
Quantum Information - Problem set 1
Professor: Gabriel T. Landi

Deadline: 29/04 (Monday)

1. Similarity transformations

(a) Let A be a Hermitian matrix and B = S AS −1, where S is arbitrary. Relate the eigenva-
lues and eigenvectors of B and A. This is called a similarity transformation. Unitaries
are a particular case, in which S −1 = S †. We can also invert the argument on our pre-
vious result: if A and B are two operators which share the same eigenvalues, then there
must exist a similarity transformation between them. If A and B are both Hermitian,
then this transformation can be accomplished by a unitary.

(b) Show that S f (A)S −1 = f (S AS −1): similarity transformations infiltrate, just like uni-
taries!

2. Positive semidefinite matrices

(a) Let C be an arbitrary (not necessarily Hermitian) operator. Show that C†C is positive
semidefinite.

(b) Now invert the argument: given a density matrix ρ (which is Hermitian and positive
semidefinite), show that one can always find a matrix C such that ρ = C†C. This is the
matrix equivalent of taking a square root. Tip: use the eigenstructure of ρ.

3. Functions of operators. The goal of this exercise is to show you that, when manipulating
functions of operators, all that matters is the algebra. That is, we don’t need to know what
are the actual matrix elements or even if the matrix is finite or infinite. All properties follow
only from the abstract algebra between operators.

(a) Let A be an operator such that A3 = 1. Find eαA, where α is a constant. The result is a
bit ugly, but with Mathematica it’s super easy.

(b) Let A be an operator such that A2 = 0. Find eαA.

(c) Consider the angular momentum operators S x,y,z satisfying [S i, S j] = iεi, j,kS k. Com-
pute eαS xS ze−αS x .

4. Dephasing channel. We saw in the lectures that the most general operation taking density
matrices into density matrices is a quantum channel (CPTP map) of the form

E(ρ) =
∑

k

MkρM†k ,
∑

k

M†k Mk = 1. (1)

An important example of a quantum channel is the dephasing channel, characterized by
the set of Kraus operators

M0 =

(
1 0
0
√

1 − λ

)
, M1 =

(
0 0
0
√
λ

)
, (2)

where λ = 1.

(a) Investigate the action of the dephasing channel on a general qubit density matrix.



(b) Provide a geometric interpretation in terms of Bloch’s sphere.

(c) Suppose the system starts in a pure state |ψ〉 = α|0〉+ β|1〉. Compute the von Neumann
entropy before and after applying a dephasing channel.

(d) Interpreting the set of Kraus operators {Mk} in (2) as the measurement operators for a
generalized measurement, discuss the measurement backaction on a general pure state
|ψ〉 = α|0〉 + β|1〉.

5. Freedom in the Kraus representation.

(a) The choice of Kraus operators {Mk} is not unique. Show that if two sets of Kraus
operators are related by

Mk =
∑

q

Uk,q,Nq, (3)

where Uk,q is a unitary (UU† = U†U = 1), then the quantum channel (1) remains
exactly the same.

(b) Use the result from (a) to show that the dephasing map (2) can also be written in terms
of the Kraus operators

N0 =
√
α I2, N1 =

√
1 − α σz. (4)

Find the relation between α and λ.

(c) Interpreted as a measurement, what is the backaction of this new set of Kraus opera-
tors. Is it the same as that of the representation (2)?

6. Dephasing using a CNOT. Consider two qubits, S and E (here E stands for “environ-
ment”), with S prepared in some arbitrary state ρS and E prepared in a statistical mixture
ρE = p|+〉〈+| + (1 − p)|−〉〈−|. The two systems then interact according to a CNOT having
E as the control bit:

UCNOT = |0〉〈0|E ⊗ IS + |1〉〈1|E ⊗ σS
x . (5)

Consider now the map obtained by first evolving S E and then taking the partial trace over
the environment:

ρ′S = trE

{
U(ρS ⊗ ρE)U†

}
. (6)

Show that this map produces the dephasing channel (2) for certain values of p. Relate
p to λ. Eq. (6) is called a Stinespring dilation of the quantum channel: it is a way of
representing a quantum channel as some unitary evolution of a system plus an environment,
and then tracing out the environment.

7. SWAP gate. The SWAP gate acts on two qubits in the following way:

USWAP|i, j〉 = | j, i〉. (7)

(a) Write down the matrix elements of USWAP in the computational basis.

(b) Verify that one may write

USWAP =
1
2

(1 + σA ·σB), (8)

where σ = (σx, σy, σz). This form is originally due to Pauli.

(c) Show that the SWAP can be constructed by the application of 3 CNOT channels (5),
alternating who the target qubit is.


