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1. Quantum master equation: In class we discussed master equations in the context of the evolution
of probabilities pn. However, these master equations can also be cast in terms of an evolution of the
full density matrix ρ(t). This is called a Quantum (or Lindblad) Master equation. Here we shall study
as an example the harmonic oscillator. Its master equation reads

dρ
dt

= L(ρ) = γ(N̄ + 1)
[
aρa† −

1
2
{a†a, ρ}

]
+ γN̄

[
a†ρa −

1
2
{aa†, ρ}

]
, (1)

where {A, B} = AB + BA is the anti-commutator, N̄ = (eβ~ω − 1)−1 is the Bose-Einstein distribution
and γ > 0 is a constant measuring the coupling strength to the reservoir1.

(a) Check that this equation preserves the trace. That is, if tr(ρ(0)) = 1, then for all future times
tr(ρ(t)) = 1. In addition to this, in order for Eq. (1) to represent a valid evolution equation for any
density matrix, it must also preserve positivity. That is, if ρ(0) ≥ 0 then ρ(t) ≥ 0 for any t. This
turns out to be true for (1) as well, although the proof is slightly more difficult.

(b) Using [a, a†] = 1 show that
eβ~ωa†aae−β~ωa†a = e−β~ωa. (2)

(c) Use the previous result to show that ρ ∝ e−β~ωa†a is a fixed point of Eq. (1). That is L(e−β~ωa†a) =

0. Moreover, show that this is true if and only if the β in e−β~ωa†a is the same as the one in N̄.

(d) Consider now the populations pn(t) = 〈n|ρ(t)|n〉. Show that the populations evolve according to
the same master equation we studied in class. Namely,

dpn

dt
= γ(N̄ + 1)

{
(n + 1)pn+1 − npn

}
+ γN̄

{
npn−1 − (n + 1)pn

}
. (3)

(e) Next consider average occupation 〈a†a〉 = tr
{
a†aρ

}
. Show from either Eq. (1) or Eq. (3) that it

evolves according to
d〈a†a〉

dt
= γ(N̄ − 〈a†a〉). (4)

Solve it and discuss the result.

2. Spontaneous emission: When atoms are coupled to the electromagnetic field, they may emit or
absorb a photon. The quantum master equation describing this process, assuming a two-level atom,
is very similar to Eq. (1):

dρ
dt

= γ(N̄ + 1)
[
σρσ† −

1
2
{σ†σ, ρ}

]
+ γN̄

[
σ†ρσ −

1
2
{σσ†, ρ}

]
, (5)

but now σ = |0〉〈1| is the lowering operator for a 2-level atom and, as before, N̄ = (eβε − 1)−1.
The terms proportional to N̄ are called stimulated emission and absorption, whereas the factor of
“1” in N̄ + 1 is the spontaneous emission. This term is related to the coupling of the atom to the
electromagnetic vacuum and therefore persists even at zero temperature.

(a) The excited state population is described by the operator σ†σ = |1〉〈1|. Show that the evolution
of 〈σ†σ〉 is described by the equation

d〈σ†σ〉
dt

= γ(2N̄ + 1)
[ N̄
2N̄ + 1

− 〈σ†σ〉
]
. (6)

What is the steady-state of Eq. (6)? Does it make sense?
1In principle there can also be a Hamiltonian term in Eq. (1) describing the unitary evolution. I omit it because I don’t want you to

worry about that. The final results in this case will also be independent of it, so it’s not a problem to neglect it.
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(b) Solve Eq. (6) and show that the effective relaxation rate depends on temperature. Analyze the
limit N̄ = 0.

(c) The density matrix for a qubit can always be written as

ρ =

(
1 − p q

q∗ p

)
, (7)

where p = 〈σ†σ〉 is the population of the excited state and q = 〈σ†〉 is the coherence in the
population basis. Study the evolution of q under the master equation (5). You will find that q
decays exponentially. This process is called decoherence. When a system is coupled to a bath,
in addition to the populations adjusting to those imposed by the bath, the quantum coherences
are also destroyed.

(d) Now parametrize the density matrix as

ρ =
1
2

(
1 + sz sx − isy

sx + isy 1 − sz

)
, (8)

where, as we saw in class, si = 〈σi〉 are the expectation values of the Pauli matrices. Use your
results from (b) and (c) to discuss how is the trajectory of the qubit in Bloch’s sphere.

3. Entropy production and decoherence:2 In class we saw how to model the entropy production
during the relaxation dynamics. But in that case we were considering only classical master equations
(i.e., the dynamics of the populations pn). One can formulate the problem equally when in terms of
quantum master equations and the evolution of the density matrix. In this case the entropy production
rate becomes

Π = −
d
dt

S (ρ||ρth), (9)

where S (ρ||ρth) = tr(ρ ln ρ − ρ ln ρth) is the quantum relative entropy. Consider the spontaneous
emission master equation (5) and the solutions you found on exercises 2(a) and 2(c). Show that
decoherence always increases the entropy production. Irreversibility at the quantum level therefore
has an extra component related to the loss of quantum features. If you want to learn more about this,
check out this paper.

4. Superradiance: The evolution of a the population of a single atom, at zero temperature, was found
in Eq. (6). With N̄ = 0 it reads

d〈σ†σ〉
dt

= −γ〈σ†σ〉. (10)

Thus, the emitted power is proportional to 〈σ†σ〉, which is the excited state population of a single
atom. As a consequence, if we now have N atoms in our sample, the total emitted power will be
proportional to N .

WhenN atoms are placed very close to each other however, they will have the tendency to emit to the
same electromagnetic modes. The emission then becomes a collective effect. This is the idea behind
superradiance: the collective emission of many atoms onto the same electromagnetic mode.

The evolution in this case can be described in terms of the so-called Dicke states |n〉, where n =

0, 1, 2, . . . ,N represents the number of atoms in the excited state. The collective dynamics will be
described by the following master equation:

dρ
dt

= κ
[
S −ρS + −

1
2
{S +S −, ρ}

]
, (11)

where S ± are collective operators that act as follows:

S +|n〉 =
√

(N − n)(n + 1)|n + 1〉, (12)

S −|n〉 =
√

n(N − n + 1)|n − 1〉. (13)
2This problem is open-ended. This means I will not tell you exactly what to do, but only what to study. The reason why I do this

is because that is how research is like. In research there is no one telling you exactly how to solve the problem; you have to figure that
out by yourself.
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(a) Find a differential equation for pn = 〈n|ρ|n〉, which represents the probability of having n atoms
in the excited state. You don’t have to solve the equation (it is actually a bit difficult to do it).

(b) Use your result to show that the average number of atoms in the excited state, 〈n〉, evolves accor-
ding to

d〈n〉
dt

= −κ(N + 1)〈n〉 + κ〈n2〉. (14)

As a sanity check, if N = 1 then n = 0, 1 so that n2 = n. This then reduces to

d〈n〉
dt

= −2κ〈n〉 + κ〈n〉 = −κ〈n〉,

which is Eq. (10).

Eq. (14) shows the main features of superradiance. First, the term proportional to 〈n〉 is amplified
by a factor N. This term is the individual emission from each atom. But each atom doesn’t emit
with rate κ anymore, but with an effective rate κ(N + 1). The rate of emission is thus amplified
by the presence of other atoms. Second, the last term in Eq. (14) is the actual superradiance. It
gives a contribution to the rate d〈n〉/ dt at which the atoms emit, which is proportional to 〈n2〉. If
you double the number of atoms, you quadruple the emitted power. Pretty cool eh? :)

5. Anomalous heat flow due to quantum correlations: Consider two qubits, with Hamiltonians Hi =
ε
2 (1 − σi

z), where i = A, B.

(a) Suppose the qubits are prepared in thermal states, but at initially different temperatures Ti; that
is, ρi = e−βiHi/Zi. The two qubits are then put to interact by means of a unitary U = e−iHt, where

H = HA + HB + g(σ+
Aσ
−
B + σ−Aσ

+
B). (15)

Study the change in energy of A and B. Show that energy flows from the hot body to the cold
body. Of course, since these are qubits, stuff will oscillate, so these conclusions have to be taken
by looking at short times.

(b) Now suppose that the two qubits are initially prepared in a correlated state, of the form

ρAB = ρth
A ⊗ ρ

th
B + χ, χ = α|01〉〈10| + α∗|10〉〈01|, (16)

where α is a complex constant. Since trAχ = trBχ = 0, it follows that these states are locally
thermal. Study the heat flow in this case and show that depending on the choice of α, heat may
now flow from cold to hot. Notice that the values of α cannot be chosen to be too large; it must
be such that ρAB is still positive semi-definite.

I think this result is super cool. Even though the two qubits are locally thermal, the fact that
they are globally in a correlated state affects the flow of heat. This idea was recently tested
experimentally.
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