Mecânica Quântica 2 - Lista 1

Professor: Gabriel T. Landi

Data de entrega: 12/02/2015, quinta-feira.

1) (2 pontos) Evolução unitária

A equação de Schrödinger é

$$\frac{\mathrm{d}}{\mathrm{d}t}|\alpha(t)\rangle = -\frac{i}{\hbar}\hat{H}|\alpha(t)\rangle \tag{1}$$

Suponha que num dado instante de tempo t_0 sabemos que o estado do sistema está apropriadamente normalizado: $\langle \alpha(t_0) | \alpha(t_0) \rangle = 1$. Mostre que isso continuará sendo verdade contanto que \hat{H} seja um operador Hermitiano. Dica: mostre que $\frac{d}{dt} \langle \alpha(t) | \alpha(t) \rangle = 0$. Você terá que usar a regra da cadeia.

2) (2 pontos) Matriz exponencial

Os operadores de spin 1 são tais que $\hat{S}^2 \neq 1$ mas $\hat{S}^3 = 1$. Calcule $e^{i\phi\hat{S}}$ para um operador \hat{S} tal que $\hat{S}^3 = 1$. Sua resposta dependerá de \hat{S} e \hat{S}^2 .

3) (3 pontos) Magnetos moleculares

Um assunto muito pesquisado hoje em dia consiste nos magnetos moleculares (ou, em inglês, "singlemolecule magnets"). Ou seja, imãs que são compostos de uma única molécula. O exemplo mais famoso é o acetato de Mn-12. Cada molécula pode ser interpretada como um único spin com S=10 (ou seja, spin 10!). Para mais informações procure por "single-molecule magnet" na wikipedia.

Além da interação com o campo magnético, estas moléculas também possuem uma anisotropia. Portanto o Hamiltoniano é, em geral, dado por

$$\hat{H} = -\boldsymbol{h} \cdot \hat{\boldsymbol{S}} - D\hat{S}_z^2$$

A constante D é chamada constante de anisotropia e \boldsymbol{h} é o campo magnético em unidades convenientes. Nessa fórmula os operadores $\hat{\boldsymbol{S}}=(\hat{S}_x,\hat{S}_y,\hat{S}_z)$ são os operadores de spin 10. Para o restante desse problema, vide o notebook do Mathematica intitulado "Lista 1-3.nb".

4) (3 pontos) Operador de deslocamento

Considere os operadores de criação e aniquilação do oscilador harmônico e lembre-se que eles satisfazem $[\hat{a}, \hat{a}^{\dagger}] = 1$. Um operador importante neste tipo de sistema é

$$\hat{D} = e^{\lambda \hat{a}^{\dagger} - \lambda^* \hat{a}}$$

onde λ é um número complexo qualquer.

(a) Mostre que esse operador produz um deslocamento em \hat{a} e \hat{a}^{\dagger} :

$$\hat{D}^{\dagger}\hat{a}\hat{D} = \hat{a} + \lambda$$

Tome o dagger desta fórmula para obter a equação correspondente para \hat{a}^{\dagger} .

(b) Mostre que este operador efetua uma translação no operador posição $\hat{x} = \frac{x_0}{\sqrt{2}}(\hat{a}^{\dagger} + \hat{a})$. Por qual valor ele é transladado?

Problemas adicionais¹

- 5) Mostre que é impossível o elétron estar em um estado onde $\langle \hat{\sigma}_x \rangle = \langle \hat{\sigma}_y \rangle = \langle \hat{\sigma}_z \rangle = 0$.
- 6) A Álgebra do SU(2)
 - (a) Considere os operadores $\hat{S}_z = \frac{1}{2}\hat{\sigma}_z$ e $\hat{S}_{\pm} = \frac{\hat{\sigma}_x \pm i\hat{\sigma}_y}{2}$. Mostre que eles satisfazem a álgebra do SU(2); ou seja,

$$[\hat{S}_z, \hat{S}_{\pm}] = \pm \hat{S}_{\pm}, \qquad [\hat{S}_+, \hat{S}_-] = 2\hat{S}_z$$
 (2)

(b) Considere agora um espaço de Hilbert de dimensão infinita com base $|n\rangle$, $n=0,1,2,\ldots$ Mostre que os seguintes operadores também satisfazem a mesma álgebra da Eq. (2):

$$\hat{S}_z = \sum_{n=0}^{\infty} (p-n)|n\rangle\langle n|$$

$$\hat{S}_{+} = \sum_{n=0}^{\infty} (n+1)|n\rangle\langle n+1|$$

$$\hat{S}_{-} = \sum_{n=0}^{\infty} (2p - n)|n + 1\rangle\langle n|$$

onde p pode ser qualquer número complexo. Ou seja, operadores em espaços de Hilbert completamente diferentes podem obedecer o mesmo tipo de álgebra. O jeito chique de dizer isso é falar que existem "diferentes representações da álgebra SU(2)". Ou seja, a álgebra da Eq. (2) é implementada de forma diferente em cada espaço de Hilbert. No item (a) você viu uma implementação no espaço de Hilbert do spin 1/2 e no item (b) num espaço de dimensão infinita.

7) As matrizes de Pauli formam uma base para o espaço de matrizes 2 x 2

Considere as quatro matrizes, incluindo a identidade:

$$\hat{\sigma}_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \hat{\sigma}_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad \hat{\sigma}_2 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \qquad \hat{\sigma}_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

(Eu estou usando 1, 2, 3 ao invés de x, y, z) Todas as matrizes Hermitianas 2×2 podem ser escritas como uma combinação linear dessas matrizes:

$$\hat{A} = a_0 \hat{\sigma}_0 + a_1 \hat{\sigma}_1 + a_2 \hat{\sigma}_2 + a_3 \hat{\sigma}_z$$

dados certos coeficientes a_i . Neste problema eu quero convencer vocês de que o espaço de matrizes 2×2 é um espaço vetorial e as matrizes $\hat{\sigma}_i$ são uma base para este espaço.

- (a) Relacione os a_i com $\operatorname{tr}(\hat{\sigma}_i \hat{A})$ onde, lembrando, o traço $\operatorname{tr}()$ é a soma dos elementos da diagonal de uma matriz.
- (b) Relacione os a_i com os elementos de matriz $A_{i,j}$.
- (c) Mostre que o produto interno entre dois objetos neste espaço vetorial pode ser tomado como sendo $(A,B)=\operatorname{tr}(\hat{A}^{\dagger}\hat{B})$. Ou seja, mostre que $\operatorname{tr}(\hat{A}^{\dagger}\hat{B})$ satisfaz as propriedades do produto interno:
 - $(A,B) = (B,A)^*$
 - (A, B + C) = (A, B) + (A, C)
 - (A, A) > 0 e (A, A) = 0 se e só se A = 0.

¹Não valem pontos.