
Solid State Physics 2 - Problem set 2
Professor: Gabriel T. Landi

1. Consider the Heisenberg ferromagnetic model in one dimension:

H = −J
N∑
n=1

Sn ·Sn+1 (1)

(a) Construct the Heisenberg equations of motion for each spin com-
ponent,

d〈Sαn 〉
dt

= i〈[H,Sαn ]〉 (2)

where α = x, y, z.
(b) Linearize the previous equations by assuming that we can replace

Szn ' S. That is, we are looking for solutions which represent small
deviations from the fully magnetized state.

(c) Show that you can solve your linearized equations using the ansatz

〈Sxn〉 = Aeikxn sinωt, 〈Syn〉 = Aeikxn cosωt (3)

Find the dispersion relation ω(k).

2. In this problem I want you to investigate the magnetic frustration in a
square lattice with antiferromagnetic interaction between nearest and
second nearest-neighbors. The Hamiltonian is

H =
∑
i,j

J(Ri −Rj)Si ·Sj (4)

where

J(±x̂) = J(±ŷ) = J1 > 0, J(±x̂± ŷ) = J2 > 0 (5)

The reason why this system is frustrated is as follows: if we have
only the AFM nearest-neighbor interaction J1, then second nearest-
neighbors will tend to align ferromagnetically. But J2 > 0 wants to
make second nearest-neighbors anti-parallel, so there is a competition
between the two terms.

(a) Find the tight-binding dispersion relation J(q).
(b) Find the vector Q which minimizes J(q) and discuss the cor-

responding magnetic configuration. The special point here is at
J2 = J1/2. Separate the analysis into J2 < J1/2 and J2 > J1/2.
Discuss the physics of these two regimes.



(c) Now consider specifically the case J2 = J1/2. Show that in this
case there is an infinite number of Q vectors which minimize J(q).
This means that at this point the ground-state is massively dege-
nerate and the system is magnetically frustrated.

3. Consider the Landau free energy for a superconductor,
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∫
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where B = ∇×A is the magnetic field and, unlike in the lecture notes,
I’m using CGS units because I based this problem on Landau’s book
and I am too lazy to change to SI.

(a) Find the equations that minimize F . To do that, you need to use
some calculus of variations to vary the functional F [ψ,ψ∗, Ax, Ay, Az]
(you should treat ψ and ψ∗ as independent variables). Your equa-
tion for ψ will look like a non-linear Schrödinger equation. But
the cool part is that the equation for Ai will give you Maxwell’s
equations

∇×B =
4π

c
J (7)

but with a current which is given by

J = − ie~
2m

(ψ∗∇ψ − ψ∇ψ∗)− 2e2

mc
|ψ|2A (8)

which is the expression for the probability current we get in quan-
tum mechanics.

(b) Suppose now that ψ is given by its equilibrium value, |ψ| =
√
−a/b.

Use this and substitute Eq. (8) into Eq. (7) to arrive at London’s
equation:

∇2B =
B

δ2
(9)

where δ is the London penetration depth. Compute it in terms of
a, b and the other fundamental constants and show that it diverges
at T = Tc (recall that a ∼ (T − Tc)).

4. In this problem I want you to study a model recently investigated
experimentally by Landig et. al. in Nature, 532 476 (2016). Their
system consists of a square lattice with K sites, each described by a
bosonic operator bi. The Hamiltonian is

H =
∑
i

{
Us
2
n̂i(n̂i − 1)− µn̂i

}
− J

∑
〈i,j〉

(b†ibj + b†jbi)−
U`
K

Θ2 (10)



where
Θ =

∑
i∈e

n̂i −
∑
i∈o

n̂i (11)

Except for the last term in Eq. (10), this Hamiltonian is exactly the
Bose-Hubbard Hamiltonian we studied in class. The new term is the
last one, which is a long range interaction between all sites in the
lattice. The idea is that we divide the square lattice into even (e) and
odd (o) sites, like a chess board. The operator Θ is the imbalance
operator: it measures the imbalance between the number of particles
in the odd sites and the number of particles in the even sites. The
energy term −U`

K Θ2 therefore favors an imbalanced configuration.

Study this problem in the mean-field approximation. For the long-
range part, approximate

Θ2 ' 2〈Θ〉Θ− 〈Θ〉2 (12)

For the hopping term, use the same mean-field approximation as in the
Bose-Hubbard model. But now introduce two order parameters ψe =
〈bi〉 for i ∈ e and ψo = 〈bi〉 for i ∈ o. Your model will therefore have
a total of 3 order parameters. Write down the effective Hamiltonian
within the mean-field approximation and show that it can reduced to a
system of two bosonic modes (recall that in the Bose-Hubbard model
we reduced our problem to a single bosonic mode. Now we have to
distinguish between even and odd sub-lattices, so we need two bosonic
modes). Challenge: construct the phase diagram numerically. See, for
instance, Dogra et. al., PRA, 94, 023632 (2016).


