if you are
feeling saudade of kB and ~). This result is shown in Fig. 3.2. As T → 0
P0 tends to 1 so the system tends to the ground state. Conversely, when the
temperature increases, higher energy states begin to become populated causing
P0 to gradually fall to zero.

5 In probability theory this result is known as the Geometric distribution.
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Figure 3.2: Probability P0 of finding the harmonic oscillator in the ground state,
computed from Eq. (3.52) as a function of the dimensionless temperature
T/ω.

The function Pn is plotted in Fig. 3.3 for two different values of T/ω, rep-
resenting low and high temperatures. At low temperatures we see that the
system concentrates around the ground state, with only a small probability of
begin found in the first few excited states. Conversely, at high temperatures
the probabilities are homogeneously distributed through several excited states.
Notwithstanding, note how the Pn are always monotonically decreasing, mean-
ing that lower energy levels are always more likely to be occupied.
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Figure 3.3: Probabilities Pn for the quantum harmonic oscillator computed from
Eq. (3.49) for two different values of T/ω, as shown in each image.

Now that we have Pn, the next step is to use Eq. (3.6) to find the expecta-
tion values of quantum mechanical observables. From Eq. (1.97) we find that
〈n|a|n〉 = 0. Therefore,

〈a〉 = 〈a†〉 = 0

Due to the definitions (1.89), it then also follows that

〈x〉 = 〈p〉 = 0 (3.53)
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which is expected due to symmetry arguments.
The most important operator for the quantum harmonic oscillator is the

occupation number operator a†a. Since 〈n|a†a|n〉 = n, we find that

n̄ := 〈a†a〉 =
∑
n

nPn (3.54)

The notation n̄ is simply introduced for convenience and will be used extensively
later on. Note that if you want, you can also interpret 〈a†a〉 as the average of the
quantum number n. This is a sort of “not-so-quantum” way of looking at the
quantum harmonic oscillator, but is mostly a matter of taste. We are allowed
to think like this because the eigenvalues of a†a are diagonal in the Hamiltonian
basis. To compute the sum (3.54) we use Eq. (3.49) and again let x = e−βω.
We then have

n̄ = (1− x)

∞∑
n=0

nxn

There is a lovely trick to carry out this sum. Start with the geometric series in
Eq. (3.46) and differentiate both sides with respect to x. We then get:

∞∑
n=0

nxn−1 =
1

(1− x)2

The left-hand side is almost what we want. It is just missing an x. So we
multiply both sides by x and obtain

∞∑
n=0

nxn =
x

(1− x)2

Using this result, we obtain for the average occupation number

n̄ =
e−βω

1− e−βω

which we can write more neatly as:

n̄ = 〈a†a〉 =
1

eβω − 1
(3.55)

This is called the Bose-Einstein distribution. You will find it many times
during your journey through statistical mechanics. It is illustrated in Fig. 3.4.
For low temperatures it is flat near zero, but then it bends and eventually
becomes linear for high T . The reason why we call it a “distribution” will only
become clear later on, when we discuss quantum gases in more detail.

From n̄ we may compute the internal energy with zero effort starting with
the Hamiltonian (3.44) and using the fact that the operation 〈 〉 is linear. We
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Figure 3.4: Bose-Einstein distribution n̄ vs. T/ω, computed from Eq. (3.55).

then find

U = 〈H〉 = ω(n̄+ 1/2) =
ω

2
coth

( ω
2T

)
(3.56)

In the last equality I simply rearranged the exponentials to write it as the
hyperbolic cotangent. Alternatively, we can also find U from Z using Eq. (3.8).
Let us analyze the limits of this equation. When T → 0 the occupation number
tends to zero so

lim
T→0

U(T ) = E0 =
ω

2

At zero temperature the system tends to the ground state, something we knew
already. Conversely, when T is large we may use the series expansion coth(x) ∼
1/x. We then get

U ' ω

2

2T

ω
or

U ' T (3.57)

Thus, at high temperatures, the energy becomes linearly proportional to T .
Whenever a system has an infinite number of states, the high temperature
results usually match their classical analog. In these notes we will not discuss the
classical formulation of statistical mechanics, as that is done in practically any
textbook on the subject. But if you do the calculations for the classical harmonic
oscillator, you find precisely U = T . We therefore customarily say that high
temperatures correspond to the classical limit. The idea is that when T is
large all states are significantly populated so the discreteness of quantum states
is washed away.
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The uncertainty principle

According to Heisenberg’s uncertainty principle, we should always have

∆x∆p ≥ 1

2

Let us then verify what is the uncertainty product ∆x∆p for a thermal state.
We have already seen that 〈x〉 = 〈p〉 = 0. So ∆x =

√
〈x2〉 and ∆p =

√
〈p2〉.

From Eq. (1.89) we have, for instance,

x2 =
x2

0

2

{
(a†)2 + a2 + 2a†a+ 1

}
where I already used Eq. (1.87) to write aa† = a†a+ 1. The terms (a†)2 and a2

will average to zero because 〈n|a2|n〉 = 0. Moreover, the average of a†a is given
in Eq. (3.55) Thus:

〈x2〉 = x2
0(n̄+ 1/2) (3.58)

〈p2〉 = p2
0(n̄+ 1/2) (3.59)

Consequently,

∆x∆p =
√
〈x2〉 − 〈x〉2

√
〈p2〉 − 〈p〉2

= x0p0(n̄+ 1/2)

But from Eq. (1.88), x0p0 = ~ = 1, so we conclude that

∆x∆p = (n̄+ 1/2) (3.60)

When T → 0 the average occupation number tends to zero and we obtain the
uncertainty limit 1/2 (this is the ground state). As the temperature increases
the uncertainty product increases and therefore we leave the quantum realm.
This is another way of interpreting the classical limit.

The Husimi Q function

The expectation value of the harmonic oscillator density operator in a co-
herent state (Sec. 1.5) is called the Husimi Q function:

Q(α∗, α) = 〈α|ρ|α〉 (3.61)

Here α and α∗ are to be interpreted as independent variables. The Husimi Q
function is extensively used in quantum optics because, as we will see, it func-
tions as a sort of quasi-probability distribution in the complex plane. It therefore

76



gives a semi-classical interpretation of the quantum harmonic oscillator.6 Using
Eq. (2.8) for the trace in the coherent state basis, we get

1 = tr ρ =

∫
d2α

π
〈α|ρ|α〉

Thus, we conclude that the Husimi Q function is normalized as∫
d2α

π
Q(α∗, α) = 1 (3.62)

which resembles the normalization of a probability distribution.
As a simple example, suppose that the system is itself in a coherent state

|µ〉 so that ρ = |µ〉〈µ|. Then, using Eq. (1.121) we get

Q(α∗, α) = 〈α|µ〉〈µ|α〉 = exp

{
− |α− µ|2

}
(3.63)

This is a Gaussian distribution in the complex plane, centered around µ and
with unit variance. The ground-state of the harmonic oscillator is also a unit-
variance Gaussian, but centered at zero. The coherent state has the same shape
as the ground-state, but centered in a different position.

As a second example consider the thermal Gibbs state. In this case we have

Q(α∗, α) =

∞∑
n=0

e−βEn

Z
〈α|n〉〈n|α〉

This is a straightforward and fun calculation, which I will leave for you as an
exercise. All you need is the overlap Eq. (1.117). The result is

Q(α∗, α) =
1

n̄+ 1
exp

{
− |α|

2

n̄+ 1

}
(3.64)

Thus, we see that the thermal state is also a Gaussian distribution, centered at
zero but with a variance proportional to n̄ + 1. At T = 0 (n̄ = 0) we get the
sharpest possible Gaussian, which is the ground-state ρ = |0〉〈0|. The width
of the Gaussian distribution can be taken as a measure of the fluctuations in
the system. At high temperatures n̄ becomes large and so does the fluctuations.
But even at T = 0 there is still a finite width, which is a consequence of quantum
fluctuations.

The two examples above motivate us to consider a displaced thermal
state. It is defined in terms of the displacement operator (1.103) as

ρ = D(µ)
e−βH

Z
D†(µ) (3.65)

6 The Q function is not the only quasi-probability distribution. Most notably, there are
also the P function and the Wigner functions. Each has its own weaknesses and strengths. For
a thorough account of these functions, I recommend the book “Quantum Noise” by Gardiner
and Zoller, more specifically chapter 4.
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The corresponding Q function, as you can probably expect, is

Q(α∗, α) =
1

n̄+ 1
exp

{
− |α− µ|

2

n̄+ 1

}
(3.66)

which is sort of a mixture of Eqs. (3.63) and (3.64): it represents a thermal state
displaced in the complex plane by an amount µ.

If we know Q we can also use it to compute the expectation value of opera-
tors. But for things to come out organized, we should always take expectation
values of anti-normally ordered operators. This means that we use the com-
mutation relations to push the a† always to the right. A anti-normally ordered
operator therefore has the form ak(a†)`. Any operator which is a combination
of a’s and a†’s can always be put in this form. Using the cyclic property of the
trace we then have

〈ak(a†)`〉 = tr

{
ρak(a†)`

}
= tr

{
(a†)`ρak

}
Now we use Eq. (2.8) to get

〈ak(a†)`〉 =

∫
d2α

π
〈α|(a†)`ρak|α〉

But we know that a|α〉 = α|α〉 and 〈α|a† = α∗〈α| so

〈ak(a†)`〉 =

∫
d2α

π
αk(α∗)`Q(α∗, α) (3.67)

which is the desired formula.

3.4 Spin 1/2 paramagnetism and non-interacting
systems

So far we have considered examples where our system is composed of a single
body (a two-state system or a quantum harmonic oscillator). The purpose of this
section is to teach you how to work with systems composed of several particles.
The primary message that you should take is that, when the different particles
do not interact, things are very easy to deal with: the density operator factors as
a product and most expectation values become a sum of independent terms. But
when there is interaction, things become exponentially more difficult (there is
no free lunch). We of course love interactions since they are the ones responsible
for most of the interesting phenomena in condensed matter physics. We love
them so much that most of the remaining of these notes will be dedicated to
interacting systems.

However, in this section we must first learn how to deal with systems of
non-interacting particles. To have a contrete example in mind, we will consider
spin 1/2 paramagnetism, which is the effect whereby a magnetic moment aligns
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in the direction of an externally applied field. Non-interacting spin systems
appear, for instance, in the so-called paramagnetic salts, like KCr(SO4)2. In
these salts only a few of the atoms are paramagnetic (in the above case the Cr
atoms) and due to the crystal structure they are kept far apart from each other so
that any interaction between them may be neglected. Another example is doped
graphene. In 2012 the group of Andre Geim, who won the 2010 Nobel prize “for
groundbreaking experiments regarding the two-dimensional material graphene”,
showed that fluorine defects in graphene induce a paramagnetic response which
perfectly matches the spin 1/2 paramagnetism.7

Paramagnetism response of a single spin

If we have a single spin 1/2 particle the Hamiltonian of interaction between
the spin and an external magnetic field may be written using the notations of
Sec. 1.2, more specifically Eq. (1.56):

H = −µBσz = −hσz =

(
−h 0
0 h

)
(3.68)

At T = 0 the system will tend to the ground state. This corresponds to the spin
fully aligned in the direction of the magnetic field, which will be the |+〉 state if
h > 0. However, when T 6= 0 thermal fluctuations will impede the system from
fully aligning with the field. The degree of alignment can be quantified by the
magnetization m = 〈σz〉. To find it, we follow the usual recipe.

First, we compute

e−βH =

(
eβh 0
0 e−βh

)
(3.69)

The partition function will be the trace of this matrix:

Z = eβh + e−βh = 2 cosh

(
h

T

)
(3.70)

so that the free energy will be

F = −T ln

{
2 cosh

(
h

T

)}
(3.71)

Combining these results we then get the density operator:

ρ =
1

Z

(
eβh 0
0 e−βh

)
(3.72)

7 See R. R. Nair, et. al., in Nature 8 (2012) 1-4
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We can also write it as ρ =
∑
σ Pσ|σ〉〈σ| where

Pσ =
eβhσ

2 cosh(βh)
(3.73)

Sanity check: if h > 0, P+ > P− so the ground-state always has a higher
probability.

The expectation value of 〈σz〉 is now readily found to be

〈σz〉 = tr(σzρ) = tanh

(
h

T

)
(3.74)

This is the famous paramagnetic response of a spin 1/2 particle. As for the
other Pauli matrices, we find 〈σx〉 = 〈σy〉 = 0, which is of course expected
from symmetry reasons. Since σ2

a = 1, there aren’t any more spin operators
to worry about. In Fig. 3.5 we plot 〈σz〉 vs. h/T . For small values of h/T the
response is linear. But for large fields it bends and then saturates at ±1. These
asymptotic values are simply the eigenvalues ±1 of σz. Thus, this result shows
that under extremely large fields or extremely low temperatures, the spin tends
to be completely polarized in the direction of the field. This is something we
already knew since when T → 0 the system should tend to the ground-state.

-� -� -� -� � � � � �

-���

-���
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���

�/�

〈σ
�〉

Figure 3.5: Average spin response 〈σz〉 vs. h/T for the spin 1/2 particle, plotted
using Eq. (3.74). The dotted line has slope 1.

We may also plug back all dimensional quantities in Eq. (3.74). We then get

〈σz〉 = tanh

(
µB

kBT

)
(3.75)

When the quantity µB/kBT is small we may expand

tanh(x) ' x
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to write Eq. (3.75) as

〈σz〉 '
µB

kBT
(3.76)

We should also ask under what conditions this approximation is reasonable. For
an electron µ is the Bohr magneton,

µB =
e

2me
= 5.788× 10−5 eV/T = 9.274× 10−24 J/T (3.77)

Together with Eq. (3.3) this then gives

µB
kB
' 0.672 T/K

In Fig. 3.5 we see a significant deviation from a straight line when h/T ∼ 1.
At room temperature, T = 300 K so to see a deviation would require fields
of the order of B ∼ 100 T. A field of 1 T is already huge. With supercon-
ducting coils we can reach around 10 T and with pulsed fields (which last only
for nano-seconds), maybe 30 or 50 T. Conclusion: at room temperature, the
response is always a straight line. For this reason, many people automatically
associate paramagnetism with a linear response (this is done in almost every
electromagnetism course). Conversely, at T = 1 K, some deviations from the
linear behavior can already be observed for fields of around 1 T.

N spin 1/2 particles

Now let us consider a system of N non-interacting spin 1/2 particles. To
each spin we attribute a spin operator σzi . The Hamiltonian will then be

H = −h
N∑
i=1

σzi (3.78)

which is a sum of operators each living in its own Hilbert space. Our first task
is now to compute the partition function and the density operator. But before
we do that, I want to make a tiny change to the problem. Imagine that perhaps
the external field is not homogeneous so that the field h changes from spin to
spin. In this case the Hamiltonian will be

H = −
N∑
i=1

hiσ
z
i (3.79)

where hi is the field acting on spin i. I am introducing this simply for book-
keeping purposes. In the end we can take hi = h.

The partition function is, by definition, Z = tr(e−βH). I will compute this
in two ways. The first way is to notice that all terms in the Hamiltonian (3.79)
commute so that we are allowed to write

e−βH = eβh1σ
z
1 . . . eβhNσ

z
N

= eβh1σ
z

⊗ . . .⊗ eβhNσ
z
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The kron notation makes the magic of e−βH quite clear: the exponential of a
sum of independent terms is the product of the exponentials. Of course, this is
only true when the systems do not interact. We may now use Eq. (2.12) to deal
with the trace of a kron:

Z = tr(e−βH) = tr(eβh1σ
z
1 ) . . . tr(eβhNσ

z
N ) (3.80)

Each of these traces will now be exactly like Eq. (3.70) so we may readily write
down

Z =

N∏
i=1

[
2 cosh

(
hi
T

)]
(3.81)

If all hi = h then this simplifies to

Z =

[
2 cosh

(
h

T

)]N
(3.82)

The partition function is therefore simply the product of the individual partition
functions of each particle. Since F = −T lnZ, the free energy will be a sum of
terms:

F = −T
∑
i

ln

[
2 cosh

(
hi
T

)]
= −NT ln

[
2 cosh

(
h

T

)]
(3.83)

where, for compactness, I wrote the two versions of the result. The free energy
scales proportionally with the number of particles N . Quantities which scale in
this way are called extensive. The fact that Z is a product of Zi’s also mean,
due to Eq. (3.8) that the internal will also be an extensive quantity:

U = − ∂

∂β
ln(Z1 . . . ZN ) = U1 + . . .+ UN (3.84)

For completeness, let us also compute Z in another way, by brute force. We
have a trace to take so we need to choose a basis. The natural choice is the
Pauli basis

|σ〉 = |σ1, . . . , σN 〉 = |σ1〉 ⊗ . . .⊗ |σN 〉 (3.85)

We then have
Z =

∑
σ1,...,σN

〈σ|e−βH |σ〉

This is a messy sum because each σi may take on 2 values giving a total of 2N

terms in the sum. The Hamiltonian is diagonal in this basis:

H|σ〉 =

(∑
i

hiσi

)
|σ〉

where σi = ±1. Thus the partition function becomes

Z =
∑

σ1,...,σN

e
β
∑
i
hiσi

(3.86)
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Now comes a part which causes a lot of confusion when you see it for the first
time: we may factor Z as

Z =

(∑
σ1

eβh1σ1

)
. . .

(∑
σN

eβhNσN

)
(3.87)

I think it is funny how this operation is absolutely natural when we do it for
integrals, ∫

dxdy f(x)g(y) =

∫
dx f(x)

∫
dy g(y)

but when we do it for a sum we get insecure,∑
n,m

f(n)g(m) =
∑
n

f(n)
∑
m

g(m)

An integral is a sum, so if it is true for one it must be true for the other. This
is what we just did above for Z. The sums in Eq. (3.87) are now all identical.
They can be computed as∑

σi=±1

eβhiσi = eβhi + e−βhi = 2 cosh(βhi)

We then obtain again Eq. (3.81).
Next let us discuss the density operator ρ = e−βH/Z. As before, we may

factor this as

ρ =
∏
i

ρi =
∏
i

[
eβhiσ

z
i

Zi

]
=
eβh1σ

z
1

Z1
⊗ . . .⊗ eβhNσ

z
N

ZN
(3.88)

The total density operator factors as a tensor product of the individual density
operators for each spin. The different spins are therefore completely uncorre-
lated. For thermal states, non-interacting implies uncorrelated.

Suppose now we want to compute the expectation value of some local oper-
ator. For instance, suppose we want σzk for some k. We will then have

〈σzk〉 = tr

{
eβh1σ

z
1

Z1
⊗ . . .⊗ σzk

eβhkσ
z
k

Zk
⊗ . . .⊗ eβhNσ

z
N

ZN

}

= tr

(
eβh1σ

z
1

Z1

)
. . . tr

(
σzk
eβhkσ

z
k

Zk

)
. . . tr

(
eβhNσ

z
N

ZN

)
Each quantity here represents the trace of the density matrix ρi for spin i.
Hence, all traces except the k-th will give 1 by normalization and we are left
with

〈σzk〉 = tr

(
σzk
eβhkσ

z
k

Zk

)
= tanh

(
hk
T

)
which is simply the response of a single spin 1/2 particle. You are probably
starting to notice that I am overcomplicating the problem: the moral of the
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story is that if we have a system of non-interacting particles, we can compute
stuff related to a single particle as if the other particles weren’t even there. We
don’t even need to know the other spins exist. As a sanity check, suppose we
want to compute 〈σzkσz` 〉 for k 6= `. To do this we follow the same drill:

〈σzkσz` 〉 = tr(eβh1σ
z
1 ) . . . tr(σzk e

βhkσ
z
k) . . . tr(σz` e

βh`σ
z
` ) . . . tr(eβhNσ

z
N ) = 〈σzk〉〈σz` 〉

as expected for a non-interacting system.

Magnetization and susceptibility

The magnetization that is measured in the laboratory is proportional to

M =
∑
i

〈σzi 〉 (3.89)

which is the sum of the magnetic response of each spin (hence M is clearly
extensive). Let us assume that hi = h. Then all 〈σzi 〉 will be equal to Eq. (3.74)
and we get

M = N tanh

(
h

T

)
' Nh

T
(3.90)

Another quantity of great experimental importance is the susceptibility de-
fined as

χ =
∂M

∂h
(3.91)

It measures the sensitivity of the magnetization to changes in the external field.
Most of the times (although not always) the susceptibility is measured in the
limit of zero field. That is, it measures the initial slope of the M vs. h curve.
Differentiating the last part of Eq. (3.90) we get

χ =
N

T
(3.92)

The susceptibility therefore scales as 1/T , which is known as Curie’s law.
Here we defined everything to be dimensionless so the susceptibility turned out
to have a very simple form. In more general paramagnetic systems one usually
finds

χ =
NC

T
(3.93)

where C is called the Curie constant and depends on the magnetic moment
of the system and other basic quantities. A common experimental practice is
to plot 1/χ vs. T . For paramagnets the result should be a straight line whose
coefficient is proportional to C. In Fig. 3.6 I show illegally extracted data of the
magnetization and the susceptibility for fluorine-doped graphene. Eqs. (3.90)
and (3.93) are plotted on top of the curves and present a perfect agreement.

It is also possible to relate the magnetization to a derivative of the partition
function or, what is nicer, to a derivative of the free energy. I will do here
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Figure 3.6: (a) Magnetization vs. H/T and (b) 1/χ vs. T of fluorine-doped graphene
for a doping ratio of 0.9. Data extracted with absolutely no authorization
from R. R. Nair, et. al., in Nature 8 (2012) 1-4.

a slightly more general calculation, so that we can get a more useful formula.
Suppose that the Hamiltonian of our system depends on some parameter h.
This does not have to be the magnetic field, but can be any scalar parameter
appearing in H. We then have the following result:〈

∂H

∂h

〉
=

1

Z
tr

(
∂H

∂h
e−βH

)
= − 1

βZ

∂

∂h
tr(e−βH)

=
∂

∂h

[
− 1

β
lnZ

]
Thus we conclude that 〈

∂H

∂h

〉
=
∂F

∂h
(3.94)

This result is absolutely general and gives another interesting way of looking at
the free energy. We will come back to this formula on later chapters when we
discuss work.

Now let us specialize Eq. (3.94) to a Hamiltonian of the form

H = H0 − hM (3.95)

where H0 and M are operators, whereas h is a number. Again, this structure
extends beyond spin systems. But, for concreteness, you may think of M as
the magnetization operator

M =
∑
i

σzi (3.96)

85



whereas H0 may represent, for instance, some interaction between the spins. In
this case ∂H/∂h = −M so we conclude that

M = 〈M〉 = −∂F
∂h

(3.97)

The magnetization is simply the derivative of the free energy with respect to
the field. The susceptibility will then be

χ = − ∂F
∂h2

(3.98)

These results are absolutely general. All we assumed was that H had the
form (3.95).

3.5 The Heat capacity

Consider a system coupled to a bath at a temperature T . Now suppose
you unplug the system from this bath and connect it to another bath at some
other temperature T ′. The system and the T ′-bath will then begin to exchange
energy until the system settles down in a new equilibrium state. The difference
in internal energy U(T ′)− U(T ) represents the average energy that the system
exchanged with the T ′-bath in order to equilibrate. We call it the heat which
entered or left the system:

Q = U(T ′)− U(T ) (3.99)

In the particular case where T ′ = T +∆T and ∆T is very small, we may expand
Eq. (3.99) and write8

δQ =
∂U

∂T
∆T = C(T )∆T (3.100)

where

C(T ) =
∂U

∂T
(3.101)

is called the heat capacity of the system. The heat capacity is the most
important observable related to thermal states, which is why it deserves a section
named after itself. You can also express it in terms of the free energy F or the
entropy S. I will simply quote the result and leave the derivation as an exercise:

C(T ) =
∂U

∂T
= −T ∂

2F

∂T 2
= T

∂S

∂T
(3.102)

8In many materials C is roughly constant over a large temperature range. When this
happens, Eq. (3.100) remains valid even when ∆T is not small.
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This gives C several interpretations:

• It represents the slope of U(T ), meaning it measures how sensitive are the
changes in the energy of the system due to changes in temperature.

• C/T represents the slope of S(T ).

• −C/T represents the concavity of the free energy.

From the relation between C and S it follows that, since S tends to a constant
in the limit T → 0 (Nernst’s postulate), then

lim
T→0

C(T ) = 0 (3.103)

The heat capacity has units of kB and is therefore dimensionless when kB =
1. Moreover, since U is extensive, the same must be true for C:

C = C1 + C2 + . . .+ CN

If you double the system, you double its heat capacity. This property of addi-
tivity is also very important from an experimental viewpoint. For instance, the
heat capacity of a metal at very low temperatures has one important contribu-
tion from the electrons and another from the lattice vibrations. The total heat
capacity is therefore simply a sum of these two contributions.

Experimentally, it is more convenient to work with the specific heat, which
is the heat capacity divided by something : the number of particles, the volume,
the mass, the number of moles, etc. One therefore speaks about the “molar
specific heat”, the “volume specific heat” and so on. In theory we usually
divide by the number of particles, defining:

c =
C

N
(3.104)

Experimentally, on the other hand, it is more common to divide by the number
of moles which gives the specific heat in units of J/(mol K) (recall that kB
has units of J/K). To convert theoretical results to these units and vice-versa,
simply multiply by the gas constant

R =
kB
NA

= 8.314 J/mol K (3.105)

So the rule is:

c =
C

N
(dimensionless; theory)

R
−−−−−→ c (J/mol K) (experiment)

(3.106)
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Fluctuations

Now let us relate C with the partition function Z. To do that we start with
U = − ∂

∂β lnZ and then differentiate with respect to β. We then get

C =
1

T 2

[
Z ′′

Z
−
(
Z ′

Z

)2
]

where Z ′ = ∂Z/∂β. But, from the definition of Z we have

Z ′′

Z
=
∑
n

E2
n

e−βEn

Z
= 〈H2〉

Thus, we conclude that

C(T ) =
1

T 2

[
〈H2〉 − 〈H〉2

]
(3.107)

The heat capacity is therefore seen to be related to the variance of the energy.
It measures the fluctuations of the energy in thermal equilibrium.

The variance can be equivalently written as

〈H2〉 − 〈H〉2 = 〈(H − U)2〉

which is the average of a positive quantity. Whence, we conclude that

C(T ) =
∂U

∂T
≥ 0 (3.108)

This is a very important result. It shows that U(T ) is a monotonically non-
decreasing function of T : the slope of the function U(T ) is never negative. It is
either positive or, in a limiting case, zero. Physically it means that if you increase
the temperature, you also increase the energy: hotter systems are always more
energetic. It also means that U and T are in one-to-one correspondence, so
a given temperature uniquely determines the corresponding energy. This is
illustrated in Fig. 3.7. Since C = T ∂S

∂T the exact same conclusion also follows
for the entropy: S is a monotonically non-decreasing function of T . From
the relation between C and F in Eq. (3.102) we also see that F (T ) is a concave
function of T :

∂2F

∂T 2
≤ 0 (3.109)

Finally, returning to Eq. (3.100), we see that the positivity of C implies that
δQ must have the same sign as ∆T . This is a piece of the second law: heat
always flows from hot to cold. The full statement will be given when learn
how to deal with work.
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Figure 3.7: Allowed shapes for the function U(T ) in thermal equilibrium.

Examples

Let us compare the 2-state system and the quantum harmonic oscillator.
The internal energies of both models are quite similar:

(2-state): U =
ε

eβε + 1
(3.110)

(QHO): U =
ω

eβω − 1
+
ω

2
(3.111)

These results are illustrated again in Fig. 3.8 for comparison. The corresponding
heat capacities are:

(2-state): C = (βε)2 eβε

(eβε + 1)2
(3.112)

(QHO): C = (βω)2 eβω

(eβω − 1)2
(3.113)

which are shown in Fig. 3.9.
By comparing the energies and heat capacities for the two models, we see

certain similarities but also certain important differences. Let us try to un-
derstand them in some detail. The most important similarity is that U(T )
is monotonically increasing in both cases, which means that C is always non-
negative. However, for the 2-state system the energy grows and eventually
saturates, whereas for the harmonic oscillator it keeps on growing indefinitely.
Consequently, for the 2-state system the heat capacity has a maximum (called
a Schottky anomaly) and then decays to zero, whereas for the oscillator it
tends to a finite constant.

These differences are a consequence of the number of allowed states in each
model. For the 2-state system there are only two allowed states, whereas for
the oscillator the number of states is infinite. As we increase T things get more
and more energetic. But if you have only two states there is nowhere else to put
this energy, which is why C for the 2-state system tends to zero as T →∞. It
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Figure 3.8: Internal energies for the 2-state system and the quantum harmonic
oscillator, computed from Eqs. (3.110) and (3.111)
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Figure 3.9: Internal energies for the 2-state system and the quantum harmonic
oscillator, computed from Eqs. (3.112) and (3.113)

basically means that the capacity to store thermal energy is depleted. The peak
of the Schottky anomaly is therefore a signature of having a finite number of
states.9 Conversely, for the oscillator, the number of states is infinite so there
is always some extra room to store more energy. At high temperatures we have
seen in Eq. (3.57) that U ' T for the oscillator. Hence, C → 1, as can be seen
in Fig. 3.9(b). Note also that at low temperatures both specific heats tend to
zero as expected from Nernst’s postulate.

The specific heat of metals

Table 3.1 shows the specific heats of some selected metals at room temper-
ature. The first line presents the mass specific heat; i.e., the specific heat per
gram of material. To understand what these numbers mean, suppose you have

9In phase transitions C may diverge at the critical point. This is not related to the Schottky
anomaly.
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Table 3.1: Room temperature mass specific heat for certain metals.

Cu Pb Ag Zn Al
c (J/g K) 0.389 0.130 0.23 0.39 0.90

c(J/mol K) 24.5 26.4 25.5 25.4 24.4

c/kB 2.95 3.18 3.07 3.05 2.93

two samples, one of Pb and the other of Al, both weighting exactly 1 g and
both at T = 300 K. We then place each sample separately in two identical big
buckets of water at 299 K. Since the buckets are colder than the samples (by 1
degree), each sample will release some heat to its bucket, heating it up. Look-
ing at Table 3.1 we see that the Pb sample will release 0.13 J of energy to the
bucket, whereas the Al sample will release 0.9 J of energy. Despite being very
basic, this is a very interesting result: two materials with the same mass and
temperature will heat up water by different amounts. This therefore provides
a method of distinguishing between two materials. It also shows why temper-
ature and energy are two distinct quantities. And what connects them is the
heat capacity.10

In 1819, Pierre Dulong and Alexis Petit decided to look at the specific heat
of metals per mole, instead of per mass. To connect the two you simply multiply
by the atomic mass of each element. The results are shown in the second line
of Table 3.1. As can be seen, all values are now remarkably similar. Hence, the
heat capacity per atom is practically independent of the element in question.
This is known as the law of Dulong and Petit. We can also convert the
data in J/(mol K) to dimensionless units, by dividing by the gas constant. As
a result we get the data in the third line of Table 3.1, showing that all specific
heats are close to 3.

With the advent of cryogenic techniques in the beginning of the twentieth
century it became clear that the law of Dulong and Petit was only valid around
room temperature. At lower temperatures, one observed instead a behavior
such as that shown in Fig. 3.10. This discrepancy was puzzling for researchers
for a long time. The first big breakthrough came with Einstein, who noticed
the similarity between Fig. 3.10 and the specific heat of a harmonic oscillator,
Fig. 3.9(b). For one harmonic oscillator, the heat capacity tends to c → 1,
whereas the results of Dulong and Petit show that the heat capacity per parti-
cle tends to 3. Einstein therefore argued that a solid containing N atoms could
be described as being a collection of 3N harmonic oscillators, all vibrating in-
dependently. The factor of 3 comes from the fact that each atom can vibrate
in the x, y and z directions. Based on Eq. (3.113), Einstein therefore proposed

10From this analysis you know how much energy entered the bucket. To know how much
the bucket will heat up you need to know the heat capacity of the water.
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Figure 3.10: Typical experimental specific heat curve. At high temperatures the
curves tend approximately to the value 3.

the following formula for the specific heat of a solid:

C = 3N
(ω
T

)2 eω/T

(eω/T − 1)2
(3.114)

where ω represents the typical vibration frequency of an atom. This is the
Einstein model for the solid.

The Einstein model was very successful and came at a time where the im-
portance of quantum mechanics to the macroscopic world was still in ques-
tion. It showed that something as bulky as the heat capacity of a solid may
notwithstanding also have important quantum contributions. However, this
model makes wrong predictions at very low temperatures. Experimentally, it is
found that when T is very low, c ∝ T 3. But Eq. (3.114) predicts an exponential
decay. This fix was latter provided by Debye and his now famous Debye model
of the solid., which will be studied later on.

The specific heat at very low temperatures

The behavior of c vs. T at very low temperatures constitutes one of the most
widely used experimental techniques in condensed matter physics. Recall that
as T → 0 only the lowest eigenstates remain significantly populated. Hence, this
type of measurement can shed light on the structure of the lowest eigenvalues.
A typical example, of great historical importance, is the specific heat of a su-
perconductor. Take Niobium, for instance, which becomes a superconductor at
the critical temperature Tc = 9.26 K. Its specific heat will look something like
the drawing in Fig. 3.11. Above Tc the specific heat is linear. But at T = Tc it
jumps (this is an actual discontinuity, not a smooth jump) and then it starts to
go down exponentially as e−∆/T . The specific heat therefore not only serves as
a signal of the onset of a phase transition, but it also characterizes the behavior
of the two phases.
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Figure 3.11: Typical behavior of the specific heat for a superconductor. Above Tc

it is a straight line, but below Tc it changes exponentially.

The two behaviors in Fig. 3.11 reflect two possible structures of the energy
eigenvalues. Whenever the eigenvalues vary continuously, as they do in most
many-body systems due to the enormous number of eigenvalues, the specific heat
will behave as some power of T ; something like c ∼ Tα for some exponent α.
We will show this later on, when we discuss second quantization. On the other
hand, if the spectrum has an energy gap then the specific heat will behave
exponentially. To see this, it suffices to note that at very low temperatures only
the first two energy eigenvalues will be populated. Hence, we may approximate
the heat capacity by that of a 2-state system, Eq. (3.112),

C = (β∆)2 eβ∆

(eβ∆ + 1)2

where ∆ = E1 −E0 is the energy difference between the first two energy eigen-
values. At very low temperatures eβ∆ � 1 and C may be approximated further
to

C ' (β∆)2e−β∆ (3.115)

The pre-factor (β∆)2 is irrelevant compared to the exponential. Consequently,
we see that at very low temperatures the specific heat behaves as e−∆/T where
∆ is the energy gap. Scientists are very smart people. When they first noticed
that the specific heat of a superconductor below Tc behaved exponentially, they
knew that an energy gap must have opened. In fact, nowadays we know that
many of the properties of a superconductor stem precisely from the appearance
of an energy gap.

Susceptibility

The heat capacity is the slope of 〈H〉 with respect to T . In Sec. 3.4 we also
saw another quantity with a similar interpretation: namely, if the Hamiltonian
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had the form
H = H0 − hM

then the susceptibility was defined as the slope of 〈M〉 with respect to h:

χ =
∂〈M〉
∂h

Now I will show that, similarly to Eq. (3.107), χ may be related to the variance
of M. We start with

〈M〉 = −∂F
∂h

=
T

Z

∂Z

∂h
The susceptibility then becomes

χ = T

[
1

Z

∂2Z

∂h2
− 1

Z2

(
∂Z

∂h

)2 ]
In the last term we notice the presence of 1

Z
∂Z
∂h = 〈M〉

T . Thus

χ =
T

Z

∂2Z

∂h2
− 〈M〉

2

T

Now we need to figure out what to do with the first term. Unlike the heat
capacity, however, in this case we must distinguish whether H0 andM commute
or not.

If [H0,M] = 0 then we may factor e−βH = e−βH0eβhM, allowing us to write

T

Z

∂2Z

∂h2
=
T

Z

∂2

∂h2
tr(e−βH0eβhM)

=
1

TZ
tr(M2e−βH0eβhM)

=
〈M2〉
T

Thus, we conclude that

χ =
1

T

[
〈M2〉 − 〈M〉2

]
, if [H0,M] = 0 (3.116)

which is exactly what we wanted: we have related the response of the system (the
susceptibility) to the fluctuations of theM operator. The case when [H0,M] 6=
0 is much more difficult and requires thermodynamic perturbation theory. I will
simply quote the result:

χ =

β∫
0

dτ〈M(τ)M(0)〉 − 〈M〉
2

T
(3.117)
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where M(τ) = eτH0Me−τH0 . If [H0,M] = 0 then M(τ) =M and we recover
Eq. (3.116).
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