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Exercises for Introduction to Quantum Optics
Prof. Cecilia Cormick - February 2019

1. Orders of magnitude

(a) Consider the 852 nm wavelength corresponding to a transition of the cesium atom. Calculate the frequency
of this radiation and the equivalent in temperature (~ω = kT ).

(b) The most important transition in sodium (23Na, m = 22,99 u, u = 1,66 1027 kg) has a wavelength of 589 nm.
How much is this energy in Joules? Which velocity of the atom would give it this amount of kinetic energy?
Assume that the atom is initially at rest and in an electronic excited state. If it decays emitting a photon
of this wavelength, imposing conservation of energy and momentum, give the final velocity of the atom and
its kinetic energy.

2. Optical pumping

Consider a laser with propagation direction along z and circular polarization σ+. Take the z axis as direction of
quantization for angular momentum. Consider an atom whose ground state has zero orbital angular momentum,
l = 0, and spin s = 1/2. We call the two ground states |g±1/2〉 according to the projection of the spin along z.
We assume that the intensity of the laser is weak enough to neglect the population of the excited state (if the
atom gets excited it rapidly decays through spontaneous emission).

(a) We consider that the laser is close to resonance with a transition between the ground state |g±1/2〉 and an
excited state with l = 1, s = 1/2, j = 1/2 (once more with two sublevels mj given by the projection of
total angular momentum along z). Using the Clebsch-Gordan coefficients, write the two sublevels of the
excited state in terms of the eigenstates of Lz and Sz, characterized by the quantum numbers ml, ms.

(b) Remember the selection rules for optical transitions due to fields with plane wavefronts: upon absorption of
a photon, the spin state does not change, and the projection along z of orbital angular momentum changes
according to:

• σ+ polarization: ∆ml = +1

• σ− polarization: ∆ml = −1

• Linear polarization in ẑ: ∆ml = 0

(for a field propagating along z, polarization must be in the x-y plane and can always be written as
combination of σ+ and σ−).

Draw in a scheme the two ground and the two excited states and, using these rules, indicate which transi-
tions can be induced by the laser in the eigenbasis of the atomic Hamiltonian. Notice that these transitions
are the same for absorption and stimulated emission.

(c) Taking into account that spontaneous emission can be in principle in any propagation direction and with
any polarization, draw the possible atomic transitions obtained as a result of spontaneous decay.

(d) Using the previous results, explain with the the asymptotic state of the atom.

(e) Repeat the same idea but for the case when the resonant excited state has quantum numbers l = 1, s = 1/2,
j = 3/2.

3. Coherent evolution of a two-level atom

Consider an atom with two internal levels, |g〉 (the ground state) and |e〉 (an excited state). The atom is under
the action of a laser such that, in the frame rotating with the laser, the Hamiltonian for the evolution of the
internal state is of the form:

H =
~
2

[−∆σz + Re(Ω)σx − Im(Ω)σy]

where Ω ∈ C is proportional to the amplitude of the laser and ∆ is the detuning with respect to the atomic
transition, ∆ = ωL − ωa.
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(a) Rewrite the Hamiltonian in the form H = (~/2) Ω̃ n̂ · ~σ, with ~σ = (σx, σy, σz), n̂ a norm 1 vector, and

Ω̃ ∈ R, giving Ω̃ and n̂ as a function of ∆ and Ω.

(b) Show that (n̂ · ~σ)2 = I.
(c) Using that property and the power expansion of the exponential, show that the evolution operator in this

frame is:

U(t) = e−iHt/~ = cos(Ω̃t/2)− i sin(Ω̃t/2) n̂ · ~σ

(d) Calculate the probability to find the atom in the excited state as a function of time, assuming it is initially
in the ground state. Plot for different values of ∆ and Ω. Indicate which is the maximum population that
can be transferred to the excited state given Ω and ∆.

Obs. 1: |Ω| is the so-called “Rabi frequency”, since it is the frequency of the oscillations in the population for
the resonant case ∆ = 0, but the evolution operator U(t) is periodic with half the frequency, so some authors

use Rabi frequency for |Ω|/2 (notice that on resonance U(t = 2π/Ω̃) = −I).

Obs. 2: I fix the basis {|e〉, |g〉}, so the Pauli matrices are

σx = |g〉〈e|+ |e〉〈g|, σy = i(|g〉〈e| − |e〉〈g|), σz = |e〉〈e| − |g〉〈g|

This satisfies that σ± = (σx ± iσy)/2 correspond to raising and lowering operators, i.e. σ+ takes the atom to
the excited level and σ− does the opposite.

4. Adiabatic elimination and two-photon transitions in a three-level atom

Consider an atom with three internal levels, which we call |g〉, |e〉, and |a〉. The levels |g〉 and |e〉 are connected
with |a〉 through dipolar transitions, so there is no dipolar transition between them. One can anyway generate
and effective two-level system using |a〉 in an intermediate step, with two lasers far away from the resonance.
This is called a Λ-system (see figure, but notice that for this treatment it doesn’t matter if |g〉 and |e〉 have
lower energies than |a〉 or not). In this excercise the effective Hamiltonian will be derived using a procedure
called “adiabatic elimination”. There are many methods to do this, and when standard perturbation theory
is applicable, then it is also equivalent, but adiabatic elimination is used in more general situations (most
importantly for open systems), so it’s worth learning what it is.

Setting the zero of energy at level |g〉 and using a rotating wave approximation, the system Hamiltonian is given
by:

H = Ee|e〉〈e|+ Ea|a〉〈a|+ ~
Ω

2
(|a〉〈g|e−iω1t + |g〉〈a|eiω1t) + ~

Ω

2
(|a〉〈e|e−iω2t + |e〉〈a|eiω2t)

where ω1 = Ea/~+ ∆, ω2 = (Ea−Ee)/~+ ∆. We take Ω real (in this case with no loss of generality, why?) and
the same for the two lasers to simplify the calculation. The detuning |∆| is assumed to be much larger than Ω
and that the spontaneous decay rate from level |a〉 (so we neglect spontaneous emission). Then, the transitions
involving level |a〉 are off-resonant but two-photon processes are resonant.

(a) Move to a frame rotating with H0 = Ee|e〉〈e| + Ea|a〉〈a|, so that the Hamiltonian H ′(t) in this frame is
given by:

H ′(t) = U0(t)†HU0(t)−H0

with U0(t) = e−iH0t/~. Calculate H ′(t) and show that all its terms oscillate at a frequency which is much
higher than the time scale associated with the Hamiltonian amplitude.
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(b) The procedure that follows is based on that separation of time scales. To make things clear at least the
first time, it is convenient to make an expansion in the small dimensionless parameter ε = Ω/∆. For this,
we define a dimensionless time variable τ = t∆, so that the Hamiltonian in the previous item transforms
as H ′ → H̃ = H ′/∆. Write H̃(τ) and see that its terms are proportional to ~ε and oscillate in a time scale
of order 1.

(c) The evolution operator Ũ(τ) in this representation can be written as an expansion in powers of ε as:

Ũ(τ) =
∑
n=0

Ũn(τ)

= I− i

~

∫ τ

0

dτ1H̃(τ1)− 1

~2

∫ τ

0

dτ2

∫ τ2

0

dτ1H̃(τ2)H̃(τ1) +
∑
n>2

(
−i
~

)n ∫ τ

0

dτn . . .

∫ τ2

0

dτ1H̃(τn) . . . H̃(τ1)

with Ũn(τ) proportional to εn (and depending on the dimensionless time τ).

Evaluate Ũ1(τ) and show that it is a purely oscillatory function of τ , so that after a time τ of order 1 (i.e.
a time t of order ∆−1) this function no longer increases, and is of order ε at all times.

(d) Evaluate now the second-order term Ũ2(τ) and show that it has two components: one term proportional to
τ , and one oscillatory term. Indicate which is the condition on τ which guarantees that the linear term in
Ũ2 is much larger than the oscillatory terms in Ũ1. Show that this condition also implies that the oscillatory
terms in Ũ2 can be neglected. Rewrite this condition in terms of the original time variable t.

(e) In similar form one can go on with the remaining terms in the expansion. All odd terms result in oscillatory
contributions, while even powers of ε give some non-oscillating terms. These can be identified with the
terms arising from a power series for the evolution given by an effective time-independent Hamiltonian
H̃eff . In particular, the linear term in Ũ2 corresponds to the first order of the effective evolution, Ũ1,eff(τ),

and so on. Infer from Ũ1,eff(τ) the form of the effective Hamiltonian H̃eff .

(f) Identify the effects present in the effective Hamiltonian. Notice that the coupling to level |a〉 disappears,
but there is an effective coupling between the two other levels, as well as an AC-Stark shift.

(g) Come back to the initial representation with time t (i.e. multiply the effective Hamiltonian by ∆). Indicate
the value of the AC-Stark shift for each of the levels, and the frequency of the transition between |g〉 and
|e〉 (remember that for this treatment this frequency must be much smaller than Ω).

(h) Think about how you could have solved the same system using standard perturbation theory.

5. Jaynes-Cummings model

We consider a two-level atom in a cavity such that the atom is coupled with only one mode of the field. Using
the rotating wave approximation, the Hamiltonian can be written as H = H0 +V , with H0 = ~ω0|e〉〈e|+~ωc a†a
and V = ~g(aσ+ + a†σ−) (it’s standard to use g also for the coupling... the meaning of the letter should be
clear from the context).

(a) Show that the number of excitations is conserved, i.e. [H,N ] = 0 with N = a†a+ |e〉〈e|.
(b) From the previous result, the Hilbert space can be split in two-level subspaces with bases: {|g, n+ 1〉,
|e, n〉}, according to the eigenvalues of the operator N , and the time evolution does not couple the different
subspaces (the state |g, 0〉 is decoupled from all others). Write the Hamiltonian as a 2×2 matrix for each
of these subspaces.

(c) Draw schematically the spectrum for subspace {|g, n+1〉, |e, n〉} as a function of the detuning ∆c = ωc−ω0

(leaving either ωc or ω0 fixed). Indicate the form of eigenstates and eigenvalues on resonance and very far
away from it.

(d) Consider the resonant case, ∆c = 0, and calculate all eigenstates and eigenvalues. Make a scheme of the
seven lowest values of the energy (remember ω0 � g) indicating the corresponding eigenvalues. Calculate
the evolution of a system initially in state |g, n+1〉, and give the probability to find the atom in the excited
state as a function of time. Indicate the oscillation frequency for this probability.

(e) Consider again the resonant case but assume that the initial state is of the form |g, α〉 with the atom
in the ground state and the field in a coherent state |α〉. Calculate the time evolution of the state and
the probability to have an excited atom as a function of time. Plot this probability for the cases |α|2 =
10, 20, 30, 50. Discuss the limit |α|2 � 1 and compare with the semiclassical treatment.
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6. Bloch equations
Consider the evolution of a two-level atom as in problem 3, but now subjected also to spontaneous decay,
introducing a non-unitary term in the evolution of the form:

LΓρ =
Γ

2
(2σ−ρσ+ − {σ+σ−, ρ}).

(notice that the form of this non-unitary term is the same in the frame rotating with the laser and in the
non-rotating frame).

(a) Calculate the equations for the evolution of the elements of the density matrix of the atom (notice that
only two of the four elements are independent).

(b) Rewrite the equations in terms of the real variables appearing in the Bloch equations, (u, v, w) = (1/2)〈~σ〉
(always in the rotating frame).

(c) Solve the equations and describe the evolution for the cases when:

i. Ω = 0.

ii. Γ = 0.

iii. ∆ = 0.

(d) Find the stationary state (in the rotating frame) for arbitrary values of Ω,Γ,∆ (notice that one must have
Γ 6= 0 in order to have a stationary state).

(e) Move back to the non-rotating frame and write the state as a function of time in the asymptotic regime
t→∞.

7. Coherent coupling between atoms and electromagnetic field

Find information about at least two different research groups that have setups coupling atomic transitions with
the electromagnetic field at the quantum level (i.e. with a non-negligible single-photon coupling). Identify:

(a) Do they use one or many atoms, are the atoms neutral or charged?

(b) Which is the wavelength of the field and which part of the spectrum does it belong to? (i.e. microwave,
optical, etc).

(c) Which is the atomic transition coupling with the field, and which are the lifetimes of the corresponding
levels?

(d) How much is the coupling strength between the field and atom(s)? (if this is not given, find related
information if any, for instance how many repetitions of the experiment are required for the absorption of
a single photon).

(e) Does the experiment run on resonance or away from it? If it’s the latter, how large is the detuning?

(f) Do they use the field in a cavity? If so, which is the linewidth of the cavity? (the definition of the quality
factor can vary a bit but it is basically Q ∝ ω/κ). Do they mention the size of the cavity?

8. Mediated interactions between ions

To build a quantum computer with a collection of two-level systems (qubits), it is enough to be able to implement
single-qubit gates and at least one kind of two-qubit entangling gate. This exercise shows in a simplified form
how one can apply an entangling operation between the internal states of two ions using a normal oscillation
mode as mediator. We will treat each ion as a three-level system: two of the levels, |g〉 and |e〉, correspond
to the computational states, and the third, |e′〉, is auxiliary. The oscillation of the center-of-mass mode of the
two-ion chain is treated as a quantized harmonic oscillator with creation and annihilation operators a† and a.

With a laser acting on ion j (j = 1 or 2) with the right frequency we can generate a Hamiltonian which, in a
rotating frame with respect to the free Hamiltonian H0, takes the form:

Hj = ~
Ω

2

[
(|e〉〈g|)j a+ (|g〉〈e|)j a†

]
(so it is a realization of the Jaynes-Cummings Hamiltonian, without involving level |e′〉). Alternatively, changing
the frequency and/or polarization of the laser we can generate a similar Hamiltonian H ′j but which involves
level |e′〉 instead of |e〉.
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Calculate for each step the effects of the following sequence, assuming the initial state:

|ψ0〉 =
|g〉+ |e〉√

2

|g〉+ |e〉√
2
|0〉

which is a state without entanglement between the electronic states of the ions, and with the vibrational mode
in the ground state.

(a) Hamiltonian H1 is applied during a time π/Ω, which implements on ion 1 and the mode the transformation:

|g〉|1〉 → −i|e〉|0〉, |e〉|0〉 → −i|g〉|1〉

while the state |g〉|0〉 is not changed.

(b) Hamiltonian H ′2 is applied for a time 2π/Ω, implementing on ion 2 and the mode the transformation:

|g〉|1〉 → −|g〉|1〉, |e′〉|0〉 → −|e′〉|0〉

while the state |g〉|0〉 is not modified (and neither any state in which ion 2 is in |e〉).
(c) The same pulse as in the first step is repeated.

Show that in the final state the mode is back at the vacuum state, while ions 1 and 2 are in a two-qubit
maximally entangled state, so that the two-qubit state is pure but each of the qubits has a reduced density
matrix equal to (|g〉〈g|+ |e〉〈e|)/2.


