
Statistical Mechanics - 2019-2 - Problem set 1
Professor: Gabriel T. Landi

Deadline: 24/09

This problem set is all about spin, from quantum to classical and back again.

1. Spinzão: there are many systems in nature which behave like macroscopic spins, which
are not necessarily 1/2. One example are the so called single-molecule magnets, such
as Mn12. Recall that spin can in general take on either integer or half-integer values,
S = 1/2, 1, 3/2, 2, . . .. When a system has spin S it means that the spin components in any
given direction can take on any value between S and −S in integer steps:

s = S , S − 1, . . . ,−S + 1,−S . (1)

When a spin S is placed in contact with a magnetic field h, the energy eigenvalues become

Es = −hs, (2)

where I chose simplified units such that h has dimensions of energy. The eigenvalues are
thus equally spaced, with the ground-state being s = S (spin fully aligned with the field).

(a) Compute the partition function1, Z =
∑

s e−βEs .

(b) The magnetization is defined as

M = 〈s〉 =
1
Z

S∑
s=−S

se−βEs , (3)

Show that the magnetization can be computed as

M = −
∂F
∂h

= T
∂

∂h
ln Z, (4)

where F = −T ln Z is the Helmholtz free energy.

(c) Compute the magnetization and write it in terms of the Brillouin function

BS (x) =
2S + 1

2S
coth

(
2S + 1

2S
x
)
−

1
2S

coth
( x
2S

)
. (5)

(d) Analyze your result. Explore the physics. Make plots. Check what happens in limiting
cases (zero field, large field, zero temperature, large temperature, etc.).

(e) The classical limit is when the spin is not restricted to a discrete set of values, but can
take on any value continuously between −S and S . You can obtain this limit from the
result of the previous exercise by taking S → ∞. But this cannot be done naively; we
don’t really want S = ∞, since that is unphysical. We just want S large enough so

1The following result may be useful:
L∑

n=0

xn =
1 − xL+1

1 − x

For a derivation, see the appendix of Lecture note 1.



that the discreteness becomes unimportant. The correct way to do this is to pinpoint
which quantities should increase with S (from a physical perspective). There are two
in this problem: the magnetization and the energy. Thus, we have to take the limit
S → ∞, but keeping m = M/S and hS finite. Show that in this limit one can write the
magnetization in terms of the Langevin function

L(x) = coth(x) −
1
x
. (6)

2. Classical spins: Continuing from the previous exercise, one can also, from the start, for-
mulate the problem for a classical spin, modeled as a vector s = (sx, sy, sz) lying on a
sphere of radius S (where S is an arbitrarily large number). Since the radius of the sphere
is fixed, we can parametrize

sx = S sin θ cos φ, sy = S sin θ sin φ, sz = S cos θ, (7)

where θ ∈ [0, π) and φ ∈ [0, 2π] are the usual spherical angles. If the field is applied in the
z direction, the energy (2) becomes

E(θ, φ) = −hsz = −hS cos θ.

Moreover, sums now become integrals over the sphere. For instance, the partition function
becomes

Z =

∫
e−βE(θ,φ) sin θ dθ dφ (8)

where sin θ dθ dφ is the element of solid angle in the sphere.

(a) Compute the partition function.

(b) Compute the magnetization. Your results should match those of exercise 1(e).

(c) Suppose now that the energy of the system is given instead by

E(θ, φ) = −hS cos θ −
kS
2

cos2 θ, (9)

where k > 0. This last term is sometimes called a uniaxial anistropy. It essentially
pushes the system to lie within the z axis, irrespective of whether it is up or down
(unlike the magnetic field which makes it point up). The magnetization now can no
longer be computed analytically. Instead, let us focus on the case of low field, for
which all quantities can be computed using series expansions. Show that for small h
the magnetization has the form

M =
S 2R

T
h, (10)

where

R =

1∫
−1

dz z2eβkS z2/2

1∫
−1

dz eβkS z2/2

. (11)



3. Lipkin-Meshkov-Glick model, part 1: Quantum mechanically, a system of spin S can
be characterized by three operators S x, S y and S z satisfying the canonical commutation
relations

[S x, S y] = iS z, (12)

(and cyclic permutations). We usually choose to work on the basis where S z is diagonal.
Its eigenvalues and eigenvectors will then have the form

S z|s〉 = s|s〉, s = S , S − 1, . . . ,−S + 1,−S , (13)

which are essentially the eigenvalues we used in problem 1. In this basis the operators S x

and S y are not diagonal. Defining S ± = S x ± iS y, it can be shown (you can check any
quantum mechanics book) that

S +|s〉 =
√

(S − s)(S + s + 1)|s + 1〉, (14)

S −|s〉 =
√

(S + s)(S − s + 1)|s − 1〉. (15)

With these expressions, we can now construct the matrix elements of S x and S y.

(a) Construct the spin matrices S x, S y and S z for spin 1.

(b) Consider now the Lipkin-Meshkov-Glick (LMG) model, described by the Hamiltonian

H = −hS z −
k

2S
S 2

x, (16)

where k > 0 is a constant. Notice the similarity with Eq. (9). The 2nd term is also
a uniaxial anistropy, but applied instead at the x direction. This model is non-trivial
because there are two competing terms in the Hamiltonian and these terms do not
commute. Compute the partition function of the Hamiltonian (16) for the case of spin
1.

(c) Study the heat capacity. The formulas may be ugly, but making plots are easy. You can
set the energy scale so that k = 1, which leaves you with only h and T as parameters.

(d) Study the entropy.

(e) Compute the magnetization in the z direction, M = 〈S z〉.

4. Spin coherent states: It is possible to connect quantum with classical spins using the
notion of spin coherent states, which are defined as

|θ, φ〉 = e−iφS ze−iθS y |s = S 〉, (17)

where |s = S 〉 means the highest spin state of S z. The operator e−iθS y does a rotation
around the y axis by an angle θ, whereas e−iφS z rotates by φ around z. Thus, the state (17)
essentially means we start in the north pole, rotate by θ around y and then by φ around z.
This is exactly how you get to a point (θ, φ) [as in Eq. (7)] in the unit sphere.

Show that the average of the spin operators in the spin-coherent state (17) read

〈S x〉 = S sin θ cos φ, 〈S y〉 = S sin θ sin φ, 〈S z〉 = S cos θ, (18)

which is exactly the same structure as Eq. (7), even though this holds for arbitrary S . To
prove this you will need the BCH formula

eXYe−X = Y + [X,Y] +
1
2!

[X, [X,Y]] +
1
3!

[X, [X, [X,Y]]] + . . . (19)



Spin coherent states are therefore the closest one can get to classical physics when dealing
with quantum mechanical spins. They are the key for understanding the transition from
quantum to classical as S increases. If you want to know more, a good reference is J. M.
Radcliffe, “Some properties of coherent spin states,” J. Phys. A. 4, 313–323 (1971).

5. Lipkin-Meshkov-Glick model, part 2: Consider again the LMG model (16). This model
saw a revival of popularity around 10 years ago because, in the limit S → ∞, it presents a
quantum phase transition. In fact, the LMG model can be viewed as a mean-field version
of the transverse field Ising model (this sentence probably didn’t make any sense now, but
I promise until the end of the semester it will!). A quantum phase transition is an abrupt
transition in the ground-state of the model as one changes a parameter in the Hamiltonian.
It is thus a T = 0 effect: it is independent of thermal fluctuations and depends only on the
quantum fluctuations of the ground-state.

For arbitrary S the ground-state of Eq. (16) will be very complicated [if you want, you can
compute it numerically using the matrix elements in Eqs. (14) and (15)]. But as S → ∞, it
can be shown that the ground-state becomes closer and closer to a spin coherent state (17),
for some value of θ and φ. Consider then the average of H in (17),

E(θ, φ) = 〈θ, φ|H|θ, φ〉. (20)

In the limit of S → ∞ one may show that the dominant terms have the form

E(θ, φ) = −hS cos θ −
kS
2

sin2 θ cos2 φ. (21)

The ground-state will be the minimum of E(θ, φ) as a function of θ and φ. Show that this
minimum has an abrupt transition as a function of the magnetic field h. This problem is
entirely at T = 0. It refers only to the ground-state. Determine the critical field hc where
this happens. Analyze the magnetization in the z direction, M = 〈S z〉 = S cos θ as a
function of h.

We will come back to the LMG model later on, but if you want to learn more about it,
a paper which I like is arXiv0805.4078.


