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1. Study the tight-binding model in the hexagonal/triangular lattice, as-
suming only nearest-neighbor hopping. I usually take the primitive
vectors to be

a1 =
a

2
(
√
3, 1), a2 =

a

2
(
√
3,−1) (1)

where a is the lattice spacing. But feel free to choose any other lattice
vector you wish.

2. Study the tight-binding model in the Kagomé lattice, assuming nearest-
neighbor interactions. The Bravais lattice is the hexagonal, with pri-
mitive vectors given by (1). Each unit cell contains 3 atoms in the
basis, at positions

s1 = (0, 0), s2 = a2/2, s3 = (a2 − a1)/2 (2)

The Kagomé lattice is illustrated in the figure below, with s1, s2 e s3
represented by black, blue and red dots respectively.
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3. Consider a particle moving in a one-dimensional lattice of spacing a,
which we model by a Hamiltonian of the form

H =
p2

2m
+ U(x) (3)

where U(x+a) = U(x) is the periodic potential produced by the atoms.



(a) Derive Bloch’s theorem. That is, show that the eigenfunctions of
this Hamiltonian may be written as

ψk,α = eikxuk,α(x) (4)

where α is a quantum number called the band index, k ∈ [−π
a ,

π
a ]

and uk,α(x+ a) = uk,α(x) is a periodic function. Bloch’s theorem
says that if the potential is periodic, then so will |ψ|2. But ψ itself
is not, since it has a phase eikx.

(b) Consider now the Wannier functions defined as

χn,α(x) =
1√
N

∑
k

eikxnψk,α(x) (5)

where xn = an is the position of atom n in the one-dimensional
lattice. The sum over k here is over all allowed values of k, which
are quantized as

k =
2π`

Na
, ` = −N

2
, . . . ,

N

2

The Bloch wavefunctions are completely delocalized (spread out
through all space), whereas the Wannier functions are very locali-
zed within site n.

(c) Check that the Wannier functions satisfy χn,α(x) = χ0,α(x− xn).
This means we only really need to understand χ0,α. The others are
simply constructed by translations. Check also that the Wannier
functions form an orthonormal basis set, provided of course this is
also true for the Bloch functions.

(d) Have some fun with Wannier functions. In particular, find the
Wannier functions when uk,α(x) = const. Make a plot of χ(x) in
this case. It should look cute and localized.

4. The goal of this exercise is to show how one may derive the tight-
binding Hamiltonian from Wannier functions. Consider the second-
quantized version of the single-particle Hamiltonian (3):

H =

∫
dx ψ†(x)

[
− ∂2x

2m
+ U(x)

]
ψ(x) (6)

where ψ(x) is the annihilation operator for position n. The particles
may be either Bosons or Fermions. The calculations will hold in both
cases. Perform a change of variables from ψ(x) to the discrete set of
operators bn,α according to

ψ(x) =
∑
n,α

χn,α(x)bn,α (7)



where χn,α are the Wannier functions defined in Eq. (5). Show that
the Hamiltonian (6) may be written as

H = −
∑

n,m,α,β

gα,β(n,m)b†n,αbm,β (8)

where

gα,β(n,m) = −
∫

dx χ∗n,α(x)

[
− ∂2x

2m
+ U(x)

]
χm,β(x) (9)

Since U(x) is periodic and since χn,α(x) = χ0,α(x− xn), we may write
these transition amplitudes as

gα,β(n,m) = −
∫

dx χ∗0,α(x− xn + xm)

[
− ∂2x

2m
+ U(x)

]
χ0,β(x) (10)

Hence gα,β(n,m) depends only on the distance xn − xm. Moreover,
it is related to the overlap of Hχ0,β(x) and χ0,α(x − xn + xm). The
former is localized around x = 0, whereas the latter is localized around
x = xn − xm. Consequently, the integral will only give a meaningful
value when xn − xm is small. This is how we justify choosing only
nearest neighbors.

5. Consider a system described by two operators, a and b, which may be
either Fermionic or Bosonic. Suppose that the Hamiltonian is given by

H = ε(a†a+ b†b) + g(a†b+ b†a) (11)

where ε and g are arbitrary parameters. Diagonalize this Hamiltonian
by looking for new operators α and β which are linear combinations of
a and b. Discuss the energy spectrum and the eigenvectors separately
for Fermions and Bosons.

6. Consider now a system, similar to the previous problem, but with
Hamiltonian

H = ε(a†a+ b†b) + g(a†b† + ba) (12)

This Hamiltonian can be diagonalized by a Bogoliubov transfor-
mation. This type of problem appears often in problems such as
superfluidity, superconductivity, quantum phase transitions and so on.
The procedure must be done separately for Fermions and Bosons.

(a) Fermions: Introduce a new set of operators according to the trans-
formation

a = uα− vβ†

(13)
b = uβ + vα†



where u and v are complex numbers. Impose that α and β continue
to satisfy the same algebra (i.e., the same commutation relations)
as a and b. Discuss what constraints this imposes into u and v.
Then insert the transformation (14) back into the Hamiltonian (12)
and choose the coefficients u and v such that the terms proporti-
onal to α†β† and βα are zero. This is how you obtain a diagonal
Hamiltonian. Find the corresponding energy eigenvalues of the
system.

(b) Bosons: for Bosons, the Bogoliubov transformation comes out a
little different

a = uα− vβ†

(14)
b = uβ − vα†


